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Abstract: Hot carrier injection (HCI) can generate interface traps or oxide traps mainly by dissociating
the Si-H or Si-O bond, thus affecting device performances such as threshold voltage and saturation
current. It is one of the most significant reliability issues for devices and circuits. Particularly, the
increase in heat generation per unit volume due to high integration density of advanced integrated
circuits leads to a severe self-heating effect (SHE) of nanoscale field effect transistors (FETs), and low
thermal conductivity of materials in nanoscale FETs further aggravates the SHE. High temperature
improves the HCI reliability in the conventional MOSFET with long channels in which the energy of
carriers can be relaxed. However, high temperature due to severe SHE deteriorates HCI reliability in
nanoscale FETs, which is a big concern in device and circuit design. In this paper, the modeling and
simulation methods of HCI in FETs are reviewed. Particularly, some recently proposed HCI models
with consideration of the SHE are reviewed and discussed in detail.

Keywords: hot carrier injection (HCI); nanoscale field effect transistor (FET); self-heating effect (SHE);
modeling and simulation

1. Introduction

Hot carrier injection (HCI) is a significant reliability issue for transistors in analog/RF
circuits and logic circuits [1–6]. Considerable evidence show that hot carriers can dissociate
the Si-H and Si-O bond through a single-carrier process or multiple-carrier process [7–12].
As a result, interface traps and oxide traps are generated [13], which leads to the degradation
of transistor performance, such as threshold voltage shift (∆VTH), mobility shift (∆µ),
linear current shift (∆ILIN), saturation current shift (∆ISAT) and transconductance shift
(∆Gm) [2,14–17]. Furthermore, the degradation of transistor performance degrades the
performance of the circuit. For example, it can increase the risetime in inverters [18];
increase the delay for large-scale digital circuits [19,20], which reduces the maximum
frequency of the CPU; and it also causes the read disturbance of memory [21] and increases
the probability of failure of the memory system [18,22].

Various models have been developed to reveal the physical mechanisms behind the
phenomena, and models were also built to predict HCI induced device degradation. In
1985, Hu et al. developed the lucky electron model involving Si-H bond breakage and
related HCI with the maximum electric field in the channel, based on which the tn time
dependence of interface traps can be derived and the barrier energy for creating interface
traps can also be extracted [7]. In 1995, the behavior of hot-carrier-induced degradation of
deep-submicron n-Channel LDD MOSFETs was modeled analytically by introducing an
empirical model of mobility degradation and series resistance [23]. In 2002, Mcmahon et al.
proposed a model for interface trap generation through multiple vibrations of electrons:
the model relates the device lifetime with the magnitude of source-drain current, and
large source-drain current increases the probability of multiple vibrations of electrons and
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degrades the device faster [8]. In 2005, Rauch et al. proposed an energy-driven paradigm
to describe hot carrier behavior in scaled NMOSFETs of that time, in which the available
electron energy, instead of the peak lateral electric field in the lucky electron model, is the
fundamental “driving force” for HCI [24]. In 2009, a theoretical framework for interface
state creation by dissociation of Si-H bonds at the Si/SiO2 interface was developed by
Guerin et al. [9], which includes three main ways of bond breaking: the first one is due
to the rising of energy levels because of strong quantum confinement caused by a large
electrical field, the second one is due to very energetic incident carriers, the third one is
due to numerous but less energetic carriers. In 2014, Bina et al. presented and verified a
physics-based model of hot carrier degradation (HCD) based on a thorough solution of the
Boltzmann transport equation [25], which is capable of representing HCD in transistors
stressed under different conditions using a unique set of model parameters. In 2016,
Chen et al. developed a numerical simulation method to capture HCI induced threshold
voltage shift with consideration of time-dependent temperature in SOI MOSFETs [26] and
FinFET [27], which is applicable to analyze HCI for transistors under stress voltage with
different duty cycles, frequency and waveform. In 2017, Jiang et al. proposed an analytical
model to capture the temperature of transistors in a digital circuit that is biased under
pulse trains characterized by frequency and power duty cycle, then HCI performance
is predicted [28]. Yu et al. proposed a trap-based compact model [29–31], which can
accurately predict hot carrier degradation and variation in full Vgs/Vds bias. In 2019, a
SPICE compatible compact hot carrier degradation time kinetics model was proposed for
conventional, lightly doped drain, and drain extended MOSFETs and FinFETs [32]. In 2022,
Wang et al. introduced the artificial neural network (ANN) method into HCI reliability
prediction and significantly reduced the HCI simulation cost [33].

In the conventional long-channel MOSFET, the worst case HCI condition is VG = VD/2
in which Isub reaches maximum [2]. The traps generated by HCI are located at drains
corresponding to maximum lateral electric field [34]. The time evolution of degradation
follows the power law. In short-channel MOSFET, the worst HCI condition is VG = VD [35].
The traps generated by HCI are closed to source and drain [36,37]. The time evolution
of degradation follows the power law in the early time and becomes saturated at long
time stress. In FinFET, two types of oxide traps and interface traps are generated [29]. The
oxide traps generated in planar devices only have one type [29]. The difference can be
explained in that FinFET has one more lattice orientation than the planar device [30]. The
interface traps and oxide traps (type 1) are mainly located at the channel center closer to
the source on the Fin sidewall, while the oxide traps (type 2) are mainly distributed at the
channel center closer to the drain on the Fin top [30]. In gate-all-around (GAA) nanowire,
HCI is dependent on its width [38,39]; the degradation mechanism is similar to that of the
planar device but the self-heating effect becomes more severe and needs to be taken into
account [40].

Moreover, HCI in nanoscale FET deteriorates as temperature increases [3,41–43], which
is totally different from the conventional long-channel MOSFET [44–48]. One explanation
is that the bond dissociation in nanoscale FET is more triggered by multi-vibration excita-
tion (MVE) than single-vibration excitation (SVE) [49] and high temperature favors bond
dissociation rate [42,50,51]. Another explanation is that the total HCI consists of two parts:
classical channel hot carrier (CHC) at the drain side and bias temperature instability (BTI)
along the channel [37,52]. As the temperature increases, the increase in BTI degradation is
greater than the decrease in CHC degradation; consequently, the total degradation increases
with temperature [52].

On the other hand, a more severe self-heating effect (SHE) in nanoscale transistors
happens because of the increase in heat generation per unit volume caused by high integra-
tion density [53]. Furthermore, low thermal conductivity of the more confined thin films
in silicon-on-insulator (SOI) MOSFET and FinFET leads to more severe SHEs [54–57]. As
a result, the temperature in nanoscale transistors increases significantly [58–61]. Severe
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SHE further deteriorates HCI reliability for nanoscale transistors, which is a big concern in
modern nanoscale transistors [3,41,42,50,62].

The review paper is organized as follows: In Section 2, we present and discuss
some recently proposed modeling and simulation methods for HCI, including numerical
methods [26,27,33], an analytical HCI model in digital circuit [3,28,63], trap-based HCI
models [29–31] and an ANN model for HCI reliability [33]. In Section 3, a conclusion and
outlook are given.

2. Modeling and Simulation Methods
2.1. HCI Simulation via Numerical Methods

In order to calculate the HCI-induced threshold voltage shift under stress voltages
with different waveforms and frequencies, numerical simulation methods were devel-
oped for SOI MOSFETs and FinFETs [26,27,33]. The simulation process can be divided
into three parts: (1) the current density can be obtained by numerically solving carrier
transport equations, then the time dependent heat generation rate for the device under
different stresses voltage can be obtained; (2) by using a numerical method to solve the
time-dependent thermal conduction equation, the transient temperature responses can be
obtained [26,27,33]; (3) HCI induced threshold voltage shift (TVS) as a function of time is
then captured numerically based on the temperature response [26,27,33]. The numerical
methods can simulate HCI under various stress voltages and operation conditions. How-
ever, the simulation cost is high, which makes it very time-consuming to calculate TVS for
a long-time stress, and thus extrapolation is typically applied.

2.1.1. Electro-Thermal Numerical Simulation

The time-dependent temperature distribution is obtained by solving the heat conduc-
tion equation,

ρ(
→
r )c(

→
r )∂T(

→
r , t)/∂t = κ(

→
r , T)∇2T(

→
r , t) + Q(

→
r , t) (1)

where ρ(
→
r ) is the density of materials, c(

→
r ) is the specific heat capacity of materials, T is the

temperature, κ(T) is thermal conductivity, which depends on materials and temperature,
and Q is the heat generation rate. Following the standard procedure of the time domain
finite element method [64–66], the matrix form of Equation (1) can be obtained,

([M] + ∆t[K]){T}t+∆t = ∆t[S]{Q}t+∆t + [M]{T}t + {B} (2)

where [M] is the time-dependent matrix, [K] is the thermal conduction matrix, [S] is the
overlap matrix, {B} is the boundary condition matrix, {Q} is the heat generation vector
and ∆t is the time step for time evolution.

The current density in 100 nm SOI MOSFET with device structure, as in [26], can be
obtained by solving the Poisson Equation (3), drift-diffusion Equations (4) and (5) and
current continuity Equations (6) and (7):

−∇ · (εr∇V) = (p− n− NA + ND)q/ε0 (3)

Jn = −qnµn∇V + qDn∇n (4)

Jp = −qpµp∇V − qDp∇p (5)

1/q×∇ · Jn + Gn − R = 0 (6)

− 1/q×∇ · Jp + Gp − R = 0 (7)

where V is the voltage; n and p are the electron and hole density, respectively; ND and NA
are the donor and acceptor density, respectively; εr and ε0 are the relative dielectric and
constant vacuum dielectric constant, respectively; and Jn, µn, Dn and Gn are the electron
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(hole) current density, mobility, diffusion coefficient and generation rate, respectively, where
JP, µp, Dp and Gp are holes. The heat generation in the SOI MOSFET then can be written as,

Q =
→
J ·
→
E (8)

where
→
J and

→
E are the current density and the electric field intensity, respectively.

On the other hand, for the advanced short-channel field effect transistor in which the
quantum transport rather than drift-diffusion transport should be considered, it is quite
difficult to obtain the heat generation rate by simulating the quantum transport process
with carrier scattering; therefore, Gaussian distribution is usually applied to model the heat
generation rate in short channel devices [27,67,68]. Take FinFET as an example. Figure 1a
shows the 3D schematics of a 3-Fin 14 nm n-type FinFET, including the source extension,
source, channel, drain and drain extension [67,69,70]. The cross sections of the FinFET
perpendicular to and parallel to the channel are shown in Figure 1b,c, respectively [33]. The
heat generation rate along the channel direction in this FinFET is shown in Figure 2 [33].
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2.1.2. Temperature-Dependent Threshold Voltage Shift (TVS) Model

To simulate TVS under time-dependent temperature, TVS can be numerically calcu-
lated by [26,27,33],

∆VTH(n) = ∆VTH(n− 1) +
d∆VTH

dt
|t=tn · ∆t (9)

where ∆VTH is the device threshold voltage shift, n is time step and ∆t is the time interval
between two adjacent time steps. ∆Vth is the TVS model under DC voltage stress and
usually varies for different device types. A temperature-dependent parameter is introduced
for calculating the TVS for SOI MOSFET, and the TVS as a function of time with linear
temperature-dependent parameters can be expressed as [26,71],

∆Vth = ∆Vth0(t/t0)
α (10)

α = α0 + β(T − T0) (11)

where α is the temperature-dependent parameter and t is stress time. Equation (9) then can
be rewritten as,

∆Vth(n) =
n
∑

m=1

α
t0

∆Vth0(t/t0)
αm−1dt

= ∆Vth(n− 1) + α
t0

∆Vth0(t/t0)
αn−1dt

(12)

Furthermore, a Vd and Vg dependent term is included into Equation (12) to simulate the
TVS under real circuit stress [27],

∆Vth(n) = ∆Vth(n− 1) + Vu
g,nVv

d,n

[
α

t0
∆Vth0(

t
t0
)

αn−1
dt
]

(13)

where Vg,n and Vd,n are the gate voltage Vg and drain voltage Vd at time step n, respectively.
In order to capture the saturation behavior of TVS evolution, an empirical model to

capture the saturation behavior of TVS evolution for 14 nm FinFET is applied [29,33],

∆VTH = V0

[
1− e−(t/τ)m]

(14)

where V0 is maximum TVS, τ associates with bond dissociation rate, m is the exponent
of TVS at power law stage and τ and m are time-dependent for a time-dependent stress
voltage and can be expressed as [32],

τ = Ae(−Ea/kBT)e[Γ1Vd−Γ2Vg ] (15)

m = m0e[−(t/τm)k ] (16)

where Vg and Vd are the gate and drain voltage, respectively; T is the temperature of the
device; kB is the Boltzmann constant; Ea is the activation energy depending on device type
and scale; Γ1, Γ2 and A are coefficients; τm and k are fixed parameters for all devices; and
m0 is a device-specific parameter. The derivative with respect to time for Equation (14) can
then be obtained [33],

d∆VTH
dt = V0 ·m · tm−1 · τ−m · e−(t/τ)m

·[
1− k(t/τm)

kτ−m ln(t/τm)
] (17)

2.1.3. Simulation Results

The I-V curve of SOI MOSFET is obtained by solving the Poisson equation, drift-
diffusion equations and current continuity equations [26]. The transient temperature
responses for different voltage stress are then calculated as shown in Figure 3a,b [26]. The
simulation results in [25] show: (1) the step pulse has much higher temperature response
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than the AC pulse and pseudo-random binary sequence (PRBS) pulse due to higher input
power; (2) the temperature oscillations of the PRBS pulse and low frequency pulse are
larger than those of the AC pulse and high-frequency stress, respectively. The PRBS pulse
has consecutive On (1.2 V) and Off (0 V) states and the low-frequency AC pulse has a longer
On state time, so they have a more time for the temperature to increase or fall.
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Figure 3. Temperature response in linear time scale to (a) different signal voltage stresses of AC signal
(cyan), PRBS signal (blue) and step pulse (black); (b) AC signals with different frequencies of 2.5 GHz
(blue), 250 MHz (red) and 25 MHz (black) [26].

Based on the temperature response, the TVS under different waveforms and frequen-
cies is further captured as shown in Figure 4a,c [26], respectively. Some trends for a single
transistor under different biases can be concluded: (1) as the frequency decreases, the TVS
increases; (2) PRBS stress suffers more severe HCI than AC stress at the same frequency [26].
The above-mentioned conclusion is also validated by experiment data [3,15,42,43,60].
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Figure 4. Simulated threshold voltage shift ∆VT as a function of time for (a) step pulse, 2.5 GHz PRBS
and AC pulse, (b) 2.5 GHz, 250 MHz and 25 MHz AC pulse [26].

2.2. Analytical HCI Model

An analytical model for calculating self-heating peak temperature for digital circuits
has been proposed and validated [28]. The HCI lifetime can then captured by inserting
the peak temperature into the analytical HCI model [3,28]. The thermal resistance is an
average value and the simulation accuracy is not as high as that of numerical simulation.
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In order to acquire high accuracy, an equivalent thermal circuit model can be established
by carefully dividing the simulation region into several sub-domains.

2.2.1. Temperature Prediction via Thermal Equivalent Circuit

The self-heating peak temperature by using the thermal equivalent circuit can be
expressed as follows [28]:

∆TL,Di f f = ∆Tpk
L − ∆Tavg

L

= H( f , ξ, τ)×
(

Ppk − Pavg(d, f )
) (18)

∆Tavg
L ≡ Rth × Pavg (19)

H( f , ξ, τ) ≡ Rth

{(
1− e−

ξ
f τ

)(
1− e−

1−ξ
f τ

)
/
(

1− e−
1
f τ

)}
(20)

τ ≡ Rth × Cth (21)

where ∆TL,Di f f is the difference between the maximum temperature (∆Tpk
L ) and average

temperature (∆Tavg
L ); Rth, Cth and τ are thermal resistance, capacitance and time constant,

respectively; Ppk and Pavg are the maximum and average value of the dissipated function
P(t) over time; f and ξ are the frequency and duty cycle of signal; and H( f , ξ, τ) is used to
calculate ∆TL,Di f f and can be viewed as a differential thermal resistance.

2.2.2. HCI Prediction

The HCI degradation can be captured by introducing the temperature calculated from
Equation (19) into the TVS model [28]:

∆Vth = A×Vm
ds × eEA/kTL × tn (22)

where ∆Vth is the threshold voltage shift; t is the stress time; TL is lattice temperature;
Vds is the voltage between drain and source; and m, n and Ea are accelerator factor, time
exponent and activation energy, respectively, which are technology- and device-specific
parameters [60].

In order to predict the HCI lifetime of the circuit, the lattice temperature in the summa-
rized HCI model Error! is replaced by peak temperature (Tpk), which can be expressed as

Tpk = T0 + ∆Tpk (23)

where T0 is the environment temperature and ∆Tpk is calculated by Equation (18) [28].

2.2.3. Application and Simulation Results

A ring oscillator (RO) with variable order of inverter (Ninv), loaded by the same
capacitor CLoad, was investigated [28], and the peak self-heating temperature is shown
in Figure 5a [28]. The symbol is the HSPICE simulation results while the solid line was
calculated via the analytical model mentioned in Section 2.1.1 [28]. ∆Tpk

L increases linearly
with frequency mainly because Pavg increases linearly with frequency and leads to ∆Tavg

L
increasing linearly with frequency, as shown in Figure 5b [28]. In contrast, H and Ppk − Pavg
both decrease with frequency [28]. As a consequence, ∆TL,Di f f → 0 at frequencies higher
than the technology-specific transistor frequency, which indicates that excess degradation
caused by ∆TL,Di f f is negligible [28].
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Figure 5. (a) The peak self-heating temperature increases as the oscillation frequency increase, (b) The
explanation of (a) [28].

Figure 6a plots the ∆Vth predicted by Equation (22) for low frequency FinFET and
5 order ring oscillator composed of 90 nm with CLoad = 10 fF operated at VDD = 1.8 V [28].
Figure 4b illustrates the TVS of FinFET as a function of frequency after 10 years’ operation in
RO circuits [28]. The degradation increases with frequency due to higher peak temperature,
as shown in Figure 5 [28].
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Figure 6. (a) Predicted ∆Vth time evolution for a low-frequency (LF) MG-FET under HCI stress
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circuits [28].

2.3. Trap-Based HCI Model

Typically, HCI are modeled by investigating the carrier transport process, such as
the lucky electron model or the energy-driven paradigm [7,24]. However, as the de-
vice scales down, it is difficult to model the transport processes in advanced nanoscale
devices, including the FinFET, nanowire FET and nanosheet FET, in which the carrier
transport is too complex. Therefore, some scientists started to model the traps rather than
the increasingly complex carrier transport process [29]. A trap-based compact model is
proposed, which is unified across different Vgs/Vds regions with different carrier-based
mechanisms [29–31,72,73]. For devices with different geometrical structure and crystal
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lattice, the trap types as well as their influence on device parameters may be different, thus
it is needed to model them separately for different devices.

2.3.1. Trap Type in FinFET

The trap types in FinFET are roughly identified by ∆SS(i)/∆Vth(i) and further identi-
fied via a stress-induced leakage current (SILC) spectrum technique [29,31], where ∆SS is
the variation of subthreshold swing (SS) and ∆Vth is the variation of threshold voltage (Vth).
Because both interface traps and oxide traps can degrade ∆Vth while only the interface
traps can degrade SS, the drop of ∆SS(i)/∆Vth(i) with time in FinFET as shown in Figure 7
indicates that both interface traps and oxide traps are generated [29]. By applying SILC
spectrum technique [74], two types of oxide traps are identified in the HCI process, as
shown in [31].
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Figure 7. ∆SS(i)/∆Vth(i) drops with time in FinFET [29].

2.3.2. Trap-Based HCD Model

Taking the interface traps and oxide traps into consideration, a multitrap-based model
is proposed and can decompose the contribution of different traps to HCD [29,31]. The
total degradation can be modeled by the following equations [29]:

HCDtotal = HCDinterface + HCDoxide1 + HCDoxide2 (24)

HCDinterface = N0 × [1− exp(−ARi × tn)] (25)

HCDoxide1 = AR1 × log(1 + C1 × t) (26)

HCDoxide2 = AR2 × log(1 + C2 × t) (27)

AR = A(Vgs −Vth)
m exp

(
−b

Vds −Vdsat

)
exp

(
−Ea

kB × T

)
(28)

where N0 is the saturation value of the interface trap, AR is the aging rate and Ea is active
energy. The model was tested using the following strategy: (1) extract the trap parameter
in the single carrier event (SCE) region; (2) calculate the HCD in the multi carrier event
(MCE) region using the parameter obtained from the last step. Taking nFinFET as an
example, the first step and second step are shown in Figure 8a,b [29], respectively. The
prediction is well fitted with experiment data, and parameters between different carrier
transport mechanisms are the same, which indicates the model is unified across different
Vgs/Vds regions.
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Figure 8. (a) nFinFET experiment data (from Vds = 2.2 V to 1.9 V) used for parameter extraction
in SCE region (Vd dependence); (b) comparison between model predictions by using parameters
extracted from data in SCE region (line) and experiment data (from Vds = 1.35 V to 1.2 V) in MCE
region (symbol) of nFinFET. The experiment data well agree with the prediction results [29].

2.4. Artificial Neural Network Model for HCI

Artificial neural networks are a powerful mathematical tool that can be used to solve
complex problems as well as reduce simulation cost [75–83]. In order to reduce the simu-
lation cost of numerical methods, an ANN model for 14 nm FinFET HCI prediction with
consideration of the self-heating effect is proposed [33]. It can predict HCI induced TVS
for FinFET under various environment temperatures and voltage stresses. The model has
good accuracy and the average relative error is 0.36% [33]. Once the ANN model is built,
it can greatly reduce simulation cost and has great potential in the reliability design of
circuits and systems [33]. To train an accuracy ANN model, a large amount of experiment
or simulation data are required.

2.4.1. Training Data

Simulation results produced using numerical methods introduced in Section 2.1 are
used as the training data and divided into a test set (75%), training set (20%) and vali-
dation set (5%) [33]. The inputs are set as environment temperature and the features of
stress including frequency, duty cycle, voltage amplitude and transition ratio. Min-Max
normalization is applied to eliminate the impact of inconsistent data units,

x′ =
x− Xmin

Xmax − Xmin
(29)

where x and x′ are the data before and after normalization, respectively, and Xmin and Xmax
are the minimum and maximum value in all x, respectively. The scaling parameter S and
normalized average temperature T′avg are set as the training targets. The diagram of the
ANN model is shown in Figure 9 [33]. The optimizer is set to the Adam optimizer [84],
and the loss function is the mean square error (MSE). The learning rate and the number
of training epochs are set to 0.0005 and 100, respectively. The relative error of TVS under
10 years of stress voltage is applied to evaluate the accuracy of the model [33].
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2.4.2. Results

Figure 10 is the convergence graph of ANN training [33]. The errors in the validation
set and test set are 0.37% and 0.36%, respectively, which means that even for unseen stress
voltage conditions the network can predict TVS results accurately. Figure 11 shows the
comparison of TVS predicted by ANN and experiments [42] under different (a) environment
temperature, (b) voltage amplitude and (c) waveforms [33], in which the ANN results show
good agreement with experiment results [33]. Figure 12 compares the ANN results and
numerical simulation results under 10 years of stress voltage with different duty cycles,
and the gap between the solid lines and dot lines is very small.
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3. Conclusions

In summary, various models were developed to reveal the physical mechanisms
behind the phenomena, and models were also built to predict the HCI induced device
degradation. In this paper, numerical methods, analytical HCI model, trap-based HCI
model and ANN model for HCI are reviewed and discussed in detail.

In terms of future research trends, the self-heating effect becomes more severe in gate-
all-around devices such as nanosheets and nanowires due to the low thermal conductivity,
high power density and stacked topologies that make it difficult to dissipate heat. The
HCI will continue to be a significant reliability issue in these devices. There are many
potential possibilities. As the carrier transport process become more and more complex for
shorter-channel devices, the trap-based compact model that considers the influence of traps
is meaningful. Numerical methods are capable to solve TVS under diverse stress voltages
with different waveforms and frequencies. However, the simulation cost is high. On the
other hand, artificial neural networks are a powerful tool to solve complex problems and
reduce simulation cost. Reliability design in circuits and systems with the aid of artificial
intelligence is of great potential. It is also very helpful to explore powerful and accurate
compact models to give a more complete description of the HCI in advanced nanoscale
field effect transistors.
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