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Abstract: In view of the characteristics of the collected time series, such as being high noise, non-
stationary and nonlinear, most of the current methods are designed to smooth or denoise the whole
time series at one time and then divide the training set and testing set, which will lead to using the
information of the testing set in the training process, resulting in data leakage and other problems. In
order to reduce the impact of noise on time series prediction and prevent data leakage, a prediction
method with data leakage suppression for time series (DLS) is proposed. This prediction method
carries out multiple variational mode decomposition on the time series by overlapping slicing
and improves the noise reduction threshold function to perform noise reduction processing on the
decomposed time series. Furthermore, the idea of deep learning is introduced to establish a neural
network multi-step prediction model, so as to improve the performance of time series prediction. The
different datasets are selected as experimental data, and the results show that the proposed method
has a better prediction effect and lower prediction error, compared with the common multi-step
prediction methods, which verifies the superiority of the prediction method.

Keywords: time series; data leakage; overlapping slicing; noise reduction threshold function

1. Introduction

A set of observed values produced in chronological order can be called a time series,
and these time series widely exist in many fields. Analyzing the observed values of time
series and predicting the series values at future time points using various methods is
called time series prediction. Time series prediction has great significance. For example,
in the financial field, the development trend of financial time series can be understood by
predicting financial data; in the power field, energy distribution can be guided through
power load prediction; in the medical field, the transmission of diseases can be prevented
by predicting disease incidence.

Time series is closely related to human activities and has high noise, non-stationary
and nonlinear characteristics, etc., which results in the accuracy of time series prediction
generally not being high. Therefore, a lot of research on time series prediction methods
has been carried out by domestic and foreign scholars. Traditional time series prediction
methods are mostly limited to a fixed model framework and have stricter assumptions, and
these methods use statistical knowledge to construct the model, according to the develop-
ment rule of time series, which extends the time series, so as to predict the subsequent time
series. The popular traditional time series prediction methods, such as random walk model,
autoregressive moving average model [1,2] and generalized autoregressive conditional
heteroskedasticity model [3], have higher requirements for data and cannot get better
prediction results for complex non-linear time series. In recent years, modern time series
prediction methods have mainly used machine learning and deep learning techniques,
such as support vector machine [4,5], artificial neural network [6–9] and so on. The neural
network prediction method pays more attention to the data itself and deals with non-linear
problems through activation function, so it can better handle time series prediction problem
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and provide more accurate prediction results. Recurrent neural network (RNN) [10] has a
strong memory function and has certain advantages in dealing with time series problems,
and it can use historical data to theoretically solve the long-term dependence problem
of time series. However, RNNs are learned by back propagation, so the gradient will
disappear or decrease when the input time series is long. Hochreiter et al. [11] proposed
a long short-term memory (LSTM) network model to improve the problems in the RNN
network, which can well learn and process the long short-term dependencies of data.

The collected data in practice often have the characteristics of being high noise, non-
stationary, nonlinear and so on, which means that a single model cannot achieve better
results. Therefore, some scholars consider using signal decomposition [12] and noise re-
duction methods [13,14] to process the original time series. In order to solve the noise
problem of time series, various noise reduction methods have been proposed by domestic
and foreign scholars, which can be roughly divided into noise reduction methods based on
singular spectrum analysis (SSA), wavelet transform (WT) and empirical mode decomposi-
tion (EMD). For example, Dai Hailiang et al. [15] proposed a non-linear motion modeling
method combining wavelet multi-scale decomposition with singular spectrum analysis,
which can more accurately extract useful information, such as trend and period from the
finite scale time series with noise. Ma Jun et al. [16] proposed a method based on wavelet
transform and using information entropy theory to eliminate colored noise to improve the
model prediction effect. Pham et al. [17] proposed a hybrid method combining singular
spectrum analysis with the deep learning neural network for short-term load demand fore-
cast. To improve the estimation accuracy and reliability of wind power, Saroha et al. [18]
proposed a linear time-delay neural network based on wavelet transform to carry out
probability wind power prediction under the time series framework. Chacon et al. [19]
proposed a method to improve the prediction ability of financial time series by using the
complete set empirical mode decomposition of the adaptive noise and the intrinsic sample
entropy. Zhao Yangyang et al. [20] proposed a short-time metro passenger flow prediction
model based on empirical mode decomposition and long short-term memory network,
which provides more experience for subsequent research. The key to the noise reduction
method of singular spectrum analysis is to find the boundary point between the noise and
the useful components, but it is difficult to determine the number of singular values of
the useful components for the actual time series, which limits the noise reduction effect.
The noise reduction method of the wavelet transform depends on the selection of the
wavelet basis function and the number of decomposition layers, which often requires prior
knowledge, resulting in a great reduction in its applicability. Due to the abuses of EMD
and its improved algorithms, the decomposition is not accurate enough, and the effect
is limited. Variational mode decomposition (VMD) [21] is a decomposition estimation
method proposed by Dragomiretskiy, which improves empirical mode decomposition and
has a stronger theoretical grounding and more accurate decomposition than EMD.

Although the use of noise reduction methods is very common, most of the current
noise reduction methods are designed to smooth or denoise the whole time series at one
time, then divide the time series into training set and testing set, which will lead to using
the information of the testing set in the training process, resulting in data leakage and other
problems. Aimed at the above problems, using overlapping slicing method to process
the time series several times is more in line with the actual situation, and a prediction
method with data leakage suppression for time series (DLS) is proposed. The method
carries out multiple attempts at VMD processing on the time series through overlapping
slicing and improves the noise reduction threshold function to retain the decomposed
low-frequency sequence and denoises the decomposed high-frequency sequence. Further,
the modeling idea of deep learning is introduced to establish the neural network multi-
step prediction model [22], so as to improve the prediction performance of time series.
Additionally, the prediction accuracy of this method is then compared with a traditional
prediction method [23], VMD prediction method based on overlapping slicing, overall
VMD prediction method [24], and overall VMD noise reduction prediction method [25].
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2. DLS Prediction Method

Considering the data leakage problem in existing time series smoothing or noise
reduction processing, the noise reduction threshold function is improved, the noise re-
duction processing of VMD compromising threshold based on overlapping slicing is
constructed and applied to the time series prediction model, and then the DLS prediction
method is proposed.

Collecting of the time series. Sequence x(n) with length N is contaminated by noise
u(n), n = 1, 2, · · · , N, and thus collected sequence with noise can be given as:

y(n) = x(n) + u(n) (1)

VMD processing of time series y(n). VMD can decompose the input sequence y(n)
into different numbers of subsequences with limited bandwidth, and these subsequences
are the intrinsic mode function (IMF) components, which can reproduce the original input
sequence according to their sparsity as shown in (2) and (3):

Yw(n) = F[y(n)]A, w = 1, 2, · · · , K (2)

A =

[
K α
τ ε

]
(3)

where Yw(n) is the decomposed w-th IMF components; F[·] is the VMD decomposition
course; A is a parameter matrix containing the decomposition scale K, penalty factor α,
noise margin τ and discriminant accuracy ε.

The experimental demonstration shows that the values of the parameters τ and ε have
little influence on the decomposition result, usually set τ = 0 and ε = 1× 10−7. Therefore,
the selection of the decomposition scale K and penalty factor α in VMD is mainly analyzed.
Based on the observed center frequency, the value of K can be determined, and the value of
K is set from small to large positive integer values. When the last IMF component maintains
a relatively stable center frequency, the value of K at this time is considered to be the best
value, and K ∈ N∗. After the value of K is determined, the impact of different α on VMD
run time is observed. With the gradual increase in α, the appropriate value of α is obtained
when the run time reaches the first minimum value of time, and α ∈ N∗. According to this
experience, set K ∈ [2, 15] and α ∈ [200, 3000], and for this study set, K = 7 and α = 1000.

By setting the decomposition scale K and penalty factor α, the Wiener filtering noise
reduction and the alternating multiplication operator processing are carried out to obtain
and update the K center frequencies, and then IMF components are obtained according
to the different center frequencies. After several calculations, the IMF components are
matched to the optimal center frequency and achieve the effective decomposition of the
original sequence.

Low-frequency component Yl(n) and high-frequency component Yh(n) in Yw(n) can
be determined by permutation entropy, where l = 1, · · · , d, h = d + 1, · · · , K, d ∈ Z. First,
the phase space reconstruction is performed on the component Yw(n). K = 1 is taken as
an example, the delay time θ and embedding dimension m are determined in the phase
space reconstruction method, and the component Y1(n) is decomposed into n− (m− 1)θ
m-dimensional vectors, as shown in (4).

Ỹ11 = (Y1(1), · · · , Y1(1 + ( f − 1)θ))
Ỹ12 = (Y1(2), · · · , Y1(2 + ( f − 1)θ))
· · ·
Ỹ1i = (Y1(i), · · · , Y1(i + ( f − 1)θ))
· · ·
Ỹ1(n−(m−1)θ) = (Y1((n− (m− 1)θ)), · · · , Y1(n))

(4)
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Each reconstructed component is rearranged in ascending order, and the column index
j1, j2, · · · , jm of the position of each element in the vectors can be obtained as follows:

Y1(i + (j1 − 1)θ) ≤ · · · ≤ Y1(i + (jm − 1)θ) (5)

A symbol sequence S(c) that reflects the size order of the elements can be obtained for
any reconstructed vector, as shown in (6). The different symbol sequences {j1, j2, · · · , jm}
mapped by m-dimensional phase space are a total of m!. S(c) is one arrangement form of
symbol sequences, and each reconstruction component updates {j1, j2, · · · , jm} in ascending
order after being arranged.

S(c) = {j1, j2, · · · , jm}, c = 1, 2, · · · , R, R ≤ m! (6)

The occurrence number of each symbol sequence divided by the total occurrence
number of m! of different symbol sequences gives the occurrence probability of the symbol
sequence, that is {V1, V2, · · · , VR}.

The permutation entropy of the IMF components is calculated by using the probability
{V1, V2, · · · , VR}.

Hu = −
R

∑
c=1

Vc ln(Vc) (7)

The value of the maximum permutation entropy is ln(m!), and the permutation
entropy is normalized as follows:

0 ≤ H′u =
Hu

ln(m!)
≤ 1 (8)

The size of the permutation entropy indicates the random degree of the IMF compo-
nent: the smaller the entropy value, the simpler and more regular the sequence; conversely,
the larger the entropy, the more complex and random the sequence. The threshold value is
set according to the permutation entropy of the time series y(n) and the empirical value
(0.7–0.85) of the high- and low-frequency nodes, and the value of d is the number of
IMF components whose permutation entropy is less than the threshold value, and then
the low-frequency component Y1 ∼ Yd and the high-frequency component Yd+1 ∼ YK
can be determined.

The VMD noise reduction processing is based on overlapping slicing for time series
y(n). This study chooses a fixed threshold value, and the noise reduction threshold function
is improved to construct a compromised threshold function, as shown in (9).

Y′kt =

{
sign(Ykt)

(
|Ykt| − βλe−|Ykt |λ

)
, |Ykt| ≥ λ

0, |Ykt| < λ
(9)

where β is the compromise factor and β ∈ [0, 1]; Ykt represents the value of the decomposed
component Yk at t time; Y′kt represents the value of the denoised component Y′k at t time;
sign( ) represents the symbol function; the threshold of Yk is λ = σk

√
2 ln Q; Q is the slice

size; σk =
median(|Yk |)

0.6745 ; median( ) represents the median function.
Time series y(n) is processed in unit time step by using a slice of fixed size. The

time series y(n) is processed by VMD after slicing; the low-frequency component is pre-
served, and the high-frequency component is processed by the noise reduction in com-
promising threshold. The slice size Q is 120 and the slice moves at a step of 1, there
will then be M = N −Q + 1 slices in total. The time series y(n) is divided into M slices,
as shown in (10).

Fb = {y(b), y(b + 1), · · · , y(b + Q− 1)} (10)

where b = 1, 2, · · · , M.
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The first set of time series slices is extracted as (y(1), y(2), · · ·, y(Q)), and VMD
processing is performed on this sequence to obtain the first decomposition sequence
(y1(1), y1(2), · · ·, y1(Q)), then the low-frequency component of the decomposition se-
quence is preserved, and the high-frequency component of the decomposition sequence is
processed by noise reduction, so as to obtain the first noise reduction sequence(

y′1(1), y′1(2), · · ·, y′1(Q)
)
. Similarly, remaining time series slices of each set continue to be

extracted, and the same processing is carried out until time series slices
(y(M), y(M + 1), · · ·, y(Q + M− 1)) of the last set are processed.

Preparation of training set and testing set. The data from the past P time steps are used
to predict the data in the future P time steps, P ≤ P′, and P′ is the sum of the last P steps of
each slice. The sequence after decomposition and noise reduction is integrated, then the
last P data of each slice are taken to form the input dataset, which is organized into the
suitable data format for the input of neural network, and the input dataset is shown in (11):

Zb =
{

y′b(Q− P + b), y′b(Q− P + b + 1), · · · , y′b(Q + b− 1)
}

(11)

where b = 1, 2, · · · , M.
The label dataset uses the sliding window to process time series y(n), and the window

moves one unit time step at a time. The label dataset is shown in (12).

Gb = {y(Q + b), y(Q + b + 1), · · · , y(Q + b + P− 1)} (12)

where b = 1, 2, · · · , M.
The data in Zb that removes the last five rows of slices as training set input Zir are

selected, and the data in Gb that removes the last five rows of slices as training set label Zor
are selected.

The data of the last row of slices in Zb as testing set input Zie are selected, and the data
of the last row of slices in Gb as testing set label Zoe are selected.

The training set input and label form the training set Ztrain, and the testing set input
and label form the testing set Ztest. Additionally, then the training set and the testing set
are integrated into a complete dataset Z.

Preprocessing of time series. The neural network algorithm needs to standardize
the time series data to prevent the influence between the current values of each variables
being too large. At the same time, standardization can also improve the model prediction
accuracy and convergence rate. Therefore, before the model training, the maximum and
minimum values of training set data are selected to normalize the training and testing data,
as shown in (13).

Z′ =
Z−min(Ztrain)

max(Ztrain)−min(Ztrain)
(13)

where Z′ is the normalized data.
The normalized training set input, training set label, testing set input, testing set label

are Z′ir, Z′or, Z′ie, Z′oe, respectively.
Then neural network is trained and appropriate hyper-parameters are selected for

prediction. The long short-term memory network structure is adopted based on attention
mechanism, and the model parameters of LSTM are set as follows: the number of hidden
layers is 1, the number of neurons is 64, the tanh function is set as the activation function,
the number of iterations is set as 300 times to ensure the experiment effect, the early stop
mechanism is adopted, the step size of LSTM is set as 5, the batch size is set as 32, the
mean-square error (MSE) of the normalized predicted value and true value as the loss
function is used, Adam optimization algorithm to update the parameters is used, and the
dimension of the output layer is 5.

The normalized training set input Z′ir is input into the neural network, and the predic-
tion data Z̃or, which is output from the neural network, is shown in (14).

Z̃or = L
[
Z′ir
]MSE (14)
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where L[·] is the neural network function and MSE is the evaluating indicator.
The parameters of back propagation are updated by using MSE as the evaluating

indicator and training is stopped after MSE no longer drops or reaches the maximum
number of iterations.

Prediction of future data. The trained neural network is used to predict the future
data, the normalized testing set input Z′ie is input into the trained neural network, and the
prediction data Z̃oe obtained is shown in (15).

Z̃oe = L
[
Z′ie
]MSE (15)

The prediction data Z̃oe is anti-normalized to get the predicted P step future data T̃.

3. Experiments
3.1. Effectiveness Analysis of Noise Reduction

The simulated mixed signal sequence is constructed, as shown in (16–19).

x1(t) = 2× sin
(

50× π × t +
π

2

)
(16)

x2(t) = (t + 1)× sin
(

20× π × t +
π

4

)
(17)

x(t) = x1(t) + x2(t) + r(t) (18)

x0(t) = x1(t) + x2(t) (19)

where t = [0, 0.99975]; the sampling interval is 0.00025 s; r(t) is the random noise signal
sequence, that is gaussian white noise; x(t) is the mixed simulation signal sequence with
noise; x0(t) is the original noise-free signal sequence; x1(t) and x2(t) are the signal sequence
components of x0(t).

The original noise-free signal sequence x0(t) and the mixed simulation signal sequence
x(t) with noise are shown in Figures 1 and 2.
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The mixed simulation signal sequence x(t) with noise is carried out with the noise
reduction processing of wavelet soft threshold function and VMD compromising threshold,
respectively, and two noise reduction results of the signal sequences are obtained, as shown
in Figures 3 and 4.
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The morphological characters of the signal sequences before and after noise reduction
can be visually compared from Figures 3 and 4. The signal-to-noise ratio (SNR) and the root
mean squared error (RMSE) are selected as the noise reduction evaluating indicators for the
noise reduction effects of the different examples of processing, as shown in (20) and (21).
After calculation, the evaluating indicators are SNR = 25.9460 and RMSE = 0.0897 for the
noise reduction processing of wavelet soft threshold function; the evaluating indicators are
SNR = 28.2607 and RMSE = 0.0687 for the noise reduction processing of VMD compromise
threshold. Through the comparison diagrams and evaluating indicators of noise reduction,
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it shows that the noise reduction processing of the VMD compromise threshold has better
noise reduction effect, and its validity is verified.

SNR = 10× lg

N
∑

i=1
x2

0i

N
∑

i=1

(
x0i − x′0i

)2
(20)

RMSE =

√√√√ 1
N

N

∑
i=1

(
x0i − x′0i

)2

(21)

where x′0i is the noise-free signal sequence; x′0i is the signal sequence after noise reduction;
N is the length of the sequence.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 4. Noise reduction result of VMD compromising threshold. 

3.2. Predicted Results and Analysis 
By decomposing the data, the DLS method retains the decomposed low-frequency com-

ponents directly and reduces the noise of the decomposed high-frequency components. 
Therefore, this method is suitable for time series prediction, where the high-frequency infor-
mation is not dominant and the low-frequency information is dominant. This test selects da-
tasets with such characteristics as the main test objects, among which the satellite clock error 
data and the stock data are more representative. In order to ensure the reliability of the exper-
imental results and avoid the contingency of the experimental results, multi-group datasets 
are set up for test analysis. The selected data can be divided into two types, the first is GPS 
satellite clock error data from IGS, and the second is stock data from financial circulation. The 
first type uses the final satellite clock error data with a sampling interval of 30 s, and the com-
pressed clock error file igs21526.clk_30s can be downloaded from the website ftp://gar-
ner.ucsd.edu/pub/products/ (accessed on 8 June 2022). The file is the clock error data with a 
sampling interval of 30 s on April 10, 2021, and the satellite clock error sequences of G05 and 
G24 are extracted as experimental data. The second type uses the closing price transaction 
dataset of the Shanghai and Shenzhen 300 Index (CSI300), the closing price trading dataset of 
the Shanghai Composite Index and the closing price trading dataset of the Shenzhen Compo-
nent Index, which can be downloaded from the website https://money.163.com/stock/ (ac-
cessed on 8 June 2022). The closing price trading dataset of the CSI 300 is the daily closing price 
trading data from July 2005 to June 2021, the closing price trading dataset of the Shanghai 
Composite Index is the daily closing price trading data from October 2005 to April 2022 and 
the closing price trading dataset of the Shenzhen Component Index is the daily closing price 
trading data from October 2005 to April 2022. 

Therefore, the DLS method is tested and analyzed based on these two types of data, 
and four comparison methods are set up: 
(1) Traditional prediction method (LSTM). First, the dataset is divided into training set 

and testing set. Then, the training sample and testing sample are processed using the 
sliding window after normalizing the dataset and the data of the next five days is 
predicted based on the data from the past five days. The labels of both training sam-
ple and testing sample are the original data. 

(2) VMD prediction method based on overlapping slicing (P-VMD-LSTM). The first 120 
data in the dataset are obtained by overlapping slicing each time they carried out VMD 
processing and processing the last 5 data of the processed 120 data. Then, the training 
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3.2. Predicted Results and Analysis

By decomposing the data, the DLS method retains the decomposed low-frequency
components directly and reduces the noise of the decomposed high-frequency components.
Therefore, this method is suitable for time series prediction, where the high-frequency
information is not dominant and the low-frequency information is dominant. This test
selects datasets with such characteristics as the main test objects, among which the satellite
clock error data and the stock data are more representative. In order to ensure the reliability
of the experimental results and avoid the contingency of the experimental results, multi-
group datasets are set up for test analysis. The selected data can be divided into two types,
the first is GPS satellite clock error data from IGS, and the second is stock data from financial
circulation. The first type uses the final satellite clock error data with a sampling interval
of 30 s, and the compressed clock error file igs21526.clk_30s can be downloaded from the
website ftp://garner.ucsd.edu/pub/products/ (accessed on 8 June 2022). The file is the
clock error data with a sampling interval of 30 s on 10 April 2021, and the satellite clock
error sequences of G05 and G24 are extracted as experimental data. The second type uses
the closing price transaction dataset of the Shanghai and Shenzhen 300 Index (CSI300), the
closing price trading dataset of the Shanghai Composite Index and the closing price trading
dataset of the Shenzhen Component Index, which can be downloaded from the website
https://money.163.com/stock/ (accessed on 8 June 2022). The closing price trading dataset
of the CSI 300 is the daily closing price trading data from July 2005 to June 2021, the closing

ftp://garner.ucsd.edu/pub/products/
https://money.163.com/stock/
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price trading dataset of the Shanghai Composite Index is the daily closing price trading
data from October 2005 to April 2022 and the closing price trading dataset of the Shenzhen
Component Index is the daily closing price trading data from October 2005 to April 2022.

Therefore, the DLS method is tested and analyzed based on these two types of data,
and four comparison methods are set up:

(1) Traditional prediction method (LSTM). First, the dataset is divided into training set
and testing set. Then, the training sample and testing sample are processed using the
sliding window after normalizing the dataset and the data of the next five days is
predicted based on the data from the past five days. The labels of both training sample
and testing sample are the original data.

(2) VMD prediction method based on overlapping slicing (P-VMD-LSTM). The first
120 data in the dataset are obtained by overlapping slicing each time they carried out
VMD processing and processing the last 5 data of the processed 120 data. Then, the
training sample and testing sample are processed by sliding window after normalizing
the dataset, and the data of the next five days is predicted based on the data from
the past five days. The labels of both the training sample and testing sample are the
original data.

(3) Overall VMD prediction method (VMD-LSTM). First, the dataset is divided into
training set and testing set, and the whole training set is carried out with VMD
processing. Then, the training sample and testing sample are processed using the
sliding window after normalizing the dataset, and the data of the next five days is
predicted based on the data from the past five days. The labels of both the training
sample and testing sample are the original data.

(4) Overall VMD noise reduction prediction method (VMD-LSTM-NR). First, the dataset
is divided into training set and testing set, and the whole training set is carried out
with the VMD noise reduce processing. Then, the training sample and testing sample
are processed using the sliding window after normalizing the dataset, and the data of
the next five days is predicted based on the data from the past five days. The labels of
both the training sample and testing sample are the original data.

The prediction results based on the G05 and G24 using each method are shown in
Figures 5 and 6.
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In Figure 5, the effect of the DLS method is significantly better than the other compari-
son methods. Except for the fact that there are deviations of the prediction value and the
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direction trend in the last step, the prediction results of the other steps have good effects.
However, other comparison methods can only have good results in the first half or the
second half of the prediction, which shows that these methods are significantly worse than
the DLS method.
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It can be seen from Figure 6 that all the methods have good prediction results on the
overall direction trend of prediction, but careful comparison shows that each method has
different effects on different prediction time steps. In order to better analyze the prediction
effectiveness, further discussion is needed through the evaluation indicators.

The comparison curves of the prediction value and the true value of the CSI300 are
shown in Figure 7. It can be seen that the DLS method is superior to other comparison
methods in fitting most of the data, and the daily fluctuation trend can be consistent. Except
for the fact that the LSTM method can also meet the daily fluctuation trend, all of other
comparison methods show deviations on some days. Therefore, whether discussing the
fitting or the fluctuation trend of the predicted value and the true value, the DLS method is
superior to other comparison methods and has better prediction effect.
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The comparison curves of the predicted value and the true value of the Shanghai
Composite Index and the Shenzhen Component Index are shown in Figures 8 and 9. By
comparison result of the predicted value and the true value in Figure 8, it shows that the
predicted value of the DLS method is closer to the true value, and the daily fluctuation
trend can be consistent, while some of comparison methods show deviations from the daily
fluctuation trend. Although the DLS method does not maintain the same daily fluctuation
trend in Figure 9, it still has better data fitting, compared with other comparison methods.
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Figure 9. Comparison of prediction results based on the Shenzhen Component Index.

Mean square error (MSE), mean absolute error (MAE), mean absolute percentage error
(MAPE) and symmetric mean absolute percentage error (SMAPE) are used as prediction
evaluating indicators to judge the degree of fitting between predicted values and true
values, as shown in (22) to (25).
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MSE =
1
P

P

∑
i=1

[
z′oe(i)− z̃oe(i)

]2
(22)

MAE =
1
P

P

∑
i=1

∣∣z′oe(i)− z′oe(i)
∣∣ (23)

MAPE =
100%

P

P

∑
i=1

∣∣∣∣z′oe(i)− z′oe(i)
z′oe(i)

∣∣∣∣ (24)

SMAPE =
100%

P

P

∑
i=1

|z′oe(i)− z′oe(i)|
(|z′oe(i)|+ |z′oe(i)|)/2

(25)

where P is the length of the testing set label; z′oe(i) is the true value; z̃oe(i) is the predicted value.
The evaluating indicators of the prediction results on the G05 and G24 datasets are

shown in Tables 1 and 2, respectively. It can be seen from Table 1 that all the evaluation
indicators need to be analyzed together. The LSTM method and DLS method have the best
results on MSE and MAE, respectively, and the MSE of the DLS method is not significantly
inferior to the LSTM method. Moreover, the MAE of the DLS method is reduced by at least
29%, compared with other methods, and the MAPE and SMAPE of the DLS are superior to
other methods and are reduced by 29% at least, which indicates that the DLS method has
a better prediction effect. The results of the evaluating indicators in Table 2 show that all
the four evaluating indicators of the DLS method are the lowest, indicating that the DLS
method has better prediction effectiveness, and the MSE, MAE, MAPE and SMAPE are
reduced by at least 2%, 1%, 1% and 1%, compared with other methods, respectively.

Table 1. Evaluating indicators of prediction results based on the G05.

Method MSE MAE MAPE SMAPE

LSTM 0.000008498 0.002692 0.0004520 0.0004520
P-VMD-LSTM 0.00001152 0.003105 0.0005212 0.0005212
VMD-LSTM 0.00001084 0.002767 0.0004645 0.0004645

VMD-LSTM-NR 0.00001052 0.002658 0.0004461 0.0004461
DLS 0.000008479 0.001882 0.0003159 0.0003159

Table 2. Evaluating indicators of prediction results based on the G24.

Method MSE MAE MAPE SMAPE

LSTM 0.00002110 0.003570 0.1605 0.1603
P-VMD-LSTM 0.00003844 0.005019 0.2256 0.2253
VMD-LSTM 0.00002000 0.004017 0.1806 0.1804

VMD-LSTM-NR 0.00001939 0.004021 0.1808 0.1806
DLS 0.00001896 0.003515 0.1580 0.1578

The comparison results of the prediction evaluating indicators of the CSI300 are shown
in Table 3. It can be seen that all the four evaluating indicators of the DLS method are the
lowest, and MSE, MAE, MAPE and SMAPE are, respectively, reduced by 16%, 14%, 14%
and 14%, compared with the P-VMD-LSTM method, which indicates that the DLS method
has better prediction ability than other comparison methods.

The comparison results of the prediction evaluating indicators of the Shanghai Com-
posite Index and the Shenzhen Component Index are shown in Tables 4 and 5. It can be
seen from Table 4 that all the four evaluating indicators of the DLS method are the lowest,
and MSE, MAE, MAPE and SMAPE are, respectively, reduced by 13%, 15%, 15% and
15%, compared with the VMD-LSTM-NR method. It can be seen from Table 5 that all the
four evaluating indicators of the DLS method are the lowest, and MSE, MAE, MAPE and
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SMAPE are, respectively, reduced by 13%, 9%, 9% and 9%, compared with the P-VMD-
LSTM method. Therefore, it indicates that the DLS method has good prediction ability.

Table 3. Evaluating indicators of prediction results based on the CSI 300.

Method MSE MAE MAPE SMAPE

LSTM 0.0002718 0.01352 1.8078 1.7837
P-VMD-LSTM 0.0001809 0.01106 1.4766 1.4624
VMD-LSTM 0.0001898 0.01202 1.6033 1.5865

VMD-LSTM-NR 0.0002204 0.01226 1.6356 1.6201
DLS 0.0001512 0.009416 1.2615 1.2481

Table 4. Evaluating indicators of prediction results based on the Shanghai Composite Index.

Method MSE MAE MAPE SMAPE

LSTM 0.00002656 0.004540 0.8250 0.8206
P-VMD-LSTM 0.00001564 0.003503 0.6369 0.6343
VMD-LSTM 0.00001379 0.002952 0.5370 0.5349

VMD-LSTM-NR 0.000009589 0.002541 0.4601 0.4617
DLS 0.000008301 0.002144 0.3885 0.3890

Table 5. Evaluating indicators of prediction results based on the Shenzhen Component Index.

Method MSE MAE MAPE SMAPE

LSTM 0.00001477 0.003754 0.7826 0.7799
P-VMD-LSTM 0.00001080 0.002846 0.5909 0.5932
VMD-LSTM 0.00001599 0.003637 0.7583 0.7549

VMD-LSTM-NR 0.00001268 0.003347 0.6982 0.6959
DLS 0.000009379 0.002576 0.5346 0.5366

Because the data distribution and data range of every dataset are different, each
prediction method has certain changes on the prediction results and prediction indicators,
and the prediction accuracy difference of each method also show changes. By testing the
above five datasets that satisfy the dominance of low-frequency information, the test results
show that the DLS method can not only effectively suppress the occurrence of the data
leakage problem and avoid the use of future data but also has better prediction results than
the other four comparison methods. Thus, the DLS method has the best performance on five
datasets. Although MSE, MAE, MAPE and SMAPE have slightly different performances
due to the data quality, the DLS method still has a better performance than other methods,
which proves that the DLS method has certain applicability and superiority.

4. Conclusions

Data leakage can possibly lead to worsened prediction results. When data leakage
occurs, it will lead to false high evaluation results. “False high” means that when the
model is evaluated, the test information is used in the training processing and it performs
well on the testing set, but when the model is deployed to the production environment to
solve practical business problems, the performance will be very poor. Additionally, this
data leakage does not meet the actual application needs and practical significance. In this
study, a processing mechanism based on overlapping slicing is established to avoid data
leakage, so that test information will not be used in the training process and the experiment
on the testing set meets the actual application requirements. The DLS prediction method
is proposed to solve the data leakage problem. The validity analysis of noise reduction
verifies that the proposed noise reduction processing of VMD-compromising threshold has
a better noise reduction effect. By comparison tests of different datasets, MSE, MAE, MAPE
and SMAPE are used to evaluate the prediction results, and the results show that both the
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data fitting and the rise and fall trend have a better prediction effect, which verifies the
superiority of the proposed method. This method is suitable to be multi-step prediction
system and device of time series, which has noise characteristics and is dominated by
low-frequency information, has no data leakage problem and has more suitability for
practical application.
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