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Abstract: Considering the high noise and chromatic aberration in the Retinex-Net image enhancement
results, this paper put forward a modified Retinex-Net algorithm for weak illumination image
enhancement based on the Decom-Net and Enhance-Net structures of Retinex-Net. The improved
structure proposed in this paper adds the attention mechanism ECA-Net into the Decom-Net and
Enhance-Net convolution layer of the original Retinex-Net structure, which can effectively reduce the
problem of irrelevant background and local brightness imbalance, activate sensitive features, and
improve the image’s details and brightness processing ability. Additionally, deep connected attention
networks are embedded between the introduced attention modules, so that all of the attention
modules can be trained jointly to improve the learning ability. Furthermore, the improved method
also introduces a noise reduction loss function and a color loss function to suppress noise and to
reduce image color distortion. The test results of the proposed method indicate that the image’s
overall brightness can be balanced, the local areas cannot be overexposed, and more image details
and color information can be retained than with other enhancement algorithms.

Keywords: image enhancement; Retinex algorithm; ECA net module; connected attention; low
brightness background

1. Introduction

Weak illumination image enhancement technology has recently become an important
research topic. When the shooting environment is dark, the image’s brightness and contrast
will be affected, and the color will be distorted, which will affect intuitive visual effects and
subsequent detections of image enhancement [1–3]. To enhance the low-light image, in
that early stage, people performed a lot of research on histogram equalization [4,5]. The
method in literature [6] is inspired by the dark channel prior defogging theory [7], and it is
found that the visual effect and histogram of low illumination images after inversion are
highly similar to those of fogged images. Based on this observation, literature [6] applied
the defogging algorithm to the inverted weak illumination image and flipped it again to
obtain the enhanced weak illumination image. Land put forward the theory of the retina
cortex [8–10] (Retinal Cortex Theory, Retinex). With the development of research, machine
learning methods can be applied. The combination of Retinex theory and CNNs further
improves the effect of image enhancement [11–13]. However, after the Decom-Net extracts
the reflection parts, the noise level will be affected by the light intensity, which makes the
dark area’s noise too high, causing the noise and color deviation of the low illumination
enhanced result of Retinex-Net. Therefore, this paper put forward a modified algorithm
based on Retinex-Net to ameliorate the effect of the enhanced image.

2. Retinex Image Enhancement Algorithm

At first, the gray value of the low illumination image’s dark area is changed by his-
togram equalization and gamma correction to increase the image brightness [14]. However,
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these methods only consider the image’s global information, ignoring the details. The
Retinex theory is based on color consistency, which can decompose the color image into a
reflection part and an illumination part. As shown in Formula (1):

S = R ◦ I (1)

where ◦ denotes a pixel-by-pixel multiplication operation. S denotes a color image, in
which the illumination of each region is different. R denotes a reflection part, which is an
inherent physical property of an object, and the true color of the object is independent of
the luminance. I denotes the illumination part, which reflects the degree of exposure of the
photographic object.

2.1. Surround Retinex Method

The single-scale Retinex (SSR) uses the convolution of the surround function and the
input image to obtain the illumination part. The SSR algorithm expression is presented in
Formula (2):

Ri(x, y) = lg
Ii(x, y)
Li(x, y)

= lgIi(x, y)− lg[F(x, y) ∗ Ii(x, y)] (2)

F(x, y) =
1

2πσ2 · e
− (x2+y2)

σ2 (3)

where i denotes different RGB channels, Ii(x, y) denotes the input image, and Li(x, y)
denotes the incident part, defined by the convolution yields of F(x, y) and Ii(x, y). Ri(x, y)
denotes the reflection part. F(x, y) denotes the wrap function, as shown in Equation (3),
where σ is the scale parameter; the size of σ determines the effect of image enhancement [15].

The multiscale Retinex (MSR) is a weighted sum of SSR outputs at multiple scales [16].
The MSR algorithm expression is presented in Formula (4):

RMSRi (x, y) =
N

∑
1

ωn · Rni(x, y) (4)

where ωn is the weighted value, and N is the number of scales. Rni(x, y) denotes the
reflection image at the n-th scale. The surrounding function expression of Rni(x, y) is
shown in Formula (5):

Fn(x, y) =
1

2πσ2 · e
− (x2+y2)

σ2 (5)

The MSRCR algorithm adds a color restoration factor Ci used to improve the color
deviation problem caused by the MSR algorithm [17], and the MSRCR expression is shown
in Formula (6):

RMSRCRi(x, y) = Ci(x, y)RMSRi (x, y) (6)

where Ci(x, y) denotes the color recovery factor of the i-th channel in R, G, and B, and its
expression is shown in Equation (7):

Ci(x, y) = β ln

[
α · Ii(x, y)

∑S
i=1 Ii(x, y)

]
(7)

where β denotes the gain coefficient and α denotes the nonlinear controlled intensity factor.
According to [18], β = 46 and α = 125. S presents the spectral channels, S = 1 presents a
grayscale image, and S = 3 presents an RGB color image.

2.2. The Retinex-Net Model

Most of the existing image enhancement methods based on Retinex rely on the careful
design of constraints and parameters by hand. Therefore, when these methods are applied
in different scenarios, they may be trapped by the model’s capacity. Retinex-Net can
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automatically learn the input weak illumination image’s features, which solves the problem
that the traditional algorithm relies on manually setting parameters. The Retinex-Net
model structure is presented in Figure 1. It consists of three parts: the decomposition
model, adjustment model, and reconstruction. Namely, Decom-Net and Enhance-Net form
the primary network of the Retinex-Net.
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Figure 1. Retinex-Net network structure diagram. 

The Decom-Net uses a 3 3×  convolution layer to generate the characteristic of the 
input image, and uses the linear rectification function ReLU as the activation function. 
After five 3 3×  convolution layers with ReLU, the RGB image is divided into reflection 
and illumination images. The low-light image lowS  and the matched normal-light image 

normalS  are respectively input into the Decom-Net model, and the network parameters are 
shared by the two images, decomposed into the corresponding reflection parts ( lowR , 

normalR ) and illumination parts ( lowI , normalI ). Comparing the output images of the decom-
position model in Figure 1 shows that the reflection parts lowR  and normalR  under nor-
mal illumination and low illumination are relatively similar. In contrast, the large differ-
ence in the illumination part between lowI  and normalI  indicates that the reflection part 
is the inherent attribute of the image, which is not easily affected by the original shooting 
illumination intensity. The illumination part determines the visual perception of the hu-
man eye when observing the image. 

In the denoising process of the reflection image, the three-dimensional block match-
ing algorithm (BM3D) [19] is mainly used to reduce the noise of the reflection part to ob-
tain a denoised reflection image, 'lowR . The main idea of the BM3D is to find a reference 

Figure 1. Retinex-Net network structure diagram.

The Decom-Net uses a 3× 3 convolution layer to generate the characteristic of the
input image, and uses the linear rectification function ReLU as the activation function.
After five 3 × 3 convolution layers with ReLU, the RGB image is divided into reflection and
illumination images. The low-light image Slow and the matched normal-light image Snormal
are respectively input into the Decom-Net model, and the network parameters are shared
by the two images, decomposed into the corresponding reflection parts (Rlow, Rnormal) and
illumination parts (Ilow, Inormal). Comparing the output images of the decomposition model
in Figure 1 shows that the reflection parts Rlow and Rnormal under normal illumination and
low illumination are relatively similar. In contrast, the large difference in the illumination part
between Ilow and Inormal indicates that the reflection part is the inherent attribute of the image,
which is not easily affected by the original shooting illumination intensity. The illumination
part determines the visual perception of the human eye when observing the image.

In the denoising process of the reflection image, the three-dimensional block matching
algorithm (BM3D) [19] is mainly used to reduce the noise of the reflection part to obtain
a denoised reflection image, R′ low. The main idea of the BM3D is to find a reference
block with a step of s in the image, search in the vicinity of the reference block, and find
some blocks with small differences from the reference block. Then, these blocks will be
integrated into a three-dimensional matrix for filtering, and finally, the results are fused
into a two-dimensional image using inverse transformation to obtain a denoised image.

The Enhance-Net adopts the encoder–decoder structure and inputs the illumination
part Ilow obtained by Decom-Net. The feature map with a smaller size is obtained through
multiple down-sampling layers so that the light intensity is redistributed with larger scale
angles in the Enhance-Net, and it can adjust the brightness. The Enhance-Net reconstructs
the light intensity of the image through up-sampling, allocates lower brightness to a locally
brighter place, and allocates higher brightness to a locally darker place. Furthermore, the
output of the up-sampling layer is cascaded by the number of channels so that different local
illuminations are adjusted, and the global illuminations of the image are kept consistent.
At the same time, the element-by-element summation is used to guide skip connections
from one down-sampling layer to its corresponding mirrored up-sampling layer so that the
network learns the residual. The low illumination part Ilow is subjected to the Enhance-Net
to generate an enhanced illumination part, I′ low. Finally, the enhanced illumination part
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I′ low is recombined by multiplying the two images’ pixels and the denoised reflection part
R′ low, forming the enhanced image S′ low as the network output.

2.3. Image Enhancement Test and Analysis

In this paper, the images under low illumination are selected, and the enhancement
effects of the SSR, MSR, MSRCR, and Retinex-Net algorithms are evaluated. Figure 2a
is a dark image to be processed with low brightness and contrast. Figure 2b–e are effect
pictures based on four enhancement algorithms of SSR, MSR, MSRCR, and Retinex-Net.
Figure 3a–e are gray histograms of the images.
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From the gray histograms of Figure 3a–e, it is found that the basic structure of the
enhanced image is quite different from the original image, indicating that the image’s
brightness is significantly improved. Combined with the enhancement effect and the gray
histogram, it is shown that SSR only retains the low-frequency part, which improves the
overall brightness while losing the important high-frequency part of the input image. MSR
is less sensitive to the highlighted area and loses the image’s color characteristics. Although
MSRCR recovers the color, the color retention ability is not good enough, and the image
is overexposed. Although Retinex-Net has the fastest processing speed and can obtain a
better enhancement effect without manually setting parameters, it has the phenomena of
large noise and color distortion. Therefore, this paper introduces the attention mechanism
and adds the denoising loss and the color loss to ameliorate the traditional Retinex-Net,
aiming at the shortcomings of Retinex Net’s inability to retain image texture details and
color features.

3. The Improved Retinex-Net Model

In the convolution process, each channel in the default feature map has the same
importance, while facing the actual problem, and the importances of different channels are
different. The attention mechanism can reallocate the input weight during convolution.
The introduction of the attention mechanism in Retinex-Net can reduce the attention of
the network to the irrelevant features of the image and only focus on the crucial parts of
the image, such as color, texture, and shape, to improve the processing ability of image
brightness and details.

3.1. Introduction of Attention Mechanism and Its Deep Connection

ECA-Net (Efficient Channel Attention Network) is an efficient channel attention
mechanism [20], which avoids feature dimension reduction in the previous attention
mechanism and enables the information between channels to interact effectively. After
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channel-level global average pooling (GAP) without dimension reduction, it uses the
one-dimensional sparse convolution operation to capture the current channel and its k
domain channel information. The interaction of domain channel information dramatically
reduces the number of parameters and improves the performance. The ECA module
structure is shown in Figure 4 below. Embedding the ECA module in the Decom-Net can
learn the importance of each feature channel adaptively. Each noise point is normalized
and weighted during the denoising process, which automatically removes noise points,
improves the clarity of decomposed image, and reduces the loss of key features.
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Assume that input from the previous convolution layer is a H×W × C feature map of
C channels in total, and then map each two-dimensional feature channel to a real Z using
Formula (8) through global average pooling. Output a 1× 1× C global description feature,
and the mapping relationship is shown in Formula (8):

Z =
1

H ×W

H

∑
i=1

W

∑
j=1

XC(i, j) (8)

where XC(i, j) denotes the C-th two-dimensional matrix in the input feature map, which
indicates the numerical distribution of the C feature maps in this layer, and Z denotes the
obtained global information. Then, a one-dimensional convolution with a convolution
kernel size of k captures the local cross-channel interaction information, obtains the nor-
malized weights through the Sigmoid activation function, and acts on the previous feature
map. To make the model more lightweight and compact, the ECA model simplifies the
dense connection mode in the SE module of the previous attention mechanism, avoids
complex channel dependence or combines additional spatial attention, and only considers
the information interaction in adjacent channels. The weight calculation formula is as
shown in Formula (9):

ωi = σ(
k

∑
j=1

ω
j
i y

j
i), yj

i ∈ Ωk
i (9)

where σ denotes the Sigmoid function and yi denotes the channel. ωi is the weight of the
channel yi, ωk

i is the set of the k-th neighboring channel of yi, and k is the convolution
kernel size, which denotes the coverage of local cross-channel interaction, which signifies
how many adjacent channels close to the channel participate in the attention prediction of
the channel. Meanwhile, to avoid manually tuning the value of k, the ECA module will
adaptively determine k. One-dimensional convolution with the kernel size of k can realize
the effective channel attention module, as shown in Formula (10):

ω = σ(C1Dk(y)) (10)

where C1Dk denotes the one-dimensional convolution operation with convolution kernel k, and
y denotes the channel. The coverage of cross-channel information interactions (i.e., the kernel
size k of the one-dimensional convolution) is proportional to the channel dimension C. There
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is a mapping relationship ϕ between k and C. Because the linear mapping relationship
has limitations for some related features, the mapping relationship ϕ adopts a nonlinear
mapping. Taking into account that the channel dimension is typically an exponential
multiple of 2, the linear map relation is introduced into the nonlinear mapping relation. The
expression of the mapping relationship with the channel dimension C and the convolution
kernel size k is shown in Equation (11), where η and b are constants representing the linear
mapping relationship, and η = 2, b = 1 is taken [18].

k = ϕ(C) =
∣∣∣∣ log2(C)

η
+

b
η

∣∣∣∣
odd

(11)

Although the attention mechanism can play a good role in many image processing
tasks, it is limited to the current features each time, and does not fully use the attention
mechanism. DCA-Net (Deep Connected Attention Network) can establish skip connections
between adjacent ECA attention modules so that information interacts between each
attention module, and all attention modules are jointly trained [21]. This improves the
ability of the attention mechanism to learn important features of images, and optimizes the
performance of Retinex-Net to extract features of reflection images and restore illumination
images and colors. The DCA module is plug-and-play, improving attention performance
without changing the internal structure of the Retinex-Net model.

The DCA uses a general attention framework consisting of three parts: Context
Extraction, Transform, and Fusion, and the network structure is shown in Figure 5. Firstly,
the ECA module extracts the feature G from the input feature map X through the extractor
g with a global average pooling, where X∈RH×W×C, and ωg is the relevant parameter of
the extraction operation. The extractor g determines the relevant parameter. When g is a
no-parameter operation, such as a pooling operation, ωg is no longer needed. Then, the
extracted feature blocks are transformed into a new nonlinear attention space T by using a
one-dimensional convolution kernel and an excitation function, and the output T can be
indicated as T = t(G, ωt). t is defined as the feature transformation operation, and ωt is
the parameter used in the transformation operation. Finally, the attention map is fused
with the original convolution block feature and the output is X′ = T ⊗ X. ⊗ denotes the
feature fusion mode, and the fusion function performs element multiplication when it is
designed to be scaled, and performs element addition otherwise. To sum up, the model of
a general attention module can be expressed as Equation (12):

X′ = t(g(X, ωg), ωt)⊗ X (12)

Electronics 2022, 11, x FOR PEER REVIEW 7 of 14 
 

 

otherwise. To sum up, the model of a general attention module can be expressed as Equa-
tion (12): 

( ( , ), )g tX t g X Xω ω′ = ⊗  (12) 

Extraction
Transformation

Fusion Extraction
Transformation Fusion

Attention 
Connection

Convolutional layer a Convolutional layer b Convolutional layer c  
Figure 5. Deep Connected Attention (DCA) network structure. 

The DCA module will introduce a connection channel between each attention block 
to fuse the feature output extracted by the previous attention module with the output of 
the current attention module. This design ensures that the present attention module can 
learn the extracted features and the former information. From this, the attention module 
can be indicated as Formula (13): 

( ( , ), )tX t f G T Xα β ω′ = ⊗  (13) 
where f  is a link function, a  and β  are learnable parameters, and T  denotes the at-
tention mapping feature map generated by the former attention module. Since the im-
provement of network performance is more from the connection among attention blocks 
[19] rather than the form of the connection function, it is not sensitive to the connection 
mode. Therefore, the connection mode between attention blocks uses direct connection by 
default, and the connection function f  is as shown in Formula (14): 

( , )f G T G Tα β α β= +   (14) 

3.2. Improvement of Subnetworks 
Aiming at the problem that the original Decom-Net is not conducive to preserving 

image details and suppressing noise, this paper first improves and optimizes the structure 
of the Decom-Net in the original Retinex-Net model. The improved Decom-Net model is 
shown in Figure 6. First, the Decom-Net uses a 3 3×  convolution layer to extract the in-
put image lowS . Then, it uses five convolution layers with ReLU activation functions to 
change the size of the feature map and to learn the characteristic of the reflection part 

lowR  and the illumination part lowI . The attention mechanism ECANet is added after the 
convolutions of the second and fourth layers, respectively, and the deep connection atten-
tion DCA is established between the two attention blocks. Finally, using the convolution 
layer and Sigmoid function, the learned image features are mapped into a reflection image 

lowR  and an illumination image lowI , and then output. 
  

Figure 5. Deep Connected Attention (DCA) network structure.

The DCA module will introduce a connection channel between each attention block to
fuse the feature output extracted by the previous attention module with the output of the
current attention module. This design ensures that the present attention module can learn
the extracted features and the former information. From this, the attention module can be
indicated as Formula (13):

X′ = t( f (αG, βT), ωt)⊗ X (13)
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where f is a link function, a and β are learnable parameters, and T̃ denotes the attention
mapping feature map generated by the former attention module. Since the improvement of
network performance is more from the connection among attention blocks [19] rather than
the form of the connection function, it is not sensitive to the connection mode. Therefore,
the connection mode between attention blocks uses direct connection by default, and the
connection function f is as shown in Formula (14):

f (αG, βT̃) = αG + βT̃ (14)

3.2. Improvement of Subnetworks

Aiming at the problem that the original Decom-Net is not conducive to preserving
image details and suppressing noise, this paper first improves and optimizes the structure
of the Decom-Net in the original Retinex-Net model. The improved Decom-Net model is
shown in Figure 6. First, the Decom-Net uses a 3× 3 convolution layer to extract the input
image Slow. Then, it uses five convolution layers with ReLU activation functions to change
the size of the feature map and to learn the characteristic of the reflection part Rlow and the
illumination part Ilow. The attention mechanism ECANet is added after the convolutions
of the second and fourth layers, respectively, and the deep connection attention DCA is
established between the two attention blocks. Finally, using the convolution layer and
Sigmoid function, the learned image features are mapped into a reflection image Rlow and
an illumination image Ilow, and then output.
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The original Retinex-Net has the problem of image color distortion. This paper ame-
liorates the structure of the Enhance-Net based on the original Retinex-Net to improve
the color distortion. Firstly, the Enhance-Net uses a 3× 3 convolution layer to extract the
features of the low-light input obtained by Decom-Net. Then, the encoder–decoder architec-
ture obtains the context information in a large area, and the local illumination distribution
is reconstructed. The skip layer is connected between the down-sampling layer and the
corresponding mirror-image up-sampling layer. The attention module ECA is added to the
connection between the upper sampling layer and the jump layer to reduce the response of
the network to image-independent features, so that the next upper sampling layer can carry
more illumination information. Additionally, deep connections are established between the
attention modules to strengthen the attention mechanism’s attention to the image’s brightness,
and further improve the network’s learning ability of brightness characteristics. Finally, these
feature maps are adjusted to the final scale at different scales using the nearest neighbor
interpolation algorithm. By using a 1× 1 convolution layer and a 3× 3 convolution layer
to reduce the number of channels, the illumination image is reconstructed. The improved
augmented network model is shown in Figure 7:
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3.3. Improvement of Loss Functions

As for the loss function of the Decom-Net, the proposed method retains the recon-
struction loss Lrecon, invariable reflectance loss Lir, and illumination smoothness loss Lis of
the original Decom-Net. In addition, a denoising loss Ldn is added for further denoising.
Thus the total loss Lde is shown in Formula (15):

Lde = Lrecon + λirLir + λisLis + λdnLdn (15)

where λir, λis, and λdn are the coefficients of each type of loss used to balance each loss part.
Based on the output result Rlow and Rnormal in the Decom-Net, and under the assump-

tion that the images can be reconstructed using the respective illumination maps Ilow and
Inormal , the reconstruction loss is described by Equation (16):

Lrecon = ∑
i=low,normal

∑
j=low,normal

λij‖Ri ◦ Ij − Sj‖1 (16)

where ◦ denotes the pixel multiplication. According to reference [10], when i takes low or j
takes normal, the weight coefficient λij = 1, otherwise, λij = 0.001. The Decom-Net uses
larger weight coefficients to better learn the paired images’ characteristics with low and
normal illumination.

The invariable reflectance loss constrains the network from learning the reflectivity of
the low-illumination and normal-illumination images. According to the color consistency
of Retinex theory, the color reflected by the object is irrelevant to the light intensity and has
consistency, as shown in Formula (17):

Lir = ‖Rlow − Rnormal‖1 (17)

A good light map should be smooth in detail while preserving the overall structural
boundaries. Illumination smoothness loss avoids the problem that the image detail and
the boundary gradient are uniformly reduced when the total variation (TV) is directly
used as the loss function so that the illumination is blurred and black edges exist on the
reflection map. Weighting the original TV function and the reflectance gradient,∇Ri makes
the brightness of the illumination map smoother, and image characteristics are favorably
retained. The final Lis is shown in Formula (18):

Lis = ∑
i=low,normal

‖∇Ii ◦ exp
(
−λg∇Ri

)
‖1 (18)

where λg presents the balance coefficient of the strength of structure awareness. Then,
exp

(
−λg∇Ri

)
relaxes the smooth constraint at the steeper reflection gradient, where the

image structure is more complex, and the lighting is discontinuous.
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When SSIM is used as the loss function, although it can better constrain the structural
features of the network learning image, it is less sensitive to the smooth region of the image,
and it needs a specific configuration to perform well. Although MS − SSIM with multiscale
structure similarity can keep high-frequency information well for images with different
resolutions, it is easy to change the brightness and produce color deviation. In comparison,
the L1 loss function can maintain brightness and color more effectively. Hence, for that, the
denoising loss Ldn is optimized using a hybrid loss function of MS − SSIM and L1 loss,
where the expression of MS − SSIM is as shown in Equation (19); then the expression is
shown in Formula (20):

LMS−SSIM(P) = 1−MS− SSIM( p̃) (19)

Ldn = α · LMS−SSIM + (1− α) · GσM
G
· LL1 (20)

where p̃ is the center point pixel, α is the coefficient, LL1 is the L1 loss function, and α is
taken as 0.84 according to [22]. GσM

G
is the Gaussian distribution coefficient of the pixel

point, and the approximate value is used instead of the pyramid structure to reduce the
calculation cost [22].

When denoising loss, Ldn is L1, SSIM, MS − SSIM, and MS − SSIM are mixed with
L1, and the denoising evaluation results from the literature [22] are shown in Table 1, where
the mixing loss is recorded as Mix.

Table 1. Different denoising loss results.

Evaluation Index L1 SSIM MS − SSIM Mix

PSNR(dB) 34.42 33.15 33.29 34.61
SSIM 0.9535 0.9500 0.9536 0.9564
FSIM 0.9775 0.9764 0.9782 0.9795

As for the loss function of the Enhance-Net, the proposed method retains the recon-
struction loss and illumination smoothness loss of the original Enhance-Net. In addition,
color loss Lcolor is also added to enhance the saturation of the color and to improve the
color deviation problem. Therefore, the total loss constraint Len of the network is shown in
Equation (21), where µ is the balance coefficient of color loss function Lcolor.

Len = Lrecon + Lis + µLcolor (21)

The reconstruction loss of Enhance-Net is defined as the distance between the normal
image and the corresponding enhanced illumination image, as shown in Equation (22):

Lrecon = ‖Rlow ◦ I′ − Snormal‖1 (22)

The illumination smoothness loss resembles that of the Decom-Net. The only difference
is that I′ low in the Enhance-Net takes the gradient of Rlow as the weight coefficient, and its
expression is shown in Equation (23):

Lis = ‖∇I′low exp
(
−λg∇Rlow

)
‖1 (23)

The color loss function Lcolor uses the Huber loss function to enhance the saturation
of the color; i.e., Lcolor = Lh. The Huber loss is a robust estimator, and has been shown to
solve the average coloring [23,24], so it helps to increase the color saturation of images in
Enhance-Net. The expression of the Huber loss function is shown in Equation (24):

Lh =

 1
2

(
Ir − Ĩ

)2
Ir − Ĩ < δ

δ
∣∣∣Ir − Ĩ

∣∣∣− 1
2 δ2 Ir − Ĩ ≥ δ

(24)
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where Ir is the true value, Ĩ is the estimated value, and δ is a hyperparameter. When δ trends
to zero, the Huber loss tends to the mean absolute error (MAE). When δ trends to ∞, the
Huber loss trends to the mean square error (MSE). According to the E.L Lehmann point
estimation theory [25], it is more appropriate to take 1.5 as the hyperparameter δ. The
color loss function Lcolor evaluates at each pixel, measures the image color more accurately,
learns the color deviations that occur locally, and then adds them together to evaluate the
total loss constraint of the image.

4. Experiment and Results Analysis
4.1. Experimental Environment

A Low-Light (LOL) data set is used to train the network. The test set selects the validation
set of the LOL data set. The network reads weak light and normal light images in turn for
training. The batch size is set to 16, the patch size is set to 48 × 48, the training epoch is set
to 100, and the model is evaluated and saved every 20 training times. The initial learning
rate is set to 0.001. The loss balance coefficients for the decomposed network are set to be:
λir = 0.001, λis = 0.1, and λdn = 0.001; the coefficient of denoising loss parameter α = 0.84,
and the color loss balance coefficient of the Enhance-Net are µ = 0.01, λg = 10, respectively.

All network model training and improvement test experiments are based on the Ten-
sorflow framework. In order to verify the performance and effect of the proposed method,
a variety of methods are used for comparison, including SRIE, NPE, GLADNet, Enlighten-
GAN, and Retinex-Net. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM),
natural quality image evaluator (NIQE) [26], and lightness order error (LOE) [27] were used
as objective evaluation indexes. PSRN is used to measure the noise level, and SSIM is used
to evaluate the comprehensive image quality from brightness, contrast, and structure. The
higher the SSIM and PSNR, the closer the enhanced image is to the normal image. NIQE is
used to measure the difference among enhanced images in natural image features, and LOE is
used to evaluate the difference in local brightness order. The higher the SSIM and PSNR, the
lower NIQE and LOE, indicating the higher the image enhancement quality.

4.2. Ablation Experiment

Based on the Retinex-Net framework, ablation experiments are designed to evaluate
the actual effect of the improvements of the proposed method on network performance.
The objective evaluation index of the ablation experiment is PSNR, to measure the noise
of the image, and SSIM, to evaluate the overall quality of the image from the perspective
of brightness and contrast. The experimental results are shown in Table 2. ECA denotes
the efficient attention mechanism module, and DCA denotes the attention deep connection
module. Ldn denotes the denoising loss function in the Decom-Net, and Lcolor denotes the
color loss function in the Enhance-Net.

Table 2. Ablation experiment results.

Serial No Basic Framework Improvement of the Method PSNR (dB) SSIM

1 − Retinex-Net 16.7622 0.5465

2
Retinex-Net

add ECA, do not add DCA 17.5834 0.6945
3 add ECA, add DCA 18.4488 0.7249

4
Retinex-Net+ECA+DCA

add, do not add Ldn 18.8743 0.749
5 add Ldn, do not add 18.9616 0.7443
6 add Lcolor , add Ldn 19.4536 0.7581

In the ablation experiment, No.1 tested the PSNR and SSIM values of the network
without any improvement, based on Retinex-Net. Based on this result, the improvement
effects of the PSNR and SSIM values under different improvement methods were observed.

The algorithm in this paper first introduces the attention mechanism ECA module in
both the Decom-Net and the Enhance-Net; see No.2. It shows that the values of PSNR and
SSIM are markedly improved, indicating that the attention mechanism can suppress the
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noise caused by image decomposition, reduce the response of the network to irrelevant
features, and make the network more focused on learning to improve image brightness.
On the basis of introducing the ECA attention module, No.3 adds the DCA module, aiming
at strengthening the interoperability between the attention modules, and allowing all the
attention modules to be trained jointly. The experimental results show that the combination
of ECA attention modules and DCA modules can further enhance the Retinex-Net’s ability
to extract the features of reflection images and restore the illumination images and colors.

Experiments No.4, No.5, and No.6 are based on experimental results No.3. ECA
modules and DCA modules are added to further study the effect on the enhancement of the
denoising loss Ldn and color loss Lcolor. When only color loss has been added, the Enhance-
Net can estimate the chromatic aberration more accurately, enhance the color saturation,
and improve the values of PSNR and SSNR. Additionally, when only the denoising loss
is added, the effect is better than when the color loss is added. It is shown that the loss of
the mixed L1 of the multiscale structure similarity MS − SSIM can effectively suppress the
image noise and better retain the image’s high-frequency information, including the image’s
key features and edge information. The experiment of No.6 shows that the denoising loss
and color loss are added at the same time, and the proposed method obtains the best result.

4.3. Comparative Experiment

In this paper, we choose three low-illumination images and use different methods to
enhance them. Through subjective comparison, we verify the enhancement effect of our
algorithm from the evaluation set of the LOL data set combined with objective evaluation
indicators. The enhanced visual effect of different methods is shown in Figure 8.
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Figure 8 shows that the brightness enhancement degree of SRIE is limited, which is not
enough to meet the visual needs of human eyes. The enhancement results of NPE are also
darker, and there are more serious distortions in the brighter local areas. The enhancement
results of GLADNet and EnlightenGAN have the problem of low saturation. The enhanced
image of Retinex-Net has noise and artifacts, and the problem of image color distortion
is more serious. The image enhanced by the proposed method has a balanced overall
brightness and retains the image’s details and the original color without local overexposure
or artifacts.

To further prove the reliability of the proposed algorithm, we carried out experiments
on the validation set of the LOL data set. Table 3 shows a quantitative comparison between
the algorithm in this paper and other low illumination enhancement algorithms. It shows
that the proposed method is the best in all indicators, and it is significantly improved
compared with Retinex-Net, and performs better than the original algorithm. It has certain
advantages in reducing noise, enhancing image brightness, and preserving image color.
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Table 3. The results of different evaluation indicators.

SRIE NPE GLADNet EnlightenGAN Retinex-Net Proposed
Method

SSIM 0.4977 0.5842 0.7115 0.6260 0.5594 0.7581
PSNR (dB) 11.8550 16.8034 19.3821 19.2303 16.7739 19.4536
NIQE 7.2873 8.2562 6.1744 4.528 9.7303 4.2874
LOE 575 439 493 445 1106 417

5. Conclusions

This paper proposed a modified Retinex-Net algorithm. By using an efficient atten-
tion mechanism method and constructing information interaction between the attention
modules, the performance of attention mechanism can be maximized to a certain extent to
ameliorate the network’s learning ability.The denoising loss can effectively suppress noise
and retain the essential structure of the image. The color loss restores the image to a more
natural color, making the result more robust.The final enhancement result of the proposed
algorithm is moderate in brightness, and is not too dark or too bright. The color is natural
and not distorted, avoiding artifacts and excessive noise. The objective evaluation indexes
such as PSNR and SSIM have also achieved better results. The primary research goal in the
future is to improve the running time of the algorithm and to extend it to the task of object
detection or object recognition under low light.
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