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Abstract: While machine learning models are powering more and more everyday devices, there is a
growing need for explaining them. This especially applies to the use of deep reinforcement learning
in solutions that require security, such as vehicle motion planning. In this paper, we propose a
method for understanding what the RL agent’s decision is based on. The method relies on conducting
a statistical analysis on a massive set of state-decisions samples. It indicates which input features
have an impact on the agent’s decision and the relationships between the decisions, the significance
of the input features, and their values. The method allows us to determine whether the process
of making a decision by the agent is coherent with human intuition and what contradicts it. We
applied the proposed method to the RL motion planning agent which is supposed to drive a vehicle
safely and efficiently on a highway. We find out that making such an analysis allows for a better
understanding of the agent’s decisions, inspecting its behavior, debugging the ANN model, and
verifying the correctness of the input values, which increases its credibility.

Keywords: autonomous vehicles; reinforcement learning; explainable reinforcement learning; XRL

1. Introduction
1.1. Motivation

Machine learning is increasingly applied in everyday devices and computer appli-
cations. Beyond making popular applications more attractive with AI, researchers are
trying to use it to solve real-world complex problems [1]. One such challenge is to plan
the motion of the automated vehicle on the highway in a safe and effective manner. A
promising approach to this problem is the application of deep reinforcement learning
(RL) [2] methods which use artificial neural networks (ANN) to train the decision-making
agents. However, the use of ANN-based methods introduces the black-box factor, which
makes agents’ decisions unpredictable and therefore increases operational risk. Such a
factor is ineligible in the applications whose safety must be verified and proved. Therefore,
the utilization of ANN-based methods to plan the vehicle motion on the road, without
understanding the ANN decisions, may be risky for the system’s end-user.

Knowing this threat, we propose the evaluation method of RL agents based on in-
terpretable machine learning (IML) techniques combined with a statistical analysis. The
presented solution is intended to decipher the black-box model by analyzing the neural
activations in the distribution of possible inputs with respect to agent decisions. Our
method allows an investigation of whether the agent’s decisions are consistent with the
assumptions and the ANN decision process matches human intuition. Additionally, it en-
ables debugging the model itself and detecting the data or model corruption. The proposed
method is created for inspecting RL-driven applications whose decisions are critical for
safety and the confirmation of proper functioning is required.
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1.2. Contribution

In this work, we present a novel method of evaluation of two DRL agents which are
designated to plan the behavior to achieve a safe and effective highway driving experience.
The first agent (Maneuver agent) selects the appropriate discrete maneuvers (follow lane,
prepare for lane change (left/right), lane change (left/right), and abort) and the second
one (ACC agent) controls the continuous value of the acceleration. On the basis of these
two trained agents, we propose an evaluation method based on an Integrated Gradient
[3] and a further statistical analysis. The analysis consists of an ANOVA, a t-test, and
an examination of a linear (Pearson [4]) and monotonic (Spearman Rho [5]) correlation.
We describe our experiments and show the results of the analyses of agents operating
in a discrete and continuous action space. Additionally, we specify the applicability and
relevance of such methods.

2. Related Work
2.1. RL in AV

Over the past few years, there has been an increasing interest in the use of RL in the
motion planning of automated vehicles. In the literature, we can find multiple examples of
the applications of RL for typical driving scenarios, such as lane keeping, lane changing,
ramp merging, overtaking, and more. For example, [6] proposed to train a driving policy
with the DQN algorithm [7] to decide whether it is worthwhile to change lanes to the left
or right or to keep the lane. The training took place in a simulated three-lane highway
environment. The agent’s objective was to drive safely and smoothly and maintain effi-
ciency. A similar solution was proposed in [8] where the authors considered a comparable
environment and action space. Additionally, the work emphasized the safety assurance,
integrating the RL methodology with the Responsibility-Sensitive Safety framework [9],
which guarantees at least to not cause a collision.

A more challenging environment was solved in [10], where the authors focused on
training agents to handle unsignalized intersections. To successfully navigate through the
junction, the agent had to learn other drivers’ intentions and predict their movement. It is
supposed to drive to the destination as fast as possible and avoid a collision. The agent
obtained a positive reward for achieving the target lane, a large negative reward for a
collision, and a small punishment for each step of the simulation.

Another work [11] introduced a novel solution based on reinforcement learning
combined together with a classical A* algorithm. The authors presented a model-based
RL algorithm that depends on a tree search where the heuristic is learned with the DQN
algorithm. Such an approach allows for the increased control and understanding of the
algorithm. A more detailed overview of the works on the application of RL in motion
planning can be found in [12,13].

2.2. Explainable RL

As the application of machine learning becomes more popular, the demand for its
interpretability has increased. This is due to the need to increase the credibility and
fairness of models [14] and raise the level of people’s trust. Initially, a field of interpretable
machine learning (IML) has been developed, partially focused on the interpretation of
neural networks activation. The interpretation relies on calculating how the output of the
ANN was impacted by each element of the given part of the network. For example, by
the input features, as in the case of Primary Attributation [3,15–17]. In the case of Layer
Attributation [18–20], it regards the impact of each neural layer and each single neuron
activation in the case of Neuron Attributation [15,18].

However, the eXplainability of RL (XRL) goes beyond understanding a single neural
activation. That is because of the temporal dependency between consecutive states and the
agent’s actions that induce the next visited states. A sequence of transitions may be used to
interpret the agent’s action concerning the long-term goal. Additionally, it is also important
that the objective of agent training is maximizing the sum of the collected rewards rather
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than mapping the inputs to the ground-truth label as in the case of supervised learning.
These additional features allow for explaining the behavior of RL agents in an introspective,
causal, and contrasting way.

The recent advances in XRL were categorized in [21] into two major groups: transpar-
ent algorithms and post hoc explainability. The group of transparent algorithms includes
those whose models are built to support their interpretability. Such an approach is im-
plemented in hierarchical RL [22,23] where the major task is decomposed for sub-tasks
with a trained higher-level agent and lower-level agents. The hierarchical structure is
designed to provide an understanding of the agent’s decision-making processes. Another
approach is simultaneous learning which learns both the policy and explanation at the
same time. An example work [24] which proposed to learn multiple Q-functions, one
for each meaningful part of the reward, to understand predictions about future rewards.
The last type of transparent learning is representation learning which involves learning
latent features to facilitate the extraction of meaningful information by the agent models.
The representative work [25] proposes to reconstruct the observation with autoencoders, a
training model to predict the next state, or a train inverse model to predict the action from
the previous state.

However, DRL algorithms are not natively transparent; therefore, post hoc explain-
ability is more common and debated in this paper. It relies on an analysis of the states and
neural activations of transitions executed with an already-trained agent.

One of the post hoc methods is saliency maps [20,26] which may be applied to convo-
lutional neural networks (CNN) with images as input. This method generates a heatmap
that highlights the most relevant information for a CNN on the image. A similar approach
was used in [27] to measure the relevance of network layers and units to decrease the ANN
size by removing their less relevant part. Another interesting work is [28] which proposed a
three-step analysis of agent transitions in order to classify interesting agent interactions and
present them in a visual form. However, from our perspective, understanding individual
decisions is not enough to interpret the general behavior of an agent.

3. Preliminaries
3.1. Reinforcement Learning Agents

Our experiment intends to develop a method of interpreting RL agent decisions,
adequate for discrete and continuous action space. For this purpose, we train two separate
agents. The first one (Maneuver agent) is responsible for planning appropriate maneuvers
to be executed. Agent’s action space is discrete and contains six items: follow lane, prepare
for lane change (right, left), lane change (right, left), and abort maneuver. The objective of
the agent is to navigate in the most efficient way while preserving the gentleness desired
on the roads. Expected behaviors are, for example, changing to the faster lane if the ego’s
velocity is lower than the speed limit or returning to the right lane when it is possible
and worthwhile.

The second agent (ACC agent) is responsible for planning the continuous value of
acceleration when Follow Lane maneuver is selected by the higher-level agent. Reward
function is incentive for the agent to drive as fast as possible in terms of the speed limit,
keep a safe distance to the vehicle ahead, increase comfort by minimizing jerks, and
avoid collisions.

The training uses a simulation [29] of a highway environment in which parameters,
such as the number of lanes, traffic flow intensity, characteristics of other drivers’ behavior,
and vehicle model dynamics, are randomized, providing diverse traffic scenarios.

3.2. Integrated Gradients

Integrated Gradients (IGs) [3] are an example of the Primary Attributation method
which aims at explaining the relationship between models’ output with respect to the
input features by calculating the importance of each feature for the model’s prediction. For
calculation, an IG needs baseline input x′ which is composed arbitrarily and should be
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neutral for the model. For example, if the model consumes images, the typical baseline is
an image that contains all black or white pixels. IG, firstly, in small steps, α generates a set
of inputs by linear interpolation between the baseline and the processed input x. Then,
it computes gradients between interpolated inputs and model outputs (Equation (1)) to
approximate the integral with the Riemann Trapezoid rule.

IntegratedGradientsi(x) ::= (xi − x′i)×
∫ 1

α=0

δF(x′ + α× (x− x′))
δxi

dα

where i = feature; x = input; x′ = baseline; α = interpolation constant
(1)

4. Description of Experiment
4.1. Neural Networks

We train the Maneuver and ACC agents (Section 3.1) with PPO algorithm [30]. Agents
are based on similar neural network architecture (Figure 1) which differs only on the last
control module part and slightly on the first layers due to different definitions of input.
The ANN is fed with an observation of the current traffic situation in the form of feature
vectors. The first vector describes the state of the ego vehicle (descriptive statistics for those
parameters are stored in Table 1) and consists of its longitudinal velocity (ego_vels), level of
speed limit execution (vels_limit_exec = setspeed/vels), longitudinal acceleration (accs), and
last selected action (ACC agent accs_last; Maneuver agent lastmaneuver). Observation for
Maneuver agent also consists of lateral position pos f cs.d, velocity veld and acceleration
accd, rotation toward center of the lane rot f cs, and information whether is safe to change
lane for both sides.

Table 1. Table includes main descriptive statistics for training parameters regarding ego vehicle.
Observed real values were normalized within predefined ranges during the creation of input feature
vector to the neural network.

Training Parameter Mean St. Dev Min Median Max

ego_f_pos_fcs.d −1.03 0.10 −2.06 −1.03 0.04

real_ego_f_pos_fcs.d −0.054 0.20 −2.12 −0.06 2.09

ego_f_vel_s 0.52 0.13 0.06 0.50 0.77

real_ego_f_vel_s 25.92 6.29 2.85 25.11 38.63

ego_f_vel_s_limit_execution 0.97 0.07 0.17 1.00 1.48

ego_f_vel_d 0.00 0.09 −1.00 −0.00 1.00

real_ego_f_vel_d 0.00 0.36 −4.00 −0.00 4.00

ego_f_acc_s 0.00 0.04 −0.60 0.00 0.45

real_ego_f_acc_s 0.01 0.38 −6.00 0.00 4.50

ego_f_acc_d 0.00 0.01 −0.19 0.00 0.25

real_ego_f_acc_d 0.00 0.01 −0.38 0.00 0.50

ego_f_rot_fcs −0.00 0.00 −0.05 −0.00 0.05
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Figure 1. ANN architecture takes as an input vector the representation of traffic situation. It processes
input through feed-forward layers and 3 residual blocks. Each agent has a different control module
that produces the probability distribution parameters of selecting an action and slightly different
input layers due to the different definitions of observations. FC—fully connected layers with bias;
CAT—operation of features concatenation; means that layers have shared weights (e.g., each target is
processed by the same layer).

The second feature vector represents perceived vehicle on the road and includes
relative to the ego information about longitudinal and lateral distance ((poss, posd)), velocity
(vels, veld), and acceleration (accs, accd). It also consists of data about target’s rotation (rotvcs)
and its dimensions ((objwidth, objlength)). The last vector represents the road by encoding
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each visible marker line with information about delimiter type, curvature, and rotation in
the ego’s position, sensing range, and lateral distance from the ego to the line.

Input is passed through the feed-forward layers as presented in Figure 1. Encoded
features in the latent state are processed by 3 residual blocks [31] which outputs go to control
module. In the case of the ACC agent, ANN produces the parameters of the gaussian
distribution—mean, and log std. The mean value is produced by the tanh activation
function, and log std is the input-independent trainable parameter. In the case of the
Maneuver agent, the control module passes the output from residual blocks with softmax
activation and masks those maneuvers which are not available from the safety perspective
according to rules defined in [9] implemented in [8].

4.2. Reward Functions

The reward functions vary for both agents because their objectives are different. The
ACC agent reward Racc is a weighted sum of the following terms:

• Speed limit execution Speed_ex—calculated as a ratio of ego velocity and speed limit;
forces agent to maximize speed limit.

• Squared acceleration Acc2—the squared value of acceleration; negative reward pro-
motes smooth ride.

• Jerk absolute Jerkabs—the value of absolute jerk; also promotes comfort driving expe-
rience.

• Safety violation Sv—a negative reward for being too close to other vehicles. Distance
is calculated based on Responsibility-Sensitive Safety assumptions [9].

• Terminal state TS—a reward for causing a collision or speeding too much.

Racc = 0.07 ∗ Sp_ex− 0.02 ∗ Acc2 − 0.0001 ∗ Jerkabs − 0.2 ∗ Sv− 10 ∗ TS (2)

Reward function for training Acc agent. All terms are defined to return positive values
so the weight sign indicates whether it is positive reinforcement (+) or negative (−).

The Maneuver agent reward Rmaneuver terms are as follows:

• Speed limit execution cube Speed_ex3 calculated as a ratio of ego velocity and speed
limit—forces agent to maximize speed limit, encourages to overtake slower cars.

• Negative acceleration Squared Neg_acc2—a reward for braking events, incentives for
smooth driving.

• Sequence maneuver execution Seq_Man_exec—a reward for inconsistency in selecting
maneuvers, this term has non-zero value when agent selects different action then
selected before. It reduces action flickering problem.

• Collision Col—a negative reward for causing collision.
• Right lane available Right_L_avail—non-zero when the right lane is available and the

agent can change to it. It promotes gentleness on road by releasing the left lane for
faster vehicles.

• Being overtaken by right B_OverTake_R—this reward is non-zero when the agent is
slower than vehicles in the right lane. The agent should change the lane to the right to
allow faster vehicles to drive on the left.

• Overtaking right Over_Take—this term rewards agents for overtaking other cars while
driving on the left lane.

Rmaneuver = 0.03 ∗ Speed_ex3 − 0.0005 ∗ Neg_acc2 − 0.0001 ∗ Seq_Man_exec

− 1 ∗ Col − 0.03 ∗ Right_L_avail − 0.01 ∗ B_OverTake_R + 0.07 ∗Over_Take
(3)

Reward function for training Maneuver agent. All terms are defined to return positive
values; therefore, the weight sign indicates whether it is positive reinforcement (+) or
negative (−).

All terms of reward functions are defined to return positive values; therefore, the
weight sign indicates whether it is positive reinforcement (+) or negative (−).
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4.3. Agent Training

Both trainings last more than 30 M steps Figure 2. Agents started from random actions,
because the neural networks were randomly initialized, and gradually improved their
performance. All training hyperparameters are presented in Table 2. Afterward, we select
the checkpoints with the highest mean sum of rewards, checking on basic predefined test
scenarios whether the agents behave as we expected.
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Figure 2. The graph shows the accumulated average sum of rewards (Maneuver Agent - Orange and
ACC Agent - Blue) during the episodes between optimization steps. The training typically achieves
its best performance at some point and then after more iterations either keeps the performance or
degrades it. Then to get the best agent we choose the checkpoint with the highest mean sum of
rewards (22M step for the Maneuver agent and 20M step for the ACC agent). The difference between
the reward levels is due to the different definitions of the reward function.
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Figure 2. The graph shows the accumulated average sum of rewards (Maneuver agent-orange and
ACC agent-blue) during the episodes between optimization steps. The training typically achieves
its best performance at some point and then, after more iterations, either keeps the performance or
degrades it. Then, to obtain the best agent, we choose the checkpoint with the highest mean sum
of rewards (22 M step for the Maneuver agent and 20 M step for the ACC agent). The difference
between the reward levels is due to the different definitions of the reward function.

Table 2. Table includes major hyperparameters of PPO algorithm used for training ACC and Maneu-
ver agents. The trainings were performed with the usage of RLlib [32].

Training Parameter Maneuver ACC

gamma 0.9985 0.998

lambda 0.95 0.95

batch size 1024 50,000

mini batch size 512 20,000

steps 38 M 30 M

best checkpoint step 22 M 20 M

grad_clip 3.0 3.0

lr 4.5 × 10−5 0.0001

num_gpu 1 1

sgd_iter 3 3

workers 80 80

An example of a test scenario for the ACC agent consists of a single-lane road with an
ego and front target which accelerates and decelerates interchangeably. The expected ego
behavior is to follow the target, minimizing acceleration oscillation. From the beginning
of training, agent often loses track of the target or speeds up and crashes into it. Over
the training iteration, agent learns how to track the target and tries to keep minimum
acceleration to drive smoothly.
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An example of a testing scenario for Maneuver agent consists of ego and a slow target
car in front of ego, driving on the right lane on three-lane road. Agent’s task is to overtake a
vehicle and return to the right lane. In the beginning, the agent only follows the target, then
changes the lane to the most left because it learns that this is the fastest lane. Toward the end
of the training, the agent learns to return to the right lane after overtaking because of the 3
terms of the reward function: Right_L_avail, B_OverTake_R, Over_Take—(Equation (3)).

4.4. Collecting Neural Activations

Having selected the checkpoints, we run an evaluation of agents in randomly gen-
erated scenarios generating 5 h driving experience for the Maneuver agent and 3.5 h for
the ACC agent. This corresponds to over 240,000 simulation steps. From this set, every
tenth sample was selected to ensure their temporal independence for statistical analysis.
The samples consist of state inputs and agent decisions—action value for ACC agent and
probabilities of selecting particular action in case of Maneuver agent. Based on that data,
we calculate the attributation of each input value using the Integrated Gradients method,
Section 3.2. As a baseline input, we select a feature vector that represents three-lane
highway with no other vehicles besides the ego in its default state (max legal velocity,
0 acceleration). For calculation, we use Captum library [33] (BSD licensed) which provides
an implementation of a number of IML methods, Section 2.2, for PyTorch models. The
results of attributations calculation with associated input features and ANN’s decisions are
further inspected with statistical analysis.

4.5. Statistical Analysis

The statistical analysis consists of two parts. For all calculations, we use the Minitab
software [34]. The first part focuses on the examination of the level of significance of the
attributation values and the analysis of their distribution. The second one studies the
relationships between attributation values, values of input features, and probabilities of
selecting maneuvers in the case of the Maneuver agent.

4.5.1. ANOVA and t-Tests

The first step of statistical analysis of attributation is to identify parameters with
statistically significant parameters of attributation distribution regarding the selected item
from action space for the Maneuver agent and overall distribution for the ACC agent. The
next step is to perform an analysis of variance for the set of parameters determined in the
first step. To do so, we divide attributation data according to the type of maneuver into
six groups. Attributations that regard objects and roads are summed up according to each
one of the characteristic parameters for those aspects. Then, we perform t-test for every
parameter with Null hypothesis H0 : µ = 0.03 and alternative hypothesis H1 : µ > 0.03.
We assume the significance level of all tests as α = 0.05. Based on those results, we
decide which distributions of parameters have a significantly higher mean value than 0.03,
distinguishing between different maneuvers. Finally, we perform Welch’s ANOVA [35] for
results that are significantly based on the t-test which gives us information about which
parameters were significantly more important than others regarding available maneuver.
Samples were divided into groups with additional post hoc test (Games Howell [36]). To
visualize distinguished results, we calculate the standard deviation for those samples and
95% confidence intervals for their means, which gives us 95% assurance that the expected
value is within those intervals regarding the dispersion of data.

4.5.2. Correlation Tests

The second part of the analysis relies on the examination of the linear and mono-
tonic relationship between feature attributation and the probability of selecting a given
maneuver. We apply a Pearson correlation [4] to study linear correlation and Spearman’s
rank correlation coefficient Rho [5] to examine a monotonic correlation. Correlations are
calculated for the attributation of all input features concerning the probability of selecting a
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particular maneuver. Additionally, for the ACC agent, we calculated mutual information
for action and features/attributation (Table 3).

Table 3. Table with values of highest mutual information for action of ACC agent with respect to
values of ego’s features and attributation.

Mutual Information

Feature MI

ego_acc_s 1.658

ego_last_action_acc 1.074

attr_obs_acc_s 0.621

attr_ego_last_action_acc 0.350

attr_ego_vel_s 0.273

road_att_lat_dist 0.272

attr_ego_vel_s_limit_exec 0.248

road_att_closes_in 0.244

obj_att_pos_s 0.196

obj_att_pos_d 0.159

An analysis based on a Pearson correlation begins with the calculation of the p-value
and identification of whether the correlation is significant at 0.05 α-level. The p-value
indicates whether the correlation coefficient is significantly different from 0. If the coefficient
effectively equals 0, it indicates that there is no linear relationship in the population of
compared samples. Afterward, we interpret the Pearson correlation coefficient itself to
determine the strength and direction of the correlation. The correlation coefficient value
ranges from −1 to +1. The larger the absolute value of the coefficient, the stronger the
linear relationship between the samples. We take the convention that the absolute value of a
correlation coefficient lower than 0.4 is a weak correlation, the absolute value of a correlation
coefficient between 0.4 and 0.8 is a moderate linear correlation, and if the absolute value
of the Pearson coefficient is higher than 0.8, the strength of the correlation is large. The
sign of the coefficient indicates the direction of the dependency. If the coefficient is positive,
variables increase or decrease together and the line that represents the correlation slopes
upward. A negative coefficient means that one variable tends to increase while the other
decreases and the correlation line slopes downward.

The fact that an insignificant or low Pearson correlation coefficient exists does not mean
that no relationship exists between the variables because the variables may have a nonlinear
relationship. Considering that, we utilize Spearman’s rank correlation coefficient Rho [5]
to examine the monotonic relationship between samples. In a monotonic relationship, the
variables tend to move in the same relative direction but not necessarily at a constant rate.
To calculate the Spearman correlation, we have to rank the raw data and then calculate
its correlation. Test also consists of the significance test; the Spearman Rho correlation
coefficient describes the direction and strength of the monotonic relationship. The value is
interpreted analogously as the Pearson values. To visualize results and look for other types
of relationships, we created scatterplots for different pairs of samples.

5. Results

We inspect the results of the statistical analysis in the following way. Firstly, we
examine the boxplots which visualize the distribution of attributation for a particular
maneuver for each input signal. From the plots, we can easily see how much a given feature
contributes to choosing a given maneuver. For example, Figure 3 presents the distribution
of attributation of the feature ego_pos_fcs.d which indicates the ego’s lateral distance from
the driving lane center. We can see that the middle 50% of the distributions (box), mean
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(dot), and median (horizontal line in the box) of the attributation values lie much higher for
the maneuvers connected to a lane change. For the follow lane and abort maneuvers, an
attributation higher than 0 is considered an outlier (star). This behavior is in line with the
driver’s intuition and proves to us that the neural network works as intended, at least in
this individual field.

Next, we examine the correlation between attributations and the values of the input
features. We check this in two directions. Firstly, we look at the strong correlations and
compare them with human intuition. For example, in Tables 4 and 5, we notice that the
agent, while considering selecting the Follow Lane maneuver, pays less attention to the
value of the longitudinal velocity (vel_s) while the velocity grows, and the same applies to
acceleration. On the other side, it is more attentive to the parameter which informs about
fulfilling the velocity limit (vel_s_limit) while the velocity grows. This attitude is shown by
the Spearman Rho correlation; however, the Pearson does not reveal it. This behavior can
be explained by the fact that during a Follow Lane maneuver, we usually care less about
the absolute velocity of other vehicles because we do not want to overtake them. Instead,
we focus on achieving the speed limit, speed increases, and if we are close to that goal, we
focus on not exceeding the speed limit. Additionally, we confirm that by inspecting the
scatterplots of the vel_s and vel_s_limit attributations presented in Figure 4. One of our
other results showed behavior that contradicts human intuition. During the overtaking
maneuver (lane change), we expect that the position of other objects is important while the
ego velocity grows, but our results show a negative correlation.
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Figure 3. Distributions of attributation values for one of the ego parameters (distance from the center
of lane) for all maneuver types.
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Table 4. Table with values of Pearson correlation for attributation of vel_s_limitation with respect
to values of ego’s features. Red highlights a strong correlation, and yellow—medium strength
of correlation.

PEARSON

ego Follow
Lane PLCL PLCR LCL LCR Abort

pos_fcs.d 0.064 −0.026 −0.186 −0.157 −0.122 −0.21

vel_s −0.05 0.063 −0.116 −0.124 −0.408 −0.305

vel_s_limi 0.204 −0.895 0.182 0.166 −0.916 0.786

vel_d −0.014 0.056 0.07 0.17 −0.042 −0.137

acc_s −0.024 −0.025 −0.082 −0.054 −0.062 −0.39

acc_d 0.008 0.173 −0.031 0.023 0.011 −0.254

rot_fcs −0.017 0.06 0.093 −0.121 −0.146 −0.105

Table 5. Table with values of Spearman Rho correlation for attributation of vel_s_limitation with
respect to values of features which describe ego state. Red color means strong correlation, and
yellow—medium strength of correlation.

Spearman Rho

ego Follow
Lane PLCL PLCR B LCR Abort

pos_fcs.d 0.135 0.121 −0.078 0.108 −0.165 0.039

vel_s −0.688 −0.657 0.557 −0.472 −0.061 −0.28

vel_s_limi 0.877 0.858 −0.938 0.646 −0.978 0.52

vel_d 0.016 0.035 0.011 0.006 −0.156 0.095

acc_s −0.636 −0.642 0.49 −0.493 −0.267 −0.099

acc_d 0.02 0.023 −0.009 0.014 0.068 −0.143

rot_fcs 0.031 0.054 −0.001 0.017 −0.171 0.094
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Figure 4. Scatterplot shows a comparison between ego’s longitudinal velocity (vel_s) and attributation
values of vel_s_limit (velocity normalized to speed limit) for all maneuvers. Values of correlations for
those examples can be found in Tables 4 and 5.
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We believe that such behavior is similar to human drivers, because they, while speeding
up, stop thinking about absolute speed and start being concerned with if they drive with a
legal velocity, comparing their velocity with the speed limit.

As regards the ACC agent, we identify a medium-strength correlation between the
attributation of acceleration and the value of the acceleration action. It means that the
agent pays more attention to the value of acceleration when it increases. This is a desired
correlation, but in our opinion, the values of attributation should be higher. The expected
attributation values and correlations are based on a review prepared by a team of five
experts working on the use of AI/ML in autonomous vehicles. In the future, this type of
analysis should be conducted based on extensive research on human eye movements in
various driving scenarios. In Figure 5, we notice that there exist at least three different
patterns of correlations. They are connected to factors not analyzed in this experiment, and
it is probably beneficial to investigate further. To do so would require the preparation of a
non-random set of evaluation scenarios based on which it would be possible to differentiate
reasons for various patterns in attributation correlations. It is also worth noticing that
passed parameters for other road users are summarized and coded in a non-intuitive
manner for humans. This would require an additional analysis in order to separate the
influence of objects of the same type in terms of their relation to the ego vehicle (i.e., the
front target).

Another interesting correlation we found is the fact that the agent seems to focus
slightly more on the other vehicles’ positions when it is braking (see Figure 5). This is also
a desired and justified effect because the braking intensity should depend on the intensity
of the changes in the object’s position in relation to the ego. When there is no need to brake,
it is more important to know the speed of the objects, which determines the stability of
the situation.
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Figure 5. Scatterplot present the correlation between acceleration of continuous agent and attributa-
tion of its acceleration value and position of other objects.

Secondly, we deliberate where the strong correlation should occur to match human
intelligence. For example, we assume that the driver should compare the longitudinal
distance to the target vehicle with its velocity. Therefore, the correlation between the
attributation of the objects’ position with respect to the longitudinal velocity should be
strong. The analysis indicates only a weak strength of the correlation, thus contrary to
the assumptions.

Additionally, the results inspection allows us to detect two types of errors in our
model. While looking at the scatterplots (e.g., Figure 4, which demonstrates the value of the
attributation with respect to the input feature values, we easily detected that one’s feature
(lateral position) is normalized to the range (−2, 0) instead of (−1, 1). This allows us to fix
the implementation of the agent’s observations.

The second finding regards the ANN architecture. Because this method is not intended
to discover the vanishing gradient problems, the lack of attributation for every sample in
one region of the input features made us aware of this problem in our model. The wrong
implementation of the tensors’ concatenation does not pass the gradients through the
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model and deprives the agent of using part of the input knowledge. The correction of that
error eliminates the vanishing gradients problem and increases the agents’ performance.

6. Application

The presented method may contribute to a better understanding of the behavior of
reinforcement learning agents whose consecutive decisions came from sampling from
the distribution generated by the ANN. First of all, it allows for identifying which input
features influence the agent’s decisions the most and inspecting the correlation between
the importance of a given input feature to its value. It enables checking whether the ANN
decision process matches human intuition (e.g., the faster the agent drives, the more it
pays attention to the value of acceleration). Besides that, such an analysis enables detecting
errors present in the model itself (e.g., vanishing gradients—important information is
ignored) or in input data (e.g., the charts shows the wrong data distribution caused by
the incorrect implementation of the normalization function). Thanks to that, we had an
opportunity to fix these two issues by improving the model architecture and by fixing the
implementation of the data normalization. In our opinion, the application of the presented
method increases the safety and predictability of the entire system. In the case of AV motion
planning, it may lead to an increase in the reliability of RL applications, in the opinion of
OEMs and consumers. Furthermore, the results of the presented method may be utilized
for the improvement of the ANN architecture or to enhance the training process. The
enhancement of the learning process may start by tuning the reward function to better
represent the driver’s objective. For example, if the results point out that the agent does
not pay attention to the other objects, then we propose to add to the reward some term that
depends on the objects (e.g., the reward is based on the time to collision metric). On the
other hand, the ANN architecture may be further enhanced by redesigning the modules
that process features that are neglected. By appealing to the issue of disregarding objects,
we may propose to redesign that part, for example, by using proven architecture, such as
that presented in [37].

7. Discussion

Knowing what the agent is paying attention to can be calming for the end user and
build confidence in the model. This, in addition to the evaluation performed with Key
Performance Indicators (KPIs), may increase the model’s reliability. However, knowing
on what basis an agent makes decisions does not explain why the agent makes them.
It still does not solve the problem of the RL explainability. We may only assume that
an examination of the behavior in a significant number of situations expounds us the
agent’s character.

One more thing to discuss is a situation when an agent’s evaluation metrics (KPIs) are
high, but the analysis results contradict it. This may indicate that either the KPI definitions
are wrong, or the model uncovers correlations in feature inputs that are not obvious to
humans but still correct. Nevertheless, such a situation may decrease the reliability of
ANN-based models and discourage their application.

8. Conclusions

In this paper, we present the method for the detailed inspection of the ANN model of
the RL agent. The statistical methods applied to collect samples of agent decisions allow for
the recognition of agents’ behavior patterns by looking globally at the overall behavior and
not at an individual action. This is achieved by the analysis of attributation distribution,
differentiated by the considered maneuver and juxtaposed with values of other parameters
describing the situation. By inspecting the analysis results, we can seek confirmation that
an ANN concentrates on input features which are also important for a human driver. With
the examination of the correlation between the attributation and feature values, we find a
pattern that matches human intuition and that which is contrary to it. This knowledge helps
us improve the model by changing the model architecture, enhancing the training process,
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and ensuring that decisions are made in accordance with an environment evaluation that
prioritizes safety and effectiveness.
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