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Abstract: In this letter, we study turbo product codes with quadratic residue codes (called QR-TPCs)
as the component codes. We propose an efficient decoder based on Chase-II algorithm with two
convergence conditions for the iterative decoding of QR-TPCs. For each row and column, the Chase-II
decoder will stop immediately when one of the conditions is met. The simulation results show that
the proposed algorithm has a lower computational complexity compared with existing decoding
methods. Moreover, a comparison with 5G low-density parity-check codes shows that the proposed
turbo product codes have better performance for short code lengths.
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1. Introduction

Combining the ideas of product codes [1] and turbo codes [2], a new iterative decoding
algorithm for product codes was proposed by Pyndiah [3,4]. Since this concept is very
similar to the iterative decoding of turbo codes built on convolutional component codes,
it is known as block turbo code (BTC) and turbo product code (TPC). With its good error
correction capability, which is close to the Shannon limit, TPC has great research value and
application potential.

(Extended) Bose-Chaudhuri-Hocquenghem (BCH) codes, (extended) Hamming codes
and Reed-Solomon (RS) codes are the common types of linear block codes selected as the
component codes of TPCs. In this letter, we choose quadratic residue (QR) codes [5] as the
component code. As one class of BCH codes, QR codes do not have an error floor at high
signal-to-noise ratio (SNR) and most of the known QR codes usually have large minimum
distances with code rates greater than or equal to 1/2 so that the code rates of TPCs with
QR component codes are around 1/4. Since QR codes usually have larger minimum
distances than traditional BCH codes with approximately equal code lengths, they are
typically highly prospected in the fields of error correction for reliable data transmission
over communication channels with noise. Considering the complexity, the QR codes of
lengths less than 100 may have more considerable application potential, especially for short
packet transmission with low latency. Take the case of the (24, 12, 8) extended QR code: it
has been used in high frequency radio systems [6].

In general, the decoding of TPCs is based on several soft-input/soft-output (SISO)
decoders. The iterative operation of the algorithm results in increased computational
complexity. In order to reduce the calculation time without noticeable performance loss
many efficient decoding algorithms have been investigated to date. In [7], an efficient
Chase decoder used for TPC decoding was proposed for one-error-correcting extended
BCH codes with substantial complexity reduction and no performance degradation. In [8],
Al-Dweik et al. proposed a novel hybrid decoder, which is composed of a standard SISO
decoder with a small number of iterations followed by a hard-input/hard-output (HIHO)
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decoder. In [9], Lu et al. further modified the hybrid decoder developed in [8] and derived
a simple formula for estimating the extrinsic information. Simulations showed that the
proposed hybrid decoder gained almost the same error correction performance compared
to the algorithm in [8] with complexity reduction. However, the hybrid decoders in [8,9]
always required a predetermined number of SISO and HIHO modes and did not take into
account that the number of error bits would vary according to the SNR or the number of
iterations throughout the decoding process. To overcome this deficiency, in [10], Ahn et al.
presented a low complexity syndrome-based decoding algorithm based on the syndrome
characteristics of extended Hamming codes. When a single error was detected, the decoder
was possible to determine the codeword by using only a single hard decision decoding
(HDD) operation. Nevertheless, the SISO decoders had to be used if a double-error syn-
drome was identified. In [11], Yoon et al. proposed an advanced syndrome-based decoder
for TPCs with extended Hamming codes as the component codes and introduced an early
termination technique. The advanced syndrome-based decoder applied a HDD operation
in the proposed hard-input/soft-output (HISO) conditionally for a double-error syndrome,
which reduced the overall complexity but remained slight decoding performance gaps in
comparison with that of conventional methods. In addition, a number of test sequences
that might result in the same codewords or decoding failures had been avoided in [12], and
the computation of the extrinsic information was optimized when there was no competing
codeword. In [13], Wang et al. introduced a low-complexity decoder based on the Fast
Chase algorithm with a new method of calculating the extrinsic information using only
two candidate codewords. And in [14], the authors further introduced a high-speed TPC
decoder based on the algorithm in [13] with a fully parallel SISO module.

It is worth noting that the research on algorithms for TPC based on QR component
codes is relatively small. Moreover, many of the previously studied algorithms cannot be
directly used for the decoding of QR-TPCs. In [15], an iterative soft permutation decoding
algorithm (ISPDA) used for QR-TPCs is proposed. Its key idea is to move the errors
out of the information bits by permutations and then compute the extrinsic information
according to the distance-based decoding (DBD) algorithm [16]. However, a large number
of permutations need to be performed to obtain good error performance.

In order to tackle the high computational complexity of decoding QR-TPCs, in this
letter, We present an efficient decoder for QR-TPCs with two terminating criteria [17,18]
based on Chase-II algorithm [19]. Specifically, we apply this approach to decoding QR-
TPCs and give a new way of evaluating the extrinsic information. The difference of
syndromes (DS) algorithm [20] is employed for the HDD needed in the Chase-II algorithm,
which can be utilized to decode any binary systematic QR code and is one of the most
effective look-up table methods for decoding QR codes. Note that Duan et al. proposed an
improved difference-of-syndromes (IDS) decoding algorithm [21] for decoding QR codes
up to the minimum distance to speed up the computations. However, if the error-correction
capability bt/2c ≤ 2, the IDS algorithm is no longer necessary, as its computational
complexity is higher than that of the DS algorithm. The proposed decoder avoids a number
of unnecessary HDD operations and calculates the extrinsic information in an easy way.
With a more efficient decoding process and an excellent error performance, QR-TPCs may
have potential applications in modern communication systems for short-blocklength and
high-reliability requirements.

The rest of this paper is organized as follow. Section 2 describes the background of
QR codes, the sufficient optimality convergence conditions and TPCs. Section 3 provides
a description of QR-TPC and the method of calculating the extrinsic information under
different conditions. Section 4 presents the simulation results and complexity analysis.
Finally, a brief summary is given in Section 5.
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2. Background
2.1. Generator Polynomial of QR Codes

Let l be a positive integer and n be a prime number of the form n = 8l ± 1. Denote Qn
as the set of quadratic residues modulo n, i.e.,

Qn = {q|q ≡ j2 mod n, 1 ≤ j ≤ n− 1}. (1)

Let θ be the smallest positive integer such that n divides 2θ − 1 and ε be a generator of
the multiplicative group consisting of all nonzero elements in GF(2θ). Then the element
ζ = εu is a primitive n-th root of unity in GF(2θ) where u = (2θ − 1)/n. The generator
polynomial g(x) of a binary QR code [5] which has the code length n is given by

g(x) = ∏
q∈Qn

(x− ζq). (2)

2.2. Decoding of QR Codes

We first consider the decoding of a single QR code. For a QR (n, k, dmin) code, let
x ∈ {0, 1}n be a transmitted codeword and x̂ ∈ {−1,+1}n be the corresponding transmitted
binary phase-shift keying (BPSK) signal where x̂i = (−1)xi ∀i. Assuming an additive white
Gaussian noise (AWGN) channel with zero mean and variance σ2, we denote the received
signal by r ∈ Rn and the hard decoding vector of r by z ∈ {0, 1}n where

zi =

{
0, ri ≥ 0,
1, ri < 0.

(3)

Supposing a ∈ {0, 1}n is a codeword of the QR (n, k, dmin) code, we define the set of
indices where ai = zi by D0(a, z) and define the set of indices where ai 6= zi by D1(a, z),
i.e.,

D0(a, z) , {i : ai = zi} (4)

D1(a, z) , {i : ai 6= zi} = {1, 2, · · · , n} \ D0(a, z). (5)

Moreover, the correlation discrepancy between a and r is defined as

λ(r, a) = ∑
i∈D1(a,z)

|ri|. (6)

We arrange the elements in D0(a, z) into a vector l such that the corresponding
magnitudes ri is increasing, i.e.,

l(D0(a, z)) , (l1, l2, . . . , l|D0(a,z)|) (7)

with |rli | < |rlj
| for 1 ≤ i < j ≤ |D0(a, z)| where |D| represents the cardinality of the set

D. We also denote the first κ elements of l by l(D)1:κ , where l(D)1:κ , ∅ for κ < 1 and
l(D)1:κ , l(D)1:|D| for κ > |D|. Assuming the received signal r is decoded by the Chase-II
decoding algorithm, the following two theorems can be applied to find the maximum
likelihood (ML) codeword.

Theorem 1. Supposing a is the first valid codeword found by the Chase-II decoder, we define
ρ , dmin − |D1(a, z)| and GT(a, dmin) , ∑i∈{l1,l2,...,lρ} |ri|. If

λ(r, a) ≤ GT(a, dmin), (8)

then a is the ML codeword corresponding to the received signal r.
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Proof of Theorem 1. For detailed proof, see [17].

Theorem 2. Let a and b be two valid codewords and the correlation discrepancy between a and
r is smaller than that between b and r. Define D00 , D0(a, z) ∩ D0(b, z), D01 , D0(a, z) ∩
D1(b, z), ρ1 , dmin − |D1(a, z)|, ρ2 , dmin − |D1(b, z)|. Without loss of generality, assume
ρ1 ≥ ρ2, define I(a, b) , l(D00 ∪ l(D01)

1:b(ρ1−ρ2)/2c)1:ρ1 (for ρ1 < ρ2, I(a, b) , l(D00 ∪
l(D01)

1:b(ρ2−ρ1)/2c)1:ρ2 ) and G(a, dmin; b, dmin) , ∑i∈I(a,b) |ri|. If

λ(r, a) ≤ G(a, dmin; b, dmin), (9)

then a is the ML codeword of r.

Proof of Theorem 2. For detailed proof, see [18].

The Chase-II algorithm with two terminating criteria can be summarized as Algorithm 1.
Note that Theorem 1 applies only to the first valid codeword found by the Chase-II decoder
while Theorem 2 is applicable whenever a valid codeword is found subsequently. If the
first valid codeword satisfies Theorem 1, the Chase-II decoder will stop immediately and
output the codeword. If not, the decoder will continue decoding and Theorem 2 will
be considered whenever a valid codeword is found. The two theorems are applied to
help determining the ML codeword, terminating the Chase-II decoder earlier and hence
improving its convergence rate. The same ML codeword, however, will be decoded with or
without the use of the two theorems.

Algorithm 1: Chase-II algorithm with two terminating criteria
1 z = 0.5(−sgn(r) + 1), d = z;
2 Find the least reliable p bits in z, generate 2p error patterns e2p

;
3 for j = 1 : 2p do
4 Generate the j-th test pattern gj = z + ej;
5 Decode gj using HDD and get the output dj;
6 if dj is the first valid codeword then
7 d = dj;
8 if dj satisfies Theorem 1 then
9 Proceed to Step 16;

10 j = j + 1. Proceed to Step 4;

11 if dj is valid & dj 6= d then
12 if the correlation discrepancy between dj and r is smaller than that between d and r then
13 Swap d and dj;

14 if d and dj satisfy Theorem 2 then
15 Proceed to Step 16;

16 return d;

In the following section, we apply the aforementioned decoding algorithm in the
iterative decoding of TPC codes formed by QR component codes.

2.3. 2-D TPC

We denote two systematic linear block codes by C1(n1, k1, dmin,1) and C2(n2, k2, dmin,2),
where ni, ki and dmin,i denote, respectively, the code length, the information length and the
minimum Hamming distance of the i-th code (i = 1, 2). Using these two block codes as
component codes, a 2-D TPC can be constructed as follows.

1. Place (k1 × k2) information bits in an array having k1 rows and k2 columns.
2. Encode the k1 rows using Code C2.
3. Encode the n2 columns using Code C1.
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The structure of the 2-D TPC is shown in Figure 1 and the TPC can be represented by
X ∈ {0, 1}n1×n2 . Moreover, the 2-D TPC is characterized by (n1× n2, k1× k2, dmin,1× dmin,2)
and has a code rate of (k1 × k2)/(n1 × n2). Usually, the same block code is chosen as the
component code, i.e., C1 = C2, so as to reduce the complexity of encoder and decoder. In the
following, we assume C1 = C2 , C, n1 = n2 , n, k1 = k2 , k, and dmin,1 = dmin,2 , dmin.

Figure 1. A 2-D TPC consisting of n1 rows and n2 columns. The overall codeword is represented by
X ∈ {0, 1}n1×n2 .

From this point onwards, unless specified otherwise, we use the following notations.
We represent a vector by a bold font small letter or symbol, e.g., w and α; and its i-th
element by the same small letter or symbol with subscript “i”, e.g., wi and αi. We represent
a two dimensional array by a bold font capital letter, e.g., W; its i-th row (or j-column) by
the same bold font capital letter with subscript “i, :” (and “:, j”), e.g., Wi,: (and W:,j); and its
(i, j)-th element by the same capital letter with subscript “i, j”, e.g., Wi,j.

2.4. Pyndiah-Chase-II Algorithm

One of the most common iterative decoding algorithms of TPC is the Pyndiah-Chase-II
algorithm [4]. It operates in a SISO mode consisting of several half-iterations. A half-
iteration in a row-wise manner and another one in a column-wise manner form one
complete iteration. Figure 2 illustrates the operation of a half-iteration. Here, r ∈ Rn denotes
the received signal vector corresponding to one particular (row-wise or column-wise)
component code; m denotes the half-iteration number; w(m+1) ∈ Rn denotes the extrinsic
information vector generated at the m-th half-iteration with w(1) being a zero vector; αm
and βm are predefined scaling factors; r̄(m) = r + αmw(m) is the software information
input to the Chase-II decoder; d ∈ C is an output codeword from the decoder having the
minimum squared Euclidean distance to r̄(m); and Ω = {c1, c2, . . .} ⊂ C is a set containing
all other valid codewords c1, c2, . . . found by the decoder. For example, the values of αm
and βm for the 8 half-iterations in [4] are given by

α = (0.0, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.0); (10)

β = (0.2, 0.4, 0.6, 0.8, 1.0, 1.0, 1.0, 1.0). (11)

In fact, β can be computed dynamically (see (20) in [4]).
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Figure 2. Block diagram of a half-iteration decoder.

In the m-th half-iteration, the i-th element of extrinsic information vector w(m+1),
i.e., w(m+1)

i , is calculated as follows.

1. If (i) Ω is an empty set or (ii) all codewords in Ω have their i-th elements the same as
di, i.e., cg

i = di ∀g, then

w(m+1)
i = βm × d̂i (12)

where d̂i = (−1)di .
2. If one or more codewords in Ω have their i-th elements different from di, i.e., cg

i 6=
di ∃g, we compute the squared Euclidean distance between each of these codewords
and r̄(m). In other words, we compute |r̄(m) − ĉg|2 where ĉg

i = (−1)cg
i . Then we

select the codeword c that is closest to r̄(m) in terms of squared Euclidean distance.
Subsequently, w(m+1)

i is calculated using

w(m+1)
i =

(
|r̄(m) − ĉ|2 − |r̄(m) − d̂|2

4

)
× d̂i − r̄(m)

i (13)

where ĉi = (−1)ci .

3. Proposed QR-TPC and Decoders
3.1. Proposed Scaling Vector

We use the same QR (n, k, dmin) code as the component codes in the 2-D TPC shown
in Figure 1. We call the resultant TPC as QR-TPC(n, k, dmin)

2 and denote its codeword by
X ∈ {0, 1}n×n. Assuming BPSK modulation is used and the transmitted signal is passed
through an AWGN channel, we denote the received signal by an array R ∈ Rn×n in which
each row/column corresponds to one QR (n, k, dmin) code.

We first apply the Pyndiah-Chase-II algorithm described in Section 2.4 [4] to decode
different QR-TPCs. We assume 8 half-iterations are performed. Moreover, the extrinsic
information magnitudes |w(m+1)

i | that are derived using (13) have been recorded during
the simulations. For each of QR-TPC(17, 9, 5)2, QR-TPC(31, 16, 7)2 and QR-TPC(47, 24, 11)2,
we plot the average value of |w(m+1)

i | that are derived using (13) in Figure 3. The average

|w(m+1)
i | is plotted against the half-iteration number m for different Eb/N0 values. Further-

more, for each half-iteration number m, we evaluate the mean of all the curves and denote
this value by γm (see the thick blue curve in Figure 3). Finally, we obtain the vector

γ = (γ1, γ2, · · · , γ8) = (1.8, 2.0, 2.3, 3.1, 4.4, 6.2, 7.3, 7.7). (14)

3.2. Proposed QR-TPC Decoder

We propose modifying the Chase-II decoder in the Pyndiah-Chase-II algorithm to
make the algorithm more efficient. Details of the proposed QR-TPC decoding algorithm
with a modified Chase-II decoder are shown in Algorithm 2.
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Figure 3. Average extrinsic information magnitudes |w(m+1)
i | derived using (13) versus half-iteration

number m. The thick blue curve shows the mean of the averaged values at each m.

Algorithm 2: Proposed QR-TPC Decoding Algorithm

1 for m = 1 : mmax do
2 for l = 1 : n do
3 r = Rl,:, w(m) = W(m)

l,: ;

4 r̄(m) = r + αmw(m);
5 z = 0.5(−sgn(r̄(m)) + 1);
6 Find the least reliable p bits in z, generate 2p error patterns e2p

;
7 for j = 1 : 2p do
8 Generate the j-th test pattern gj = z + ej;
9 Decode gj using HDD and get the output dj;

10 if dj is the first valid candidate codeword then
11 d = dj;
12 if m ≥ mδ & dj satisfies Theorem 1 then
13 Compute w(m+1)

i by (15);
14 Proceed to Step 27;

15 j = j + 1. Proceed to Step 8;

16 if dj is valid & dj 6= d & dj /∈ Ω then
17 Store dj in Ω as a competing codeword cj;
18 if the correlation discrepancy between dj and r̄(m) is smaller than that between d

and r̄(m) then
19 Swap d and dj;

20 if d and dj satisfy Theorem 2 then
21 Proceed to Step 22;

22 for i = 1 : n do
23 if competing codewords in Ω with ci 6= di can be found, select the one c that is closest

to r̄(m) in terms of squared Euclidean distance then
24 Compute w(m+1)

i by (13);
25 else
26 Compute w(m+1)

i by (12);

27 Dl,: = d, W(m+1)
l,: = w(m+1);

28 R = RT , D = DT , W(m) = (W(m))T ;

29 return D;
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In the modified Chase-II decoder, we apply both Theorems 1 and 2 (described in
Section 2.2) as the terminating criteria to complete a half-iteration earlier. Depending on
the theorem that has been satisfied, the extrinsic information is calculated as follows.

1. When Theorem 1 is satisfied, d is the only output codeword from the decoder and
Ω is an empty set in Figure 2. One simple way to compute the extrinsic information
w(m+1)

i is to apply (12) because Ω is an empty set. However, as will be shown in
Section 4, the error performance will be degraded quite significantly (particularly for
short codes) compared with that of the original algorithm. We conjecture that the
weights used in (12), i.e., βm’s, are not large enough to correct the sign of an incorrect
bit. Thus, we propose to use γ in (14) to replace β in computing w(m+1)

i . In other

words, when Theorem 1 is applied and is satisfied, we compute w(m+1)
i using

w(m+1)
i = γm × d̂i. (15)

Moreover, we set a threshold half-iteration number mδ, which defines the occasion that
Theorem 1 starts being applied to the Chase-II decoder. The rationale of setting such a
threshold is as follows. During the first few half-iterations, the inputs to the Chase-II
decoder, i.e., r̄(m), may not have very high reliabilities. Thus, the ML codeword output
d is not likely to be the transmitted component codeword. If we apply Theorem 1
and (15) to compute the extrinsic information now, the extrinsic information may not
be accurate. But after a number of half-iterations, r̄(m) should become much more
reliable and the ML codeword output d is more likely to be the transmitted component
codeword. Using Theorem 1 and (15) to compute the extrinsic information therefore
becomes more accurate. Based on the above rationale, Theorem 1 will be applied
when m ≥ mδ (refer to Line 12 to Line 14 of in Algorithm 2). Moreover, the first mδ − 1
entries in γ will not be used in the Chase-II decoder when mδ > 1.

2. When Theorem 2 is satisified, Chase-II decoder will stop. It will output d and Ω which
contains at least one valid codeword. Then the extrinsic information is calculated by
(12) and (13).

4. Simulation Results

In this section, we consider the QR-TPC(n, k, dmin)
2 shown in Table 1. In our algorithm,

all coded bits are modulated by BPSK and transmitted over the AWGN channel. The
algorithm will stop when the decoder gathers 100 incorrect codewords. The number of
least-reliable-bit (LRB) positions p is set to 4 for the QR-TPC(17, 9, 5)2, QR-TPC(23, 12, 7)2,
QR-TPC(31, 16, 7)2 and 5 for the QR-TPC(47, 24, 11)2. The DS algorithm [20] is employed
for the HDD.

Table 1. Parameters of QR-TPCs.

QR-TPC Codeword Length Information Length Code Rate

(17, 9, 5)2 289 81 0.280
(23, 12, 7)2 529 144 0.272
(31, 16, 7)2 961 256 0.266
(47, 24, 11)2 2209 576 0.261

4.1. BER Performance Comparison

Figure 4 shows the bit error rate (BER) performance of the proposed algorithm. The
number of half-iterations mmax is set to 8, and the threshold mδ is set to 1 and 4 separately.
We plot three BER simulation results for each QR-TPC when the proposed algorithm is
used. In the same figure, we also plot the BER simulation results when the algorithm in [4]
(i.e., the one described in Section 2.4) is used. From the result of Figure 4, we can conclude
the followings:
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• Proposed scaling vector: When mδ = 1, we can observe that our proposed algorithm
can achieve a better BER when using (15) instead of (12) to compute the extrinsic
information. For example at a BER of 10−6, a 0.5 dB gain is achieved for the QR-
TPC(23, 12, 7)2 and about 0.4 dB gain is achieved for the QR-TPC(31, 16, 7)2.

• Threshold mδ: For certain QR-TPCs, the threshold mδ provides a trade-off between
BER performance and computational complexity. It can be seen that increasing mδ

from 1 to 4 can further improve the BER performance of our proposed algorithm for
the QR-TPC(17, 9, 5)2.

• Overall BER performance: We can see that no significant BER deviation between the
proposed algorithm and the algorithm in [4]. To be more specific, Figure 4 shows that
there are slight BER performance gaps compared with that of the algorithm in [4] for
the QR-TPC(17, 9, 5)2 and QR-TPC(23, 12, 7)2. Nonetheless, the BER performance loss
is tolerable. Furthermore, the proposed algorithm provides better performance with
significant computational complexity reduction for the QR-TPC(31, 16, 7)2 and QR-
TPC(47, 24, 11)2. As a result, the proposed algorithm has a similar BER performance
as the algorithm in [4].

• Comparison with other non-chase algorithm: When Eb/N0 is larger than 2.0 dB, the
decoding performance of the proposed algorithm for the QR-TPC(47, 24, 11)2 is similar
to that reported in [15] (see the curve for 4 iterations in Figure 6 given in [15]).
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Figure 4. BER performance of QR-TPCs under different decoder settings.

4.2. Complexity Comparison

In Figure 5, we plot the average number of HDD operations required for decoding
each QR-TPC codeword at different Eb/N0 for our proposed algorithm and the algorithm
in [4]. Since the algorithm in [4] will exhaust all the 2p test patterns, the average number
of HDD operations required is fixed for each QR-TPC code and equals mmax · n · 2p. For
our proposed algorithm, the modified Chase-II decoder will stop testing any remaining
patterns when Theorem 1 or Theorem 2 is satisfied. As a result, the average number of
HDD operations required is reduced when our proposed algorithm is used. Figure 5 also
shows that:

• Proposed scaling vector: When mδ = 1, we can observe that our proposed algorithm
can always avoid more HDD operations when using (15) instead of (12) to compute
the extrinsic information. For instance, when Eb/N0 = 3.0 dB, the average number
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of HDD operations for the QR-TPC(17, 9, 5)2, QR-TPC(23, 12, 7)2, QR-TPC(31, 16, 7)2

and QR-TPC(47, 24, 11)2 are reduced more by approximately 4.27%, 3.70%, 6.90% and
4.67%, respectively, using (15) instead of (12).

• Threshold mδ: Using mδ = 1 compared with using mδ = 4 further reduces the average
number of HDD operations because Theorems 1 and 2 are applied earlier (i.e., starting
the first half-iteration) in the modified Chase-II decoder.

• The reduction in the average number of HDD operations increases as Eb/N0: In the
low Eb/N0 region, the number of error bits that occur in each codeword is more likely
to exceed the error-correction capability t of the QR code. Thus a valid codeword
that satisfies Theorem 1 or Theorem 2 cannot be found easily. As Eb/N0 increases,
the ML codeword can be obtained more readily found using Theorem 1 or Theorem 2
and hence the modified Chase-II decoder can terminate earlier. We take mδ = 1
and Eb/N0 = 1.0 dB as an example. For the QR-TPC(17, 9, 5)2, QR-TPC(23, 12, 7)2,
QR-TPC(31, 16, 7)2 and QR-TPC(47, 24, 11)2, the average numbers of HDD operations
used in our proposed algorithm are reduced by 65.90%, 62.26%, 19.92% and 3.82%, re-
spectively, compared with those used in the algorithm in [4]; when Eb/N0 is increased
to 3.0 dB, the numbers of HDD operations are reduced by 85.52%, 86.17%, 71.51% and
72.14%, respectively.
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Figure 5. Average number of HDD operations performed to decode one codeword.

The complexity of SISO QR-TPC decoders depends mainly on the number of oper-
ations of HDD. Generally, it takes O(k + ∑

bt/2c
i=1 iCi

k) GF(+), O(k) GF(�) and O((k− 1) +

(k− 1)∑
bt/2c
i=1 Ci

k) R(+) for a QR code to run the DS algorithm once, where GF(+) and GF(�)
means the addition and shift operation in the Galois field, and R(+) means the addition
operation in the real field. To calculate (8) and (9), the proposed algorithm also requires
O(dmin) R(+). But it increases only a minimal computational complexity due to the small
number of operations. It is worth pointing out that when Theorem 1 is satisfied, the pro-
posed algorithm calculates the w(m+1)

i by (15) directly and therefore no longer needs to
compute the squared Euclidean distance to r̄(m). Thus it requires much fewer R(+) and the
multiplication operations over the real field (i.e., R(*)).

The complexity comparison of our proposed algorithm and the algorithm in [15]
is shown in Table 2, where L represents the average number of HDD operations shown
in Figure 5 and P represents the number of the permutations used in [15]. The error
performance of the algorithm in [15] depends on P and mmax. In Table 2, when mmax = 8,
Eb/N0 = 3.0 dB, mδ = 1 and P = 1000, for the QR-TPC(47, 24, 11)2, we observe that the
proposed algorithm has a much smaller number of GF(+), GF(�) and R(*) performed to
decode one codeword than the algorithm in [15]. In fact, our proposed algorithm may not
require such a large number of GF(+), GF(�), and R(+). In the best case, if the weight of
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the syndrome s of the test pattern is smaller or equal to t, the DS algorithm can directly
obtain the candidate codeword. For this reason, the DS algorithm requires only O(k) GF(+)
and O(k− 1) R(+) when decoding a QR code. This situation occurs especially in the high
Eb/N0 region.

Table 2. Complexity comparison of the algorithms and relative number of the operations performed
to decode one codeword.

Operation
The Proposed Algorithm Algorithm in [15]

Complexity
Comparison Relative Number Complexity

Comparison Relative Number

GF(+) O(L · (k + ∑
bt/2c
i=1 iCi

k)) 2,011,200 O(P ·mmax · n2) 17,672,000
GF(�) O(L · k) 80,448 O(P ·mmax · n · (k− 1)) 8,648,000

R(+)
O(L · (k− 1) ·

∑
bt/2c
i=0 Ci

k)
23,205,896 O(P ·mmax · n2) 17,672,000

R(*) O(mmax · n2) 17,672 O(P ·mmax · n2) 17,672,000

In [22], the authors introduce an efficient decoding algorithm for TPCs based on
Kaneko’s algorithm [23], which provides similar BER performance to the algorithm in [4].
It is interesting to note that Lemma 1 in Kaneko’s algorithm is identical to Theorem 1 when
|D1(x, z)| = |D1(a, x′)|, where x′ is an arbitrary codeword such that x′ 6= x.
Figure 2a given in [23] shows that Kaneko’s algorithm reduces the average number of
HDD operations by about 65.6% compared to the conventional Chase-II algorithm when
Eb/N0 = 3.0 dB for QR (23, 12, 7) code. However, in the range under 1.5 dB, Kaneko’s algo-
rithm requires more complexity than that of the Chase-II decoder. To avoid this drawback,
the maximum number of test patterns for each row and column in the algorithm in [22] is
made equal to that of the Chase-II decoder. Figure 5 shows that our proposed algorithm
can reduced by 86.17% HDD operations for QR-TPC(23, 12, 7)2 in the same Eb/N0. Given
that the procedure used for the extrinsic information calculations in [22] is the same as
the algorithm in [4], our proposed algorithm uses fewer HDD operations and therefore
provides lower computational complexity.

4.3. Comparison with 5G LPDC Codes

QR-TPCs have potential applications in modern communication systems for short-
blocklength and high-reliability requirements. We compare the BER performance of QR-
TPCs and 5G low-density parity-check (LDPC) codes [24] having similar code parameters.
For these LDPC codes, we take the first 26/27 rows and 36/37 columns of base graph (BG)
2 as the base matrices (parameters are given in Table 3), and use the sum-product decoding
algorithm with a maximum of 50 iterations. It is well known that LDPC codes perform
better as codelength increases. As shown in Figure 6, when the codes are short, QR-TPCs
have better performance than 5G LDPC codes. Specifically, QR-TPC (17, 9, 5)2 achieves a
1.1 dB gain over 5G LDPC (288, 80) at a BER of 10−6, and QR-TPC (23, 12, 7)2 outperforms
5G LDPC (518, 140) by about 0.7 dB. However, when the codelength becomes long, the 5G
LDPC (962,260) outperforms QR-TPC (31, 16, 7)2 by about 0.8 dB at a BER of 10−6.

Table 3. Parameters of 5G LDPC Codes.

Size of BG2 Lifting Size Codeword
Length

Information
Length Code Rate

26 × 36 8 288 80 0.278
27 × 37 14 518 140 0.270
27 × 37 26 962 260 0.270
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Figure 6. Comparison of BER performance between QR-TPCs and 5G LDPC codes.

5. Conclusions

This letter presents an efficient decoding algorithm for TPCs with QR component
codes. By introducing two convergence conditions and a new scaling vector γ, the pro-
posed algorithm significantly improves the decoding efficiency with almost the same BER
performance compared to the Pyndiah-Chase-II decoding algorithm and the ISPDA. Simu-
lation results also reveal that QR-TPCs outperform 5G LDPC codes with similar parameters
when the block lengths are below 500.
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