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Abstract: Visual localization is employed for indoor navigation and embedded in various applications,
such as augmented reality and mixed reality. Image retrieval and geometrical measurement are the
primary steps in visual localization, and the key to improving localization efficiency is to reduce
the time consumption of the image retrieval. Therefore, a hierarchical clustering-based image-
retrieval method is proposed to hierarchically organize an off-line image database, resulting in
control of the time consumption of image retrieval within a reasonable range. The image database is
hierarchically organized by two stages: scene-level clustering and sub-scene-level clustering. In scene-
level clustering, an improved cumulative sum algorithm is proposed to detect change points and
then group images by global features. On the basis of scene-level clustering, a feature tracking-based
method is introduced to further group images into sub-scene-level clusters. An image retrieval
algorithm with a backtracking mechanism is designed and applied for visual localization. In addition,
a weighted KNN-based visual localization method is presented, and the estimated query position
is solved by the Armijo–Goldstein algorithm. Experimental results indicate that the running time
of image retrieval does not linearly increase with the size of image databases, which is beneficial to
improving localization efficiency.

Keywords: visual localization; hierarchical clustering; image retrieval; change-point detection

1. Introduction

With the development of communication technology, smart mobile terminals, such
as smartphones and tablet personal computers, have become indispensable in modern
society. Various applications on smart mobile terminals bring convenience to many aspects
of people’s lives, and one example is navigation applications. The Global Navigation
Satellite System (GNSS) allows individuals to acquire position information at any moment
in outdoor environments [1–4]. Navigation and positioning services play crucial roles in
public traffic, maritime transportation, and aviation flight. As the interior environments of
buildings become increasingly complex, demands for indoor position services continue to
rise. However, due to the shielding effect of structures, signals of the Global Navigation
Satellite System are incapable of penetrating buildings, leading to users not being able
to obtain reliable position services by the GNSS. Therefore, a stable and efficient indoor
localization method independent of satellite signals has become a research hotspot in late
years. Numerous daily activities can benefit from indoor localization technologies, such as
shopping in large malls, finding books in libraries, and planning routes in railway stations
and airports.

Many signal-based localization technologies have been investigated for querying
indoor position information, such as WiFi-based [5,6], Bluetooth-based [7,8], and UWB-
based [9–11] methods. All these methods, however, require investments in localization
infrastructures. For example, WiFi-based approaches demand that a mobile terminal
should receive signals transmitted by more than one access point [12,13]. Generally, more
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densely distributed access points contribute to improving the accuracy of localization
systems. Similar to WiFi-based methods, high-density base stations must be deployed
in indoor environments for Bluetooth-based and UWB-based localization systems. For
the implementation of indoor localization, cost investments restrict the development of
signal-based systems. By contrast, visual-based localization achieves high accuracy with
hardly any infrastructure.

Another category of indoor localization approaches are those which estimate users’
positions iteratively by Inertial Measurement Unit (IMU) [14,15]. However, IMU-based
systems are prone to cumulative errors accompanied by position iterative estimation,
especially for a long trajectory. In addition, since IMU-based methods cannot determine the
absolute positions of devices, these methods are generally combined with other localization
technologies [16–18]. Different from IMU-based methods, visual localization could achieve
either absolute position estimation or relative position estimation [19].

Visual localization aims at estimating the position of a camera (i.e., the query camera)
mounted on a smart mobile terminal by image retrieval and geometrical measurement.
Specifically, visual localization is usually implemented in known environments in which
visual features are collected and stored as database images in the off-line stage [20]. In the
on-line stage, a user captures query images by the query camera, and then the images are
uploaded to the server. In the process of position estimation, the matched database images
are retrieved on the server, and the positions of query images are calculated by localization
algorithms. High accuracy and efficiency of image retrieval guarantee the performance of
the entire localization system. The typical technology is Content-Based Image Retrieval
(CBIR), the core of which is finding the most similar database images as the query image
based on visual features. However, the retrieval task is challenging, because the number
of database images is large, and there is no feasible strategy to organize the images in
the database.

Therefore, in this paper, a hierarchical clustering-based image retrieval algorithm is
proposed to organize database images, and an image retrieval strategy is investigated to
improve retrieval efficiency. Moreover, a visual localization method is presented based
on the Armijo–Goldstein principle. The main contributions of this paper are summarized
as follows:

(1) A global feature-based image clustering algorithm is proposed, in which the change-
point detection method is adopted to identify which database images are captured in
the same indoor scene. By this means, images captured in the same scene are clustered
in a group, which achieves scene-level image clustering.

(2) A local feature-based image clustering algorithm is presented, in which feature track-
ing is employed to further group the images that are in one scene-level cluster, by
which means database images are grouped into sub-scene-level clusters.

(3) A hierarchical clustering-based image retrieval algorithm is introduced, and visual
localization is achieved based on the Armijo–Goldstein principle.

The remainder of this paper is organized as follows: Related work is reviewed in
Section 1. Sections 2 and 4 investigate the image clustering algorithms based on change-
point detection and feature tracking, respectively. In addition, image retrieval and visual
localization are explored in Section 4. In Section 5, the performances of the image retrieval
and visual localization are evaluated. A discussion of the experimental results is presented
in Section 6, and conclusions are drawn in the last section.

2. Related Works

Computer vision is a field of artificial intelligence that plays an essential role in
widespread applications such as object tracking, object detection, image classification, and
image retrieval [21–24]. The use of computer vision for pedestrian visual localization
began in 2006, and then a typical framework of visual localization was determined [25,26].
Specifically, geo-tagged images are acquired as database images in the off-line stage, and
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then the position of the query image is estimated based on database images by image
retrieval and geometrical measurement.

Recently, many studies have focused on visual localization, either in indoor or outdoor
environments, with almost the same technical route [27–29]. The users’ positions are
always estimated by query images in the condition of known or unknown camera-intrinsic
parameters. One advantage of indoor visual localization is that the interior scenes of
buildings can be reconstructed by mapping equipment [30]. Thus, compared with other
positioning approaches, the vision-based methods provide users with more indoor-detail
information and a better service experience [31]. Indoor visual localization contains three
key technologies, which include: (1) 3D indoor mapping on the off-line stage (including
database image acquisition), (2) image retrieval in the database, and (3) position estimation
of the query camera. Image retrieval for visual localization can usually be divided into
two phases: coarse retrieval and fine retrieval [32]. Specifically, global features on images
can be utilized to achieve coarse image retrieval, and local features are appropriate for fine
retrieval, resulting in obtaining the matched database image with the query image.

Colors, textures, and shapes are essential information to describe the global features
of an image. Various global features, such as color moments, HSV histograms, wavelet
transforms, and Gabor wavelet transforms, are extracted from images and used in the CBIR
system [33,34]. Generally, more than one feature is selected to form a high-dimensional
feature vector in order to overcome the limitations of a single feature. However, high-
dimensional feature vectors would bring a heavy burden in measuring the similarity of
images. Based on Gabor features, a global feature named Gist was proposed by Oliva et al.,
designed for scene recognition [35]. Gist features have already been widely used in indoor
image retrieval and have achieved some remarkable results, which indicate that Gist features
have the potential to address the image retrieval problem in visual localization [36,37].

Compared with global visual feature-based image retrieval technologies, local features
are more suitable for fine image retrieval (i.e., finding the most similar database image with
the query image). In recent years, research on local feature extraction has attracted much
attention. Speeded Up Robust Features (SURF) [38] and Scale-Invariant Feature Transform
(SIFT) [39] are the most widely used local features in the fields of object recognition, image
stitch, visual tracking, and so on. For a visual localization system, local features are both
applied to image retrieval and position estimation. Visual features employed in localization
perform well in image similarity measuring and users’ position estimating. An efficient
alternative feature (i.e., Oriented FAST and Rotated BRIEF, ORB) to SIFT or SURF was
proposed by Rublee et al., which has been widely used in visual SLAM and has achieved
promising results [40,41]. Based on existing literature and research, ORB features, utilizing
fast key points and described by BRIEF descriptors, are also good at content-based image
retrieval [42,43].

Most researchers of visual localization focus on position estimation algorithms, such as
the authors of [29,44,45], but few of them pay attention to image retrieval in the localization
system, much less to off-line image database organization. A typical hierarchical indexing
scheme is proposed in [46], but only coarse retrieval is presented, and the best-matched
database image cannot be found by this scheme. A well-organized image database con-
tributes to improving the accuracy and efficiency of a localization system. In other words,
a scalable image retrieval method is desired to fit different sizes of the database of the
indoor localization system. Specifically, the search time of a scalable image system should
not increase linearly with the number of database images, so that the response time of
retrieval can be limited within a reasonable range. Therefore, aiming at the demand for
visual localization, a database image hierarchical clustering method based on change-point
detection and feature tracking is investigated in this paper. With the results of image
retrieval, visual localization is executed to estimate users’ positions.

Visual localization in indoor environments has received widespread attention in recent
years due to its extensive applications, such as the mobile museum tourist guide [47]
and in-building emergency response [48]. Visual localization is also called image-based
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localization, in which images are employed as practical signals for localization [49]. Strictly
speaking, visual localization is one of the fingerprinting-based localization methods, since
images captured at known locations (i.e., database images) serve as fingerprints for position
estimation. By image retrieval, the most similar database images as the query image are
selected as fingerprints to calculate the query positions [50]. The majority of recent visual
localization works focus on position estimation in the condition of known camera-intrinsic
parameters by projective geometry [51–53]. However, the internal parameters of different
cameras are not easy to obtain in practical localization scenarios. Therefore, research on
image retrieval-based visual localization is crucial and necessary.

Only a limited number of works concentrate on image retrieval-based visual local-
ization without camera calibration parameters. A representative work is the TUM indoor
navigation system, in which the nearest neighbor (NN) method is employed for localization
(i.e., the position attached to the most similar database image is identified as the query
position) [49]. In many fingerprinting-based localization applications, finding the nearest
neighbor to the query is regarded as an effective way to acquire the query position [54,55].
However, nearest neighbor-based visual localization may have a significant positioning
error in some situations. For example, the query position is far from the fingerprint location
when there are common objects visible in both the query image and the fingerprint image,
which leads to accuracy degradation due to the improper nearest neighbor being selected
to participate in the position calculation. To solve this problem, the K-nearest neighbor
(KNN) method is applied in fingerprinting-based localization [56,57]. The KNN method
selects the K-nearest fingerprint images and takes the average of their position coordinates
as the estimated query position, avoiding the contingency of taking the nearest fingerprint
image [58]. It is worth noting that each nearest neighbor in the KNN method has an equal
contribution to the position estimation, which is unreasonable, because the average of
nearest neighbor positions is hardly in accordance with the query position. More rational
thinking is that the nearest neighbor with more similarity to the query is assigned a larger
weight for the KNN method. Therefore, a weighted KNN (WKNN) method is presented
in this paper to solve the estimated position of the query, taking full consideration of
image similarities.

3. Image Clustering Based on Change-Point Detection in Global Features

A typical indoor visual localization system contains two stages: an on-line stage and
an off-line stage, as shown in Figure 1. In the off-line stage, images are captured by the
database camera mounted on the mapping equipment, and poses of the equipment are
recorded simultaneously. In order to construct an indoor 3D map, Microsoft Kinects and
laser scanners are also mounted on the mapping equipment [19]. An off-line database
should be generated before the implementation of visual localization. It contains the
essential elements for localization: database images, poses (including orientations and
positions) of the equipment, and indoor 3D maps.

In the on-line stage, a query image is captured by the user and uploaded to the server
by wireless networks. The most similar database images (i.e., matched database images) to
the query image are retrieved based on the visual features extracted from the images. Then,
the position of the matched database images can be employed to estimate the position
of the query camera. Accuracy and efficiency of image retrieval are the key to ensuring
the good performance of the system. A hierarchical clustering-based image retrieval is
proposed in this paper and mainly discussed in the following.
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Figure 1. System model of indoor visual localization.

3.1. Feature Extraction and Pre-Processing

Gist is a scene-centered global feature commonly used in scene classification and place
recognition. In this paper, Gist features are employed for scene-level image clustering by
change-point detection. In the implementation of creating the off-line database (i.e., an indoor
3D map), database images are successively acquired by the mapping equipment in the same
indoor scene, and visual features of these images have high correlations. In contrast, when
the mapping equipment moves from one indoor scene to another, the correlations of the
captured database images are weakened. Based on this characteristic of database images,
change-points can be detected in the global features extracted from the images, resulting
in the database images captured in the same indoor scene being grouped in a cluster,
which achieves scene-level image clustering. The center of each cluster represents the main
features of the scene, so that the query image orderly retrieves each cluster by measuring
the difference between the query image and the centers of database image clusters.

To reduce computation complexity, visual feature vectors should keep a low dimension,
so an image is regarded as a whole from which global features are extracted. For each query
image and database image, a three-scale (SG = 1, 2, 3) and six-orientation (OG = 0

◦
, 60

◦
,

120
◦
, 180

◦
, 240

◦
, 300

◦
) filters are used in Gist feature extraction, where SG and OG present

spatial scale levels and cardinal orientations, respectively. During feature extraction, images
are processed via convolution operation by multi-channel filters, and then the filtering
results are connected to achieve 18 (3× 6 = 18) dimensional feature vectors. GQ and GD
denote global features extracted from the query image and database images, respectively.
Figure 2 shows examples of database images and the corresponding spectrograms of
Gist features.
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For visual localization, the query image is captured by a hand-held smartphone, and
image retrieval is completed on the server side after the image is uploaded to the server.
The Gist feature vectors of the query image and database images are separately presented
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by GQ =
[

g1
Q, · · · gp

Q, · · · g18
Q

]
and Gi

D =
[

g(i, 1)
D , · · · , g(i, q)

D , · · · , g(i, 18)
D

]
, where gp

Q and

g(i, q)
D denote the p-th and q-th elements in the feature vector GQ and GD (1 ≤ p ≤ 18 and

1 ≤ q ≤ 18), and i is the index of database images. The database images successively
acquired in the same indoor scene have high visual correlations. However, once the
mapping equipment switches to another scene, the correlations subsequently decrease.
The change-point detection method is employed, aiming to detect the change in the visual
correlations between database images, and further, the database images captured in the
same scene are grouped into one cluster.

If there are in total nD database images in the indoor 3D map (i.e., the off-line database),
nD features can be extracted from the database images. Therefore, a Gist feature matrix MG
can be obtained by organizing all feature vectors:

MG =



g(1, 1)
D · · · g(1, q)

D · · · g(1, 18)
D

...
...

...
g(i, 1)

D · · · g(i, q)
D · · · g(i, 18)

D
...

...
...

g(nD , 1)
D · · · g(nD , q)

D · · · g(nD , 18)
D


(1)

To achieve scene-level clustering, change-point detection acts on each column in
MG. Specifically, change points should be separately detected in the column vector

Mq
G =

[
g(1, q)

D , · · · , g(i, q)
D , g(nD , q)

D

]T
, where 1 ≤ q ≤ 18. On account of noise existing

in feature extractions, a pre-process should be applied on Gist features. Therefore, the
Kalman filter and the Kalman smoother are used in this paper to recover the visual correla-
tions of database images acquired in the same scene. The purpose of feature pre-processing
is to avoid false detection caused by noise, namely, detecting a change point without
a scene change.

If the state variable and the observed variable of features are separately set as xi and
yi, the system equation is: {

xi = Φi−1xi−1 + wi
yi = Hixi + vi

(2)

where Φi−1 and Hi are gain matrixes. The process noise wi and measurement noise vi satisfy:

p(wi) ∼ N (0, Γ) (3)

p(vi) ∼ N (0, Σ) (4)

where N (µ, σ) denotes a normal distribution with the variance σ and the expectation µ.
The initial value of xi is defined as x0 = µ0 + u, where p(x1) satisfies N (µ0, V0) and p(u)
satisfies N (0, V0) [59].

The discrete Kalman filter estimates the process state by feedback control. The typ-
ical Kalman filter can be divided into two parts, namely, the time-update part and the
measurement-update part. In the time-update part, to obtain the prior estimate of the
next time state, the Kalman filter calculates the state variables of the current time and the
estimated covariance of errors by the update equation. In the measurement-update section,
new observations are combined with prior estimates to obtain more reasonable posterior
estimates by feedback operations.

When using a discrete Kalman filter to process data, the previous error covariance Pi
before system updating should be calculated by:

Pi = Φi−1Vi−1ΦT
i−1 + Γ (5)
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where Vi−1 is the error covariance after system updating. The Kalman gain Ki can be
further calculated based on the error covariance Pi by:

Ki = PiHT
i

(
HiPiHT

i + Σ
)−1

(6)

According to the un-updated error covariance and Kalman gain, the error covariance
can be updated by:

Vi = (I− KiH)Pi (7)

Then, the posterior estimates of the state variable x̂′i (updated value) can be obtained by:

x̂′i = x̂i + Ki(yi −Hix̂i) (8)

where the prior estimate of the state variable can be obtained by the extrapolation formula:

x̂i = Φi−1x̂′i−1 (9)

System iterative updates can be achieved by Equations (7) and (8), which achieves
Kalman estimation for all measured values.

After Kalman filtering, Kalman smoothing needs to be performed on the filtering
results. According to the Kalman backward smoothing equations, the smoothed estimate
x̂′′i of the state variable and the smoothed error covariance V’

i can be obtained by:

x̂′′i = x̂′i + Ji

(
x̂′′i+1 + Φix̂′i

)
(10)

V’
i = Vi + Ji

(
V′i+1 − Pi

)
JT

i (11)

where Ji is defined as:
Ji = ViΦ

T
i (Pi)

−1 (12)

The optimized vector Mq
K =

[
g(1, q)

K , · · · , g(i, q)
K , · · · , g(nD , q)

K

]T
can be obtained based

on the Kalman smoother by Equations (9) and (10), where g(i, q)
K is the feature element after

Kalman filtering and smoothing. nD is the total number of database images, and q is the
index of feature vectors. As 18 Gist features are extracted from a database image, the range
of q satisfies 1 ≤ q ≤ 18.

3.2. Image Clustering Based on CUSUM Change-Point Detection

Change-point detection on Gist features of database images is to group the successive
database images between change points into one cluster, thereby realizing scene-level
database image clustering. For a random process that occurs in chronological order, change-
point detection is detecting whether the distribution or distribution parameters of random
elements in the process suddenly change at a certain moment. In this paper, change points
are detected on the Gist features extracted from successive database images, thereby finding
the database image in which the indoor scene changes. When the change-point detection on
all Gist features is completed, the database images between the change points are grouped
into one cluster, and these images are deemed to be acquired in the same scene (e.g., office,
kitchen, corridor, etc.). The rationality of the algorithm is that when constructing the off-line
3D indoor map, the database camera successively captures the database images in the same
scene. Therefore, the obtained database images are successive in the same scene. That is,
the Gist features of the database images have a certain correlation. Once the indoor scene
changes, it is possible to perceive the occurrence of such a change by detecting the change
points of the Gist features.

The CUSUM (Cumulative Sum) algorithm used for change-point detection in this
paper is an anomaly detection method commonly used in industrial fields. The CUSUM
algorithm is generally applied to all data to detect change points. For data located at a
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certain position in the sequence, other data in front of and behind this position are used
for change-point detection. However, such a detection method will undoubtedly increase
the time overhead, especially as the amount of historical data becomes larger and larger
with time, which will eventually cause excessive time overhead. Therefore, a sliding
window is introduced to constrain the number of Gist features that need to be processed in
change-point detection, as shown in Figure 3.
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As shown in Figure 3, an 18-dimensional Gist feature vector can be extracted with dif-
ferent scales and directions for each database image. After Kalman filtering and smoothing,
each Gist feature can be represented as g(i, q)

K , where the superscript i indicates the index of
database images, and the subscript q indicates the element position in a feature vector. For
the Gist features extracted from different database images, if they are located in the same
column q, the scales and orientations of these features are the same. In order to constrain
the data size during change-point detection, a sliding window of the size ω is implemented
in CUSUM change-point detection. Specifically, if the currently detected position is i, and
the corresponding Gist feature is g(i, q)

K , only the features in the sliding window are consid-

ered. That is to say, only the features between g(i−w/2+1, q)
K and g(i+w/2, q)

K are detected. In
addition, the change-point detection algorithm is only applied to the features that have the
same scale and orientation. For different Gist feature sequences, such as M1

K, · · · , M17
K , and

M18
K , they should be separately detected.

In the CUSUM change-point detection, considering the sequence of successively
acquired database images is a time series, the acquisition time corresponds to the index
of the database image in the sequence. Therefore, the change-point detection in this
paper detects the position at which the change point appears in the image sequence. The
CUSUM change-point detection algorithm estimates the position of the change point in the
sequence by calculating the parameter models of Gist feature sequences. The probability
density function is employed to determine the positions of change points in a Gist feature

sequence. For a Gist feature sequence Mq
K =

[
g(1, q)

K , · · · , g(i, q)
K , · · · , g(nD , q)

K

]T
, a sub-

sequence Mq
W =

[
g(i−w/2+1, q)

K , · · · , g(i, q)
K , · · · , g(i+w/2, q)

K

]T
within the sliding window

can be obtained, and change-point detection only acts on feature element g(i, q)
K . According

to the position of g(i, q)
K , sequence Mq

W can be divided into two sub-sequences: MA
W =[

g(i−w/2+1, q)
K , · · · , g(i, q)

K

]T
and MB

W =
[

g(i+1, q)
K , · · · , g(i+w/2, q)

K

]T
.

According to the Neyman–Person lemma, the core of CUSUM change-point detection
can be considered a hypothesis-test problem. For this hypothesis test, the null hypothesis
H0 is the case that the feature element is not a change point. In this case, the indoor scene
corresponding to the database image does not change. In contrast to the null hypothesis,
alternative hypothesis H1 indicates the scene changes, in which case the feature element
does not satisfy the previous parameter model. The purpose of the CUSUM algorithm is to
monitor and determine at which point hypothesis H1 switches to H0 in the feature sequence.
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For sub-sequences MA
W and MB

W in the sliding window, it is considered that the
feature elements in the sequences are independent variables and subject to the normal
distribution, so two parameter models, namely, parameter model A and parameter model
B, can be obtained.

The probability density functions of the two parameter models are fA and fB which satisfy:

fA

(
g(i, q)

K

)
∼ N (µA, σA) (13)

fB

(
g(i, q)

K

)
∼ N (µB, σB) (14)

where µA and µB are the expectation and variance of the parameter model A. µB and σB are
the expectation and variance of the parameter model B.

If the hypothesis test is applied to the feature elements in the sliding window, the
probability density function under the null hypothesis H0 is fA, and the probability density
function under the alternative hypothesis H1 is fB. Thus, a likelihood ratio function hi

relating to g(i, q)
K can be obtained by:

hi

(
g(i, q)

K

)
= ln

[
fB

(
g(i, q)

K

)
/ fA

(
g(i, q)

K

)]
(15)

Based on the likelihood ratio function, a cumulative sum function can be defined as:

Hi

(
g(i, q)

K

)
=

i

∑
j=1

hi

(
g(j, q)

K

)
=

i

∑
j=1

ln
[

fB

(
g(j, q)

K

)
/ fA

(
g(j, q)

K

)]
(16)

For the CUSUM algorithm, the position tch of the change point can be calculated by a
given threshold Tch:

tch = inf
{

i ≥ 1 :
(

Hi − min
1≤k≤i

Hk

)
≥ Tch

}
(17)

According to the detection principle shown in (17), a threshold must be set in advance
when employing the typical CUSUM algorithm for change-point detection. However, in
many cases, it is difficult to determine the threshold for change-point detection due to
the complexity and diversity of indoor scenes. Therefore, an improved cumulative sum
change-point detection (ICSCD) algorithm is proposed to identify change points without a
given threshold.

Since the probability density functions of the two sub-sequences in the sliding window
are subject to a normal distribution, the likelihood ratio function can be expanded as:

hi

(
g(i, q)

K

)
= ln

(
fB

(
g(i, q)

K

)
/ fA

(
g(i, q)

K

))
= ln


(

exp
(
−
(

g(i, q)
K − µB

)2
/2σ2

B

))
/
√

2πσB(
exp

(
−
(

g(i, q)
K − µA

)2
/2σ2

A

))
/
√

2πσA

 (18)

If the variances of parameter model A and parameter model B are considered identical
(i.e., σA = σB = σAB), then the likelihood ratio function hi can be simplified as:

SL

(
g(i, q)

K

)
=

2(µA − µB)g(i, q)
K −

(
µ2

A − µ2
B
)

2σ2
AB

(19)

The cumulative sum function of g(i, q)
K in the proposed ICSCD algorithm is defined as:

Hi

(
g(i, q)

K

)
=

i

∑
j=1

hi

(
g(i, q)

K

)
=

i

∑
j=1

(
2(µA − µB)g(i, q)

K −
(
µ2

A − µ2
B
)

2σ2
AB

)
(20)
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where expectations µA and µB corresponding to parameter models A and B can be
calculated by:

µA =
2
w

i

∑
k=i−w/2+1

g(k, q)
K (21)

µB =
2
w

i+w/2

∑
k=i+1

g(k, q)
K (22)

According to Equation (20), the cumulative sum function depends on three variables:
the Gist feature element g(i, q)

K detected as the change-point, the expectation µA of parameter
model A, and the expectation µB of parameter model B. Therefore, the numerator of
Equation (20) can be defined as a change-point detection function to monitor whether the
indoor scene changes on the position i:

FC

(
g(i, q)

K

)
= 2(µA − µB)g(i, q)

K −
(

µ2
A − µ2

B

)
(23)

Depending on the above analysis, Gist feature sequences can be processed by the
change-point detection function. The specific process is as follows: first, for the feature
elements between w/2 and (nD − w/2) in the sliding window, the values of the change-
point detection function need to be calculated, where w is the size of the window and nD is
the total number of database images. Second, the peaks of the discrete values of function
FC are detected, and the peaks correspond to the change points in feature sequences. More
than one Gist feature sequence is extracted from the database images (18 feature sequences
extracted in this paper, i.e., Mq

K, 1 ≤ q ≤ 18), and each feature sequence needs to be
detected separately. Therefore, it is necessary to propose a strategy to integrate the detected
change points from each feature sequence to find the images corresponding to indoor
scene changes.

Since 18 Gist feature elements are extracted from each database image, an 18× nD
matrix containing change-point marks can be obtained for nD database images. Each mark
in the matrix represents whether the Gist feature element on this position is a change point.
Specifically, if the feature element in one position is detected as a change point, the value of
the mark in this position is defined as 1. Otherwise, the value is defined as 0. As shown
in Figure 4, a window with the size lw (lw is an odd number, namely lw = 2kw + 1, and
kw is a positive integer) slides on the matrix, and the values of the marks in the window
are added up. The meaning of the accumulated value of the marks is the total number of
change points in the window. If the accumulated value of the marks in the window exceeds
a given threshold, the center of the window is considered the position of the change point.
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4. Feature Tracking-Based Image Clustering, Hierarchical Retrieval and Visual Localization

Based on the proposed ICSCD algorithm, scene-level database image clustering can
be achieved by global visual features of database images. However, in the implementation
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of database construction, there are usually too many database images acquired in the same
indoor scene, which leads to excessive time overheads of image retrieval in the on-line
stage. Therefore, the database images in the same scene-level cluster are further grouped
to achieve sub-scene-level clustering. For sub-scene-level clustering, local visual features
of images are employed. In the process of local feature tracking, if the change rate of the
number of tracked features is below the given threshold, the database image is defined
as a breakpoint image. The database images between the two breakpoint images are
acquired in the same sub-scene, so the images between the breakpoints are grouped into
one sub-cluster.

4.1. Image Clustering Based on KLT Feature Tracking

A database image can be described by the gray-level function I(xI , yI , t), where
(xI , yI) is the position of a pixel on the image, and t presents the time stamp. Since
database images are successively acquired, time stamp t is equivalent to the image index.
In addition, the interval of image acquisition is small, resulting in high visual correlations
between database images, which is the precondition for using feature tracking for image
breakpoint detection. When the database camera moves within a sub-scene, an overlap
exists between the adjacent database images, and a certain number of local features on
the images can be tracked. According to this characteristic of database images, a KLT
(Kanade–Lucas–Tomasi) feature tracking-based image-clustering method is proposed in
this section.

The features are continuously tracked between the two adjacent database images
with index i and i + 1 by the KLT algorithm. Let Φ1 denote an image cluster in the scene-
level clustering results. In the off-line stage, the local visual features (i.e., ORB features)
are extracted from images and stored in the database used in the sub-scene-level image

clustering. Let Li
O =

[
l1
i , · · · , lj

i , · · · , lnO
i

]T
present an ORB feature matrix consisting of

the vector lj
i =
[
l(j, 1)
i , · · · , l(j, k)

i , · · · , l(j, 32)
i

]
, where i is the index of the database image,

j is the index of feature vectors, and k (1 ≤ k ≤ 32) is the index of elements in a feature
vector. For each ORB feature extracted from an image, there is a feature vector (i.e., lj

i) and

a position vector (i.e., pj
i =

[
x(i, j)

I , y(i, j)
I

]T
) corresponding to the ORB feature, where pj

i is
expressed in the image coordinate system.

To track features, a rectangular window on the image needs to be set whose length
is (2wK + 1) pixels and whose width is (2hK + 1) pixels. Based on the assumptions
of constant brightness, time continuity, and spatial consistency in the rectangular win-
dow, it is considered that the matching feature points on the database image satisfy the
following relationship:

J
(

x(i, j)
I + dx, y(i, j)

I + dy, i + 1
)
= I
(

x(i, j)
I , y(i, j)

I , i
)

(24)

where I
(

x(i, j)
I , y(i, j)

I , i
)

is the gray value of the feature point located at
[

x(i, j)
I , y(i, j)

I

]T

on the i-th database image. For the next database image, J
(

x(i, j)
I + dx, y(i, j)

I + dy, i + 1
)

is the gray value of the feature located at
[

x(i, j)
I + dx, y(i, j)

I + dy

]T
. dx and dy denote the

displacement distances in the X and Y directions on the image, respectively. Equation (24)
indicates that for the matching feature points on the database image, only the displacement
changes occur on the adjacent images, and the magnitude of the gray values does not
change. The core of feature tracking is to solve dxy = [dx, dy]

T.
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In order to obtain the displacement change, a sum of the squared intensity difference
function is defined as:

ε
(
dxy
)
=

x(i, j)
I +wK

∑
x=x(i, j)

I −wK

y(i, j)
I +hK

∑
y=y(i, j)

I −hK

(
I(x, y, i)− J

(
x + dx, y + dy, i + 1

))2 (25)

Taking the derivative of the sum of the squared intensity difference function and
setting it to zero, the optimal solution d∗xy of the displacement can be obtained by:

∂ε
(
dxy
)

∂dxy
= −2

x(i, j)
I +wK

∑
x=x(i, j)

I −wK

y(i, j)
I +hK

∑
y=y(i, j)

I −hK

(I − J)·
[

∂J
∂x

,
∂J
∂y

]
= 0 (26)

where I(x, y, i) and J
(
x + dx, y + dy, i + 1

)
are abbreviated to I and J, respectively.

Based on the Taylor formula, the first-order approximation of Equation (26) on [0, 0]T

can be obtained by:

∂ε
(
dxy
)

∂dxy
≈ −2

x(i, j)
I +wK

∑
x=x(i, j)

I −wK

y(i, j)
I +hK

∑
y=y(i, j)

I −hK

(
I − J −

[
∂J
∂x

,
∂J
∂y

]
dxy

)
·
[

∂J
∂x

,
∂J
∂y

]
(27)

Equation (27) can be further expressed as:

[
∂ε
(
dxy
)

∂dxy

]T

≈ −2
x(i, j)

I +wK

∑
x=x(i, j)

I −wK

y(i, j)
I +hK

∑
y=y(i, j)

I −hK

([
I2
x Ix Iy

Ix Iy I2
y

]
dxy −

[
Hxy Ix
Hxy Iy

])
(28)

where Ix, Iy, and Hxy are:

Ix =
∂I(x, y, i)

∂x
=

I(x + 1, y, i)− I(x− 1, y, i)
2

(29)

Iy =
∂I(x, y, i)

∂y
=

I(x, y + 1, i)− I(x, y− 1, i)
2

(30)

Hxy = I(x, y, i)− J(x, y, i) (31)

Let Equation (28) be equal to zero, and the optimal solution d∗xy can be obtained by:

d∗xy =

 x(i, j)
I +wK

∑
x=x(i, j)

I −wK

y(i, j)
I +hK

∑
y=y(i, j)

I −hK

[
I2
x Ix Iy

Ix Iy I2
y

]
−1

×

 x(i, j)
I +wK

∑
x=x(i, j)

I −wK

y(i, j)
I +hK

∑
y=y(i, j)

I −hK

[
Hxy Ix
Hxy Iy

] (32)

Initialization should be applied to database image set Φ1, which means that the first
database image in the set Φ1 is defined as a breakpoint. From the second database image
in the set Φ1, the KLT algorithm is employed to track local features between the adjacent
images. Let k denote the index of the breakpoint image, and then the number of tracked
features can be presented by the vector nT =

[
nk+1

T , nk+2
T , · · · , nk+k′

T , · · ·
]
, where nk+k′

T is

the number of tracked features corresponding to the image with index k + k′. To determine
the position of the breakpoint image, a threshold is required to monitor the number of
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tracked features. For the database image with index k + k′, the corresponding breakpoint
image-detection threshold Tk+k′

Tr is defined as:

Tk+k′
Tr =

wTr
k′

k+k′

∑
j=k+1

(
nj−1

T − nj
T

nj
T

)
(33)

where wTr is the scale coefficient, and the change rate of the number of tracked features is
rk+k′

Tr =
(

nk+k′−1
T − nk+k′

T

)
/nk+k′

T .

According to the change rate rk+k′
Tr and threshold Tk+k′

Tr , an image can be determined
whether or not it is a breakpoint image. Specifically, if rk+k′

Tr ≤ Tk+k′
Tr , the database image

with index k + k′ is regarded as a breakpoint image, as shown in Figure 5. Breakpoint
detection is applied to each scene-level clustering result, and then all breakpoint images
in the database image set can be found. Database images between two breakpoint images
and the front breakpoint image are grouped into one cluster, achieving the sub-scene-level
image clustering. The feature vector of the breakpoint image of each cluster is the cluster
center. That is, the feature vector of the first image in the cluster is the cluster center (as
shown in Figure 5). In the i-th scene-level cluster, the center of the j-th sub-scene-level
cluster can be denoted by Lj

i , which is an ORB feature vector.
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4.2. Hierarchical Image Retrieval and Visual Localization

In the off-line stage, database images are hierarchically grouped, and a search tree
with three layers is achieved: (1) the first layer contains centers of scene-level clusters,
(2) the second layer consists of centers of sub-scene-level clusters, and (3) the third layer
contains database images in sub-scene-level clusters. It should be noted that the center of
the scene-level cluster is a global feature vector (i.e., a Gist feature vector), and the center of
the sub-scene-level cluster is a local feature vector (i.e., an ORB feature vector). According
to the results of hierarchical image clustering, a three-layer search tree can be organized. As
shown in Figure 6, there are m clustering results in the first layer of the search tree, and each
clustering result in the first layer, such as Gi

C, corresponds to more than one second-layer
result (i.e., L1

i , · · · , Lni
i ). In addition, the database images grouped into one sub-cluster

are associated with the cluster center, such as Lni
i . Based on the organized multi-layer

search tree, a hierarchical clustering-based image retrieval (HCIR) algorithm is proposed
for visual localization.
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Based on the multi-layer search tree shown in Figure 6, hierarchical image retrieval is
applied to find the most similar database image to the query image. In the on-line stage,
global and local features are extracted from the query image and uploaded to the server
by wireless networks. Then, the similarity between the query image and the centers of
scene-level clusters can be defined as:

lS =
∥∥∥GQ −Gi

C

∥∥∥ (34)

where GQ is the Gist feature vector extracted from the query image, and Gi
C (1 ≤ i ≤ m) is

a scene-level cluster center.
By measuring similarities between the global features of the query image and scene-

level cluster centers, the scene-level clusters can be ranked. Then, the query image orderly
retrieves each scene-level cluster. When the most similar scene-level cluster is found, the
sub-scene-level clusters in that cluster should be sorted. Specifically, suppose a query image
needs to find its most similar database image in the cluster Gi

C. In that case, local features
extracted from the query image should be matched with each center of sub-scene-level
clusters, i.e., L1

i , · · · , Lni
i . The number of matched local features reflects the similarities

between the query image and the sub-scene cluster centers. For the cluster Gi
C, sub-

scene-level clusters are orderly retrieved by the query image. By this means, scene-level
clusters and sub-scene-level clusters can be ranked based on visual similarities between the
query image and cluster centers. According to the ranked clusters, local feature matching
should be orderly executed between the query image and the database images in the
third-layer clusters.

Let nks
mat denote the number of matched features between the query image and the

ks-th database image. Then, the feature matching ratio can be defined as:

skS
L = nkS

mat/nQ (35)

where 0 ≤ skS
L ≤ 1 and nQ is the number of the ORB features extracted from the query image.

The matched features are used in visual localization, and more matched features
contribute to improving localization accuracy. In addition, more matched features indicate
that the query image is closer to the database image. Therefore, the best-matched database
image with the query image is desired to estimate the position of the query camera in visual
localization. Since database images are successively captured, when the query image is
matched with database images, the trend of feature-matching ratios presents regularity.
Specifically, if the query image and the database image are acquired in the same scene,
when the query image is orderly matched with the database image, the trend of matching
ratios first increases and then decreases. The reason is that when the query image gradually
approaches the best-matched database image, the matching ratios will gradually increase
until the ratio reaches a maximum value. At this position, the database image is best
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matched with the query image. After that, the distance between the query image and
the best-matched database image gradually increases, and the matching ratios decrease.
Based on the above analysis, if the maximum value of the matching ratios can be found, the
best-matched database image can be determined. The method of finding the best-matched
database image is named the maximum similarity method in this paper.

To find the best-matched database image, a sliding window should be set as shown in
Figure 7. In a sliding window with the size wF + 1, the index of the image at the center is
kS. If the image with the index kS is determined as the best-matched database image, the
matching ratio skS

L of the database image should satisfy: skS
L ≥ skS−1

L ≥ · · · ≥ skS−wF/2
L ≥ rmat

skS
L ≥ skS+1

L ≥ · · · ≥ skS+wF/2
L ≥ rmat

(36)

where rmat ∈ [0, 1] is the threshold of the matching ratio. The threshold ensures that the
database images and the query image are captured in the same scene.
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According to the ranking results of the scene-level and sub-scene-level clusters, the
query image orderly retrieves each cluster until it finds the best-matched database image.
A situation may arise in image retrieval. That is, the query image is matched with all the
database images of the most similar scene-level cluster, but the best-matched database
image is still not found. Therefore, a backtracking mechanism is introduced in the proposed
hierarchical retrieval. In this mechanism, when the best-matched database image with
the query image cannot be found after comparing with all the database images in the
scene-level cluster, the query image will return to the top of the search tree and continue to
retrieve the next cluster according to the ranking results, and so on. In the worst case, all
database images are compared with the query image, and the best-matched database image
is still not found. Then, the database image with the maximal matching ratio is determined
as the best-matched image, but in this case, the distance between the query image and the
database image is perhaps far.

By the proposed HCIR algorithm, the best-matched database image with the query
image can be found in the database, and the best-matched database image has the following
characteristics: (1) the database image is captured in the same scene as the query image;
(2) there are a number of matching feature points between the query image and the database
image. If the query image is considered to be coincident with the position of the best-
matched database image, a preliminary position estimation of the query camera can be
achieved. However, this position estimation method is subject to the acquisition density of
the database images. In order to improve the localization accuracy, the top-K best-matched
database images are selected and used to estimate the position of the query image.

4.3. Visual Localization Based on Weighted KNN Method and Armijo–Goldstein Algorithm

In practical localization scenarios, images with higher similarity tend to be closer.
Namely, the more similar the query image and the database image are, the smaller the
distance between the two images is. With this thinking, a weighted KNN-based visual
localization method is proposed, by which the matched database image with a higher
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similarity is assigned a larger weight. The similarities between images are evaluated by the
number of matched feature points in visual localization.

The top-K best-matched database images with the query image are regarded as the
nearest neighbors to estimate the query position, so the localization error function can be
defined as:

fe

(
pQ

)
=

K

∑
i=1

(
wi

∥∥∥pQ − pi
D

∥∥∥) (37)

where pQ is the estimated position of the query image, and pi
D (1 ≤ i ≤ K) is the position

of the database image. wi is the weight that can be calculated by:

wi =
ni

mat
K
∑

j=1
nj

mat

, (i = 1, · · · , K) (38)

where ni
mat denotes the number of matched feature points between the query image and

the database image.
For Equation (37), the Armijo–Goldstein algorithm is used to solve the estimated

position of the query image (i.e., the position of the query camera) [60]. The gradient vector
of fe at pk

Q =
[

xk
Q, yk

Q

]
is:

g =

[
∂ fe

∂x

∣∣∣∣
(xk

Q , yk
Q)

,
∂ fe

∂y

∣∣∣∣
(xk

Q , yk
Q)

]
(39)

According to the gradient vector, the search direction s can be further determined
by s = −g. The procedure of visual positioning can be treated as a line search, as shown
in Algorithm 1. The count flag sk, index tm, maximum number of iterations kmax (=5000),
threshold σr (=10−3), amplification coefficient γ (=0.4), and step length d (=0.01) are set
as inputs.

Algorithm 1: Visual localization based on Armijo–Goldstein algorithm

Input: localization error function fe, count flag sk, index tm, maximum number of iterations kmax,
threshold σr, amplification coefficient γ, and step length d

Output: estimated position pQ of the query camera
Step 1: set initial values sk = 0 and tm = 0;
Step 2: calculate the norm of the direction vector by sn = ‖s‖

if sn > σr, turn to Step 3,
else turn to Step 5;

Step 3: if fe

(
pk

Q + dtm s
)
< fe

(
pk

Q

)
+ γdtm (g)−1s, then sk = tm and turn to Step 4,

else tm ← tm + 1 and turn to Step 4;
Step 4: update the position of the query camera by pk+1

Q = pk
Q + dsk s and k← k + 1 ,

if k ≥ kmax, then turn to Step 5,
else turn to Step 1;

Step 5: determine the position of the query camera by pk
Q, i.e., pQ = pk

Q.

With the visual localization method, the estimated position pQ of the query camera
can be achieved by solving the line search problem, in which the similarity between the
query image and the database images is reflected by the weight wi. Therefore, the estimated
position of the query camera is closer to the database images with high similarity.

In summary, visual localization is achieved by two steps: hierarchical clustering-
based image retrieval and query camera position estimation. Since the proposed visual
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localization method dispenses with camera calibration, it can be widely used in different
application scenarios and applied to various smart mobile terminals.

4.4. Performance Analysis on Hierarchical Image Retrieval

The proposed HCIR algorithm aims to decrease the on-line search time by sacrificing
the processing time of off-line image clustering. Still, database image clustering is con-
tinuously efficacious, which means that once the database image clustering is completed,
the results of clustering can be repeatedly applied to on-line image retrieval. The pro-
posed algorithm in this paper achieves multi-layer image clustering. Compared with the
single-layer clustering algorithm (i.e., only scene-level image clustering is implemented),
an advantage of the proposed algorithm is that the search time does not scale up for the
database size. Next, the computation performance of the proposed algorithm and the
single-layer clustering-based algorithm will be analyzed in detail. For clustering-based
image retrieval, on-line time consumptions contain five parts: (1) the time tG to extract
the global features of the query image, (2) the time tL to extract the local features of the
query image, (3) the time tGS to measure the similarity of global features between the query
image and database images, (4) the time tLM to match the local features between the query
image and database images, and (5) the time tFS to sort database images according to
their similarity to the query image. If there are nL1 scene-level clusters in the first layer,
and each cluster contains nL2 sub-scene-level clusters, the average running time TSL of the
single-layer clustering-based retrieval algorithm is:

TSL = tG + tL + nL1 tGS + tFS + kL1 mL1 tLM +
1 + mL1

2
tLM (40)

where kL1 is the number of scene-level clusters that have been retrieved when the back-
tracking mechanism is enabled, and mL1 and mL2 are the number of database images in the
scene-level cluster and the sub-scene-level cluster, separately.

The average running time TML of the proposed image retrieval algorithm is:

TML = tG + tL + nL1 tGS+2tFS + kL1 nL1 tLM + kL2 mL2 tLM + nL2 tLM +
1+mL2

2 tLM

= tG + tL + nL1 tGS+2tFS + kL1 nL1 tLM +
(
kL2 mL2 + nL2

)
tLM +

1+mL2
2 tLM

(41)

where kL2 is the image number of sub-scene-level clusters that have been retrieved when
the backtracking mechanism is enabled. In this case, if the query image does not obtain a
matched database image after retrieving a complete scene-level and sub-scene-level cluster-
ing result, the time consumption of the two processes is nL1 tLM and nL2 tLM, respectively.
The total number mtotal of database images satisfies: mtotal = nL1 mL1 and mL1 = nL2 mL2 ,
where mL1 and mL2 are image numbers of the scene-level cluster and the sub-scene-level
cluster, respectively.

For single-layer clustering-based image retrieval, database images are orderly matched
with the query, so the average retrieving time of an image cluster is

(
1 + mL1

)
tLM/2.

Similarly, for the proposed algorithm, the average retrieval time of a sub-scene-level cluster
is
(
1 + mL2

)
tLM/2. According to the principle of multi-layer clustering, the image number

mL1 is far more than mL2 . As a result, the query image could find its matched database
image in a cluster using less time for the proposed HCIR algorithm. The proposed algorithm
has three additional time overheads (i.e., the time kL2 mL2 tLM to retrieve the kL2 results, the
time nL2 tLM to match features, and the time tFS to sort database images) compared with
the single-layer clustering algorithm. However, in practical applications, feature-sorting
time is much shorter than feature-matching time, and in most cases, the value of kL2 is
zero. Therefore, the sum of the retrieval time

(
1 + mL2

)
tLM and the feature-matching time

nL2 tLM is still less than the retrieval time
(
1 + mL1

)
tLM/2. If the best-matched database

image can be obtained without trigging the backtracking mechanism (i.e., kL1 = kL2 = 0),
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the difference ∆t in time consumption between the single-layer clustering algorithm and
the proposed algorithm is:

∆t =
mL1 −mL2 − 2nL2

2
tLM − tFS (42)

Compared with the multi-layer clustering-based algorithm, there are more database
images contained in the cluster for the single-layer clustering-based algorithms. Moreover,
as a multi-layer clustering-based algorithm, the proposed HCIR algorithm has priorities for
retrieving the image clusters with high similarities to the query, so that the matched image
can be found by searching fewer database images. Therefore, the structure of a multi-layer
search tree is beneficial in reducing retrieval time consumption.

5. Experimental Results and Discussion

In this section, the hierarchical clustering-based image retrieval is implemented, and
the computation performance of the retrieval algorithm is analyzed. In addition, the
position accuracy of the visual localization is evaluated.

5.1. Experimental Results of Database Image-Clustering Algorithm

Two image databases (namely, the KTH image database [61] and the HIT-TUM image
database) were used to evaluate the performance of the proposed algorithm. The images
in the HIT-TUM database were acquired from the Harbin Institute of Technology and the
Technical University of Munich. Each database contains 400 images captured in 10 different
indoor scenes, such as an office, a corridor, a restaurant, and so on. All data processing
was run on MATLAB 2018A with an Intel Core i7 CPU and 8GB RAM. Randomly selected
example images in the databases are shown in Figure 8. It is worth noting that images in
the databases are successively captured in indoor scenes, so the visual features extracted
from the images captured in the same indoor scene have high correlations.
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Figure 8. Randomly selected example images of the KTH and HIT-TUM databases.

For scene-level image clustering, database images are grouped by their global features
based on the CUSUM change-point detection. The results of the scene-level clustering
guide the query image to retrieve the clusters that are similar to the query. Therefore, the
performance of database image clustering affects the efficiency of the image retrieval system.
For an image retrieval system, the efficiency of the retrieval algorithm is reflected in two
aspects: the number of searched database images and the time consumption of the image
retrieval. Generally, the fewer database images are searched, the less time retrieval takes.

In the same indoor scene, as the database images are successively captured, the Gist
features extracted from these images have high correlations. Taking advantage of the
correlations, scene-level clustering of database images can be achieved. However, the noise
generated in feature extraction affects the correlation of the features. Therefore, the original
Gist features of database images need to be pre-processed (including Kalman filtering and
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Kalman smoothing) to restore the correlation of image features. For a database image, Gist
features can be extracted according to different scales and directions. In this paper, Gist
features are extracted at three scales and six directions, so 18 (3× 6 = 18) feature elements
are extracted from each image. That is, the Gist feature vector of each image contains
18 feature elements. Figure 9 shows an example of the Gist feature pre-processing result
of a database image, including the original Gist feature values, Kalman filtering results,
and Kalman smoothing results. It can be found from Figure 9 that the correlation between
original feature values is not evident due to the influence of noise. In contrast, by Kalman
filtering, noise is effectively suppressed, and the correlations between features are restored.
According to Kalman filtering results, more obvious correlations can be obtained by further
Kalman smoothing of Gist features. The pre-processing of features recovers the correlations
of global features of database images, which is beneficial to scene-level clustering.
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Figure 9. Examples of pre-processing results of Gist features of database images. (a) Pre-processing
results of Gist features for KTH database images with SG = 1 and OG = 0

◦
; (b) Pre-processing results

of Gist features for KTH database images with SG= 2 and OG= 60
◦
; (c) Pre-processing results of

Gist features for KTH database images with SG= 3 and OG= 120
◦
; (d) Pre-processing results of Gist

features for HIT-TUM database images with SG = 1 and OG = 0
◦
; (e) Pre-processing results of Gist

features for HIT-TUM database images with SG= 2 and OG= 60
◦
; (f) Pre-processing results of Gist

features for HIT-TUM database images with SG= 3 and OG= 120
◦
.

Scene-level database image clustering is achieved by detecting the change-points in
Gist feature sequences. When image retrieval is executed in the results of scene-level clus-
tering, according to the similarity of the global features, the query image will preferentially
search the database image clusters with a higher similarity. Therefore, if all database images
in the same scene are grouped into one cluster, the query image captured in this scene can
find its matched database images in this cluster. In contrast, if a database image captured
in a certain scene is falsely grouped into other clusters, this database image cannot be
retrieved when the query searches the right cluster. Depending on the above analysis, the
core of the proposed algorithm is that the database images in the same scene are grouped
into one cluster as much as possible.
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To analyze the performance of the proposed algorithm, scene-level image clustering
is executed, and confusion matrices are employed to evaluate clustering accuracy. The
confusion matrices of the results of database image clustering are shown in Figure 10. The
confusion matrix used to evaluate clustering accuracy in this paper can also be regarded as
a clustering error matrix. The row labels of the matrix are the correct cluster labels, and the
column labels are the predicted cluster labels. For the matrix in Figure 10a, the values in the
third, fourth, and fifth rows of the fourth column are 1, 39, and 6, respectively. This set of
values shows that for 46 (1+ 39+ 6 = 46) database images that are grouped into one cluster,
39 database images were truly captured in the Office II scene, one image was misclassified
into the Corridor II scene category, and six images were misclassified into the Corridor III
scene. For a row of the confusion matrix, the sum of all values in that row represents the
actual number of images in the cluster. For a column of the confusion matrix, the sum of
all values in that column represents the predicted number of images in the cluster. The
confusion matrix effectively reflects the performance of the proposed scene-level clustering
algorithm. By observing the confusion matrix, it can be known that for image-clustering
results, incorrectly grouped images only occur in two adjacent image clusters, and the
reason accords with the clustering principle in this paper. Specifically, image clustering acts
on the indoor database image sequence, and the change-points are detected based on global
features of database images, so that images between two change-points are grouped into
one cluster. Therefore, the incorrect image grouping is caused by errors in change-point
detection. Obviously, if errors exist in change-point detection, some database images that
should belong to a certain cluster are grouped into the former or the latter cluster.
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In this paper, four criteria (i.e., recall rate, precision rate, accuracy rate, and F1 score)
are used to evaluate the performance of the clustering algorithm. The recall rate rRR is
the ratio of the number of correctly grouped images to the actual number of images in
that cluster. The precision rate rPR refers to the ratio of the number of correctly grouped
images to the number of images in the cluster. The accuracy rate rAR refers to the ratio of
the number of correctly grouped images to the total number of images. The F1 score sF1
is used in statistics to measure the accuracy of a classification model. This score can be
calculated by the recall rate and the precision rate:

sF1 =
2rRR·rPR
rRR + rPR

(43)

Global features of an image include color features (such as color histogram features and
color moment features) and texture features (such as wavelet transform features and Gabor
transform features). In simulation experiments, Gist features, color histogram features,
color moments, wavelet transform features, and Gabor features are used to perform scene-
level clustering on database images, and experimental results are shown in Table 1. For
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the experimental results, rRR, rPR and sF1 denote the average recall rates, average precision
rates, and average F1 scores, respectively. From the results shown in Table 1, the color
features (such as color histograms and color moments) perform weakly on scene-level
clustering. The reason is that the color difference of indoor scenes is relatively small.
Especially in an environment with a white wall as the main background, it is not easy to
distinguish the scenes by the color information. Compared with color features of images,
texture features of images perform better in terms of clustering performance, especially for
Gabor features and Gist features. Because multiple Gabor filters with different scales and
directions are used in extracting Gist features, Gist features describe the textures of scenes
more comprehensively, thereby achieving more accurate image-clustering results.

Table 1. Performance comparison of scene-level clustering of global features.

Database Type of Global Feature Average Recall
Rate rRR

Average Precision
Rate rPR

Average F1 Score sF1
Accuracy Rate

rAR

KTH

Color histogram 0.5602 0.5559 0.5546 0.5575

Color moment 0.5732 0.5697 0.5683 0.5650

Wavelet transform 0.6946 0.6898 0.6904 0.6875

Gabor transform 0.8178 0.8071 0.8102 0.8400

Gist 0.9320 0.9388 0.9322 0.9325

HIT-TUM

Color histogram 0.5384 0.5370 0.5343 0.5475

Color moment 0.5607 0.5599 0.5578 0.5725

Wavelet transform 0.6601 0.6611 0.6592 0.6775

Gabor transform 0.8259 0.8206 0.8221 0.8325

Gist 0.9324 0.9489 0.9375 0.9225

To reveal the clustering performance of the ICSCD algorithm proposed in this paper,
two typical change-point detection algorithms (i.e., the mean shift-based algorithm [36] and
the Bayesian estimation-based algorithm [62]) are simulated for grouping database images
at the scene level. The experimental results shown in Table 2 indicate that the proposed
ICSCD algorithm significantly outperforms the Bayesian estimation-based algorithm in
four metrics: the average recall rate, the average precision rate, the average F1 score, and
the accuracy rate. The reason is that the Bayesian estimation-based algorithm utilizes local
features in change-point detection, but the local features are too sensitive to scene changes
and tend to group database images belonging to the same scene into multiple image clusters
or group images belonging to the same class into other clusters. This also shows that the
local features of the images are more suitable for further classification of the scene-level
clustering results, which is why local features are used for the second layer of clustering in
this paper. Both the proposed ICSCD algorithm and the mean shift-based algorithm use
global features for clustering, but the difference is that the change-point detection function
FC is employed to detect the change points for image clustering in the proposed ICSCD
algorithm, whereas the mean shift function is utilized to detect the change points in the
mean shift-based algorithm. Since both the influence of the values at the detection position
and the influence of the expected values of the parameter models (i.e., the parameter model
A and the parameter model B in the hypothesis test) within the sliding window (as shown
in Figure 4) are taken account in the change-point detection function FC, a higher clustering
accuracy can be obtained. Specifically, the average recall rate, the average precision rate,
the average F1 score, and the accuracy rate of the proposed ICSCD algorithm are greater
than 0.92, which is significantly higher than the mean shift-based algorithm.
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Table 2. Performance comparison of scene-level image clustering algorithms.

Database Algorithm Average Recall
Rate rRR

Average Precision
Rate rPR

Average F1 Score sF1
Accuracy Rate

rAR

KTH
Proposed ICSCD algorithm 0.9320 0.9388 0.9322 0.9325
Mean shift-based algorithm 0.8645 0.9107 0.8491 0.8625

Bayesian estimation-based algorithm 0.7817 0.8408 0.7759 0.7925

HIT-TUM
Proposed ICSCD algorithm 0.9324 0.9489 0.9375 0.9225
Mean shift-based algorithm 0.8404 0.8485 0.8333 0.8475

Bayesian estimation-based algorithm 0.7497 0.7692 0.7387 0.7550

5.2. Experimental Results of Hierarchical Image Retrieval and Visual Localization

In the proposed HCIR algorithm, the best-matched database image is determined
by the maximum similarity method. Therefore, the validity of the method needs to be
verified by experiments. In this part of the experiments, since the best-matched image is
the database image that is most similar to the query image, the database image IGS with
the highest matching similarity to the query image is found by the global search, and the
index of this database image is ki

B. In addition, another best-matched database image IMS
is determined by the proposed maximum similarity method, and the index of the database
image is ki

M. The average error εindex of the index positions of best-matched database
images can be calculated by:

εindex =
1

nTQ

nTQ

∑
i=1

ki
BM =

1
nTQ

nTQ

∑
i=1

(∣∣∣ki
B − ki

M

∣∣∣) (44)

where ki
BM is the index error of the best-matched database image in the i-th experiment,

and nTQ is the total number of query images for experiments.
Based on the average error εindex, the average distance error between the best-matched

database images IGS and IMS can be further defined by εdis = εindex·dD, where dD is the
fixed acquisition distance of database images. The average index error εindex and the
average distance error εdis reflect the performance of retrieving the best-matched database
images with the maximum similarity method. For the experimental results, the smaller
values of εdis and εindex indicate that the matched database images are closer to the query
image. The results of matched image retrieval are shown in Table 3 under the condition that
dD is set to 10 cm. For the experimental results, the ratio rj

S (j = 0, 1, 2) is the percentage
of the number of experimental results that satisfy ki

BM = j. In addition, the average value
sL of the matching similarity and the average value nmat of matched feature points are also
calculated in experiments.

Table 3. Experimental results of matched database image retrieval.

Database r0
S r1

S r2
S εindex εdis sL nmat

KTH 94.75% 4.50% 0.75% 0.06 0.60 cm 0.5453 121.45
HIT-TUM 96.50% 3.00% 0.50% 0.04 0.40 cm 0.6287 134.40

The experimental results shown in Table 3 indicate that for image retrieval experiments
with the similarity maximum method separately conducted in the KTH database and the
TUM-HIT database, the probability of successfully retrieving a matched database image
(i.e., the situation of r0

S) exceeds 94%. In other cases, although the similarity between the
matched image and the query image cannot reach the maximum value, the index errors are
less than 2, which indicates that the matched image is close to the query image, and there
are enough matched features between the matching image and the query image. Therefore,
the matched database images under the situation of r0

S, r1
S, and r2

S can be used for visual
localization. For the two databases, the average error εindex of the index positions is less
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than 0.1, and the average distance error is less than 1 cm, showing the effectiveness of
the similarity maximum method in determining matched database images. Moreover, the
experimental results also show that for different databases, the average matching similarity
between the query image and the best-matched database image is greater than 0.5, and there
are more than 120 pairs of matched feature points between the query image and the best-
matched database image, which provides a fundamental guarantee for visual localization.

In the proposed HCIR algorithm, the scene-level clustering results are sorted based
on the global feature similarity, and then the database images in the sub-scene clusters
are sorted based on the local feature similarity. After the two-stage sorting, the query
image is matched with database images according to the sorting result. From the above
process, it is known that when retrieving the scene-level clustering results based on the
global feature similarity, the best case is to obtain the matched image in the first clustering
result, and the worst situation is obtaining the matched images after all the results are
retrieved. Therefore, for the scene-level image retrieval, the success rate of image retrieval
within the top-K clusters is proposed in this paper to evaluate the performance of the
clustering algorithm in image retrieval. Specifically, after scene-level clustering of database
images, more than one image cluster can be obtained. If the matched database image can
be retrieved after searching K image clusters, image retrieval is considered to be achieved
within K database image clusters. For a total of nQ query images, if there are nK query
images, and their matched database images are in the K-th cluster, the success rate of
the top-K clusters is defined as

(
100·nK/nQ

)
%. The success rate effectively reflects the

impact of the scene-level clustering algorithm on the performance of image retrieval. The
scene-level clustering algorithms of database images can be divided into two categories:
one is based on the method of detecting change points of visual features (such as the
proposed HCIR algorithm in this paper, the mean shift-based algorithm, and the Bayesian
estimation-based algorithm), and another is clustering a fixed number of database images
(such as the C-GIST algorithm [37]). In the C-GIST algorithm, five consecutive database
images are grouped into one cluster, and the cluster center is a feature vector of the image
that is located at the center position of each cluster. In this paper, two categories of image-
clustering algorithms are simulated, respectively, and the success rate of the top-K clusters
is calculated. The results are presented in Table 4.

Table 4. Success rates of the top-K clusters for query image.

Database Algorithm K = 1 K = 2 K = 3 K = 4 K = 5

KTH

Proposed HCIR algorithm 66.75% 87.50% 93.50% 99.75% 100%

Mean shift-based 50.25% 72.75% 84.25% 91.50% 97.75%

Bayesian estimation-based 45.75% 64.75% 74.25% 82.75% 91.00%

C-GIST 29.25% 35.25% 39.50% 43.25% 47.25%

HIT-TUM

Proposed HCIR algorithm 60.50% 82.50% 97.00% 99.00% 100%

Mean shift-based 49.25% 63.25% 83.25% 90.25% 96.25%

Bayesian estimation-based 43.00% 59.75% 76.50% 87.00% 93.25%

C-GIST 29.75% 38.25% 49.75% 56.50% 61.75%

The results shown in Table 4 indicate that the proposed HCIR algorithm is beneficial
in improving the success rate of the top-K clusters for a query image. For the two databases,
the success rates of the top-five clusters achieved by the HCIR algorithm, mean shift-based
algorithm, and the Bayesian estimation-based algorithm are more than 90%. At the same
time, it is not difficult to find that the HCIR algorithm has more obvious performance
advantages. Especially in the KTH database, the success rate of the first cluster is 66.75%,
and the success rate of the top-five clusters reaches 99.75%. For the HIT-TUM database and
the KTH database, the best-matched database image can be retrieved within the top-five
clusters by the HCIR algorithm. In addition, for the sub-scene-level image clustering,
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success rates of the first K-clusters are also calculated and recorded. Experimental results
show that for the HCIR algorithm, the success rate of the first cluster is more than 88%,
which indicates that in most cases, the best-matched database image can be found in the
first sub-cluster.

To verify the image retrieval efficiency of the proposed HCIR algorithm, image retrieval
experiments are performed on the HCIR algorithm and the comparison algorithms. In the
experiments, the mean shift-based algorithm, the Bayesian estimation-based algorithm, and
the C-GIST algorithm are single-layer clustering algorithms. In addition, another two multi-
layer clustering algorithms are considered: the mean shift-KLT algorithm and the Bayesian
estimation-KLT algorithm. For the two multi-layer clustering algorithms, database images
are firstly grouped by the mean shift-based algorithm or the Bayesian estimation-based
algorithm, and then the images are further grouped by the KLT algorithm. According to
the average number of retrieved images shown in Table 5, multi-layer clustering algorithms
have higher retrieval efficiency, and the number of similar comparisons (i.e., the processes
of feature matching) can be limited to 10% of the database size. The reason is that database
images are only grouped into scene-level clusters for the single-layer algorithms, and thus
the query image needs to match with database images in the scene-level cluster one-by-one.
In contrast, database images are further grouped on the basis of scene-level image clusters
in multi-layer algorithms. Then, according to visual similarities, image clusters are ranked,
and the query image preferentially matches with the database images in the most similar
cluster. Therefore, multi-layer algorithms have a better performance at average numbers of
retrieved database images.

Table 5. Average numbers of retrieved database images by different clustering algorithms.

Database C-GIST Bayesian Estimation Mean Shift Bayesian
Estimation-KLT Mean Shift-KLT Proposed

HCIR Algorithm

KTH 122.14 89.11 87.17 79.60 53.69 38.81
HIT-TUM 163.01 78.21 75.32 48.70 46.22 24.47

It can be observed from the experimental results shown in Table 5 that fewer database
images are retrieved in the HCIR algorithm compared with the other two multi-layer
algorithms. The reason is that the ICSCD algorithm has a better performance at scene-level
clustering (as shown in Table 2), so that the cluster center can better express the global
features of the images in the cluster.

Table 6 shows the average running time of the image-retrieval system using different
clustering algorithms. By comparing the number of retrieved images with the average
running time of image retrieval, it can be known that when there are more retrieved
database images, the running time consumed by image retrieval is also more. Experimental
results shown in Tables 5 and 6 indicate that more database images are retrieved in single-
layer clustering algorithms, leading to larger time overheads than in multi-layer clustering
algorithms. It is obvious that the HCIR algorithm has advantages in terms of the number
of retrieved database images and the running time of image retrieval. The reason is that
multi-layer clustering on database images is employed in the HCIR algorithm, and more
importantly, the ICSCD algorithm is employed in the proposed retrieval algorithm that
achieves a better performance in scene-level database image clustering.

Table 6. Average running time of image retrieval by different clustering algorithms (unit: ms).

Database C-GIST Bayesian Estimation Mean
Shift

Bayesian
Estimation-KLT Mean Shift-KLT Proposed

HCIR Algorithm

KTH 131.7622 96.1804 94.6706 91.9858 68.1689 50.5838
HIT-TUM 177.6345 92.8804 89.9179 57.4065 56.0274 37.4582
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Table 7 shows the average running time of different stages in image retrieval. In the
practical implementation of image retrieval, hundreds of local features are needed to be
matched between the query image and the database image, resulting in the most time
consumption appearing at this stage.

Table 7. Average running time of different stages in image retrieval (unit: ms).

Extracting
Global Features

Extracting
Local Features

Measuring
Feature Distance

Matching
Local Feature

Sorting
Feature Vectors

0.7648 3.2247 0.1131 0.9437 0.0169

To reveal the performance difference between the single-layer clustering algorithm
and the proposed HCIR algorithm, there are ten indoor scenes used for simulation, and
mL1 is separately set as 100, 200, 400, 800, and 1000, and then the running time of image
retrieval for different database sizes can be simulated, as shown in Figure 11. As a pre-
condition of simulation, the backtracking mechanism is always not triggered. According
to the simulation results, the advantage of the proposed algorithm is that the running
time does not linearly increase along with the growth of the database size. Even when the
database image size is increased to 10,000, the running time of image retrieval is less than
110 ms. In this case, the running time of image retrieval corresponding to the single-layer
clustering-based algorithm almost reaches 500 ms, which means that only two retrievals
can be performed per second. In contrast, by the proposed HCIR algorithm, image retrieval
can be executed nine times when there are 10,000 images in the database. The reason
that the proposed algorithm spends less time coping with image retrieval is that database
images are reasonably grouped in the off-line stage. Furthermore, on a deeper level, time
for image clustering is sacrificed in the off-line stage to reduce the time consumption of
image retrieval in the on-line stage.
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Figure 11. Average running time of the single-layer clustering algorithm and proposed algorithm.

To demonstrate the performance of the proposed WKNN algorithm, two typical
image retrieval-based localization methods (i.e., the NN method [49,54,55] and the KNN
method [56,57]) are selected and implemented. Each image in the KTH database and the
HIT-TUM database is employed as a query image for visual localization. For the proposed
WKNN method and the typical KNN method, five nearest neighbors are selected to estimate
the query position [57]. In order to reveal the impact of image acquisition intervals (din)
on localization accuracy, database images with different acquisition intervals are set for
experiments. Localization errors of query images are calculated, and the cumulative
distributions of the errors are shown in Figure 12.
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Figure 12. Experimental results of visual localization. (a) Cumulative distribution of localization
errors with din = 10 cm; (b) cumulative distribution of localization errors with din = 20 cm; (c) cumula-
tive distribution of localization errors with din = 30 cm; (d) cumulative distribution of localization
errors with din = 40 cm; (e) cumulative distribution of localization errors with din = 50 cm.

To quantitatively analyze the performance improvement of the WKNN method, an
accuracy improvement rate rim is introduced and defined as:

rim =
(∣∣ep − ec

∣∣/ec
)
·100% (45)

where ep and ec are the average errors by the proposed WKNN method and the comparative
method, respectively.

Compared with the NN and KNN methods, the proposed WKNN method achieves
a better performance on localization accuracy, as shown in Table 8. In all experimental
cases, the improvement of average localization accuracy reaches at least 22% and 34%,
respectively, compared with the KNN and NN methods. From the localization results, it
can be found that when the database images are more densely captured, the advantage of
the proposed method in terms of localization accuracy is more obvious compared with the
two other localization methods. The reason is that when the intervals of database images
are large, the common visual features between the query image and the database images
are few, which weakens the contributions of the weights in the WKNN method.

As illustrated in Table 8, when the database image acquisition intervals are set to be
10 cm, 20 cm, 30 cm, 40 cm, and 50 cm, the average localization errors of the WKNN method
are 0.0490 m, 0.1299 m, 0.2604 m, 0.3673 m, and 0.5048 m, respectively. The results indicate
that localization accuracy increases along with database image acquisition intervals. Even
if the acquisition interval is increased to 50 cm, the sub-meter localization accuracy can
be achieved by the proposed method, which satisfies the requirements of most indoor
location-based services. But it is worth noting that acquisition intervals that are too small
lead to a large off-line image database and result further in a high time overhead of image
retrieval. Therefore, when designing a visual indoor localization system, a proper database
image acquisition interval should be selected by striking a balance between localization
accuracy and efficiency.



Electronics 2022, 11, 3609 27 of 31

Table 8. Localization performance of various localization methods.

Image Acquisition Intervals Evaluation Criterions WKNN Method KNN Method NN Method

din = 10 cm

Average Errors (m) 0.0490 0.0874 0.1126

Maximum Errors (m) 0.1266 0.2149 0.2942

Improvement Rates (%) - 43.9022 56.4623

din = 20 cm

Average Errors (m) 0.1299 0.1689 0.2042

Maximum Errors (m) 0.3439 0.5118 0.5342

Improvement Rates (%) - 23.11014 36.4159

din = 30 cm

Average Errors (m) 0.2604 0.3446 0.5543

Maximum Errors (m) 0.7928 1.0151 1.3583

Improvement Rates (%) - 24.4261 53.0155

din = 40 cm

Average Errors (m) 0.3673 0.4883 0.6289

Maximum Errors (m) 1.0218 1.2965 1.6804

Improvement Rates (%) - 24.7678 41.5920

din = 50 cm

Average Errors (m) 0.5048 0.6504 0.7732

Maximum Errors (m) 1.0462 1.6518 2.2218

Improvement Rates (%) - 22.3886 34.7127

6. Discussion

In the visual localization system, an off-line database generally contains a large number
of images for position estimation. For example, over 40,000 database images were captured
over a distance of 4.5 km in the TUMindoor localization system, which means that database
images were acquired at approximately 10 cm intervals [26]. With the traditional image
retrieval strategy, the query image is exhaustively compared with each database image,
which is not scalable for a large-scale database. Recently, clustering-based hierarchical
image retrieval has been proposed and applied in large-scale image retrieval [63–65]. The
main advantage of hierarchical image retrieval is creating an indexing strategy by grouping
the images based on the visual cues before retrieval, so that only the relevant clusters are
examined in the retrieval process. With this strategy, clustering-based hierarchical image
retrieval significantly speeds up the search process at the expense of the time consumption
of image clustering beforehand.

However, although the existing works on hierarchical image retrieval achieve high
searching efficiency, these works are unsuitable for visual localization. The reason is
that geographic factors on image clustering have not been taken into consideration, and
database images acquired in the same scene are not necessarily grouped in a cluster. In the
visual localization system, the query image is desired to be orderly compared with database
images in the relevant scenes according to visual similarity. Specifically, the query image
should be compared with similar database images as a priority. In this way, the query
image need not be compared with all database images, and the retrieval can be obtained.

Considering the particular requirements of image retrieval in visual localization,
a hierarchical clustering-based image retrieval (i.e., HCIR) algorithm is proposed in this
paper to organize database images and achieve image retrieval. The main contribution
to the HCIR method is that database images are orderly grouped into clusters by visual
cues according with geographical distribution characteristics. Since the database images
for visual localization are successively captured by the mapping equipment in indoor
scenes, visual features in the same scene have high visual correlations. However, once
the mapping equipment switches to another scene, the correlations subsequently decrease.
Taking advantage of this characteristic of database images, an ICSCD algorithm is presented
to group database images into clusters at the scene level. Moreover, an image clustering
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algorithm based on KLT feature tracking is proposed to group database images at the
sub-scene level. With the ICSCD algorithm and KLT feature tracking-based algorithms, the
visual features of different scenes and sub-scenes can be described by the cluster centers.
In the process of retrieval, the query image is initially compared with the cluster centers,
and then the clusters that have the largest similarity with the query are selected, and the
images in these clusters are used to compare the query. By this means, the database images
with high similarities to the query are preferentially retrieved, thus reducing the time
consumption of image retrieval.

Compared with the existing change-point detection algorithms (i.e., the mean shift-
based algorithm [36] and the Bayesian estimation-based algorithm [62]), the proposed
ICSCD algorithm achieves a better performance in terms of scene-level clustering on
different evaluation criteria, such as the average recall rate, the average precision rate, the
average F1 score, and the accuracy rate. The reason is that the typical CUSUM algorithm
is improved at targeting change-point detection on database image sequences without
threshold selection. In addition, the utilization of appropriate global visual features and the
definition of the change-point detection function also contribute to raising cluster accuracy.
On the basis of scene-level clustering results, the KLT feature tracking-based clustering
algorithm is employed to further group database images, and then a multi-layer search
tree can be generated for image retrieval. A distinguishing characteristic of the search tree
is that database image clusters attached to the tree are determined by geo-information
and visual cues. The query image is initially compared with cluster centers of the scenes
with high similarity, which boosts the retrieval efficiency. The experimental results indicate
that the image retrieval by our multi-layer search tree is more efficient compared with
other single-layer and multi-layer clustering algorithms, such as the mean shift-based [36],
C-Gist [37], Bayesian estimation-based [62], Bayesian estimation-KLT, and mean shift-KLT
algorithms. Multi-layer clustering algorithms outperform single-layer algorithms because
the KLT feature tracking-based algorithm subdivides the scene-level clusters and groups
images at the sub-scene level, resulting in reducing the comparison between the query
and database images. Due to the higher accuracy of the ICSCD algorithm on scene-level
image clustering, the proposed HCIR algorithm outperforms other multi-layer clustering
algorithms on retrieval efficiency, as shown in Tables 5 and 6.

Visual localization without camera-intrinsic parameters is essential in indoor naviga-
tion and augmented reality. Existing works mainly focus on the NN method [49,54,55] and
the KNN method [56,57] to solve the estimated position of the query. However, the effect
of similarity between the query image and database images on localization is not taken into
consideration either in the NN method or in the KNN method. Therefore, a weighted KNN
method is proposed, and the Armijo–Goldstein algorithm is employed to calculate the
position of the query camera. The highlight of the weighted KNN method is that a novel
localization error function is defined in consideration of visual similarity. Specifically, the
matched database image with a higher similarity to the query is assigned a larger weight
in the localization error function, resulting in the estimated position being close to similar
database images. As discussed earlier, the drawback of the NN method is that the position
of the most similar database image is assigned to the query, but the database image may
be far from the query. For the KNN method, each neighbor database image has the same
weight, which is not in accordance with the actual localization situation. The weighted
KNN method overcomes these drawbacks by similarity comparison, and neighbor database
images with higher similarity are given a larger weight. Experimental results show that the
weighted KNN method achieves a better performance on localization accuracy compared
with the NN and KNN methods. For a typical interval of database image acquisition
(i.e., the interval is approximately 10 cm [26]), the average localization errors are limited to
5 cm, and this outperforms the NN and KNN methods. The proposed WKNN localization
method has the potential to be embedded in visually impaired navigation systems and
shopping guide applications.
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7. Conclusions

In this paper, a hierarchical clustering-based image retrieval algorithm is presented, in
which database images are grouped by improved cumulative sum change-point detection
and KLT feature tracking. Taking advantage of hierarchical clusters, database images that
are similar to the query image have a priority to match with the query, which effectively
reduces the time consumption of image retrieval. For different indoor image databases,
the number of similar comparisons can be limited to 10% of the database size. Simulation
experiments also indicate that the running time of image retrieval does not linearly increase
with the size of image databases. Compared with other single-layer and multi-layer
clustering-based image retrieval algorithms, the proposed HCIR algorithm executes less
similar comparisons and acquires low time overheads. Under the premise of ensuring
image retrieval accuracy, the proposed visual localization system achieves high operational
efficiency. With the proposed localization method, the position estimation error is limited
to 5 cm when the database image acquisition intervals are set to 10 cm. Future work will
focus on improving the accuracy of visual localization, especially reducing the impact of
illumination changes on localization.
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