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Abstract: The early diagnosis of cardiovascular diseases (CVDs) can effectively prevent them from
worsening. The source of the disease can be effectively detected through analysis with cardiac
magnetic resonance imaging (CMRI). The segmentation of the left ventricle (LV) in CMRI images
plays an indispensable role in the diagnosis of CVDs. However, the automated segmentation of LV
is a challenging task, as it is confused with neighboring regions in the cardiac MRI. Deep learning
models are effective in performing such complex segmentation because of the high performing
convolutional neural networks (CNN). However, since segmentation using CNN involves the pixel-
level classification of the image, it lacks the contextual information that is highly desirable in analyzing
medical images. In this research, we propose a modified U-Net model to accurately segment the
LV using context-enabled segmentation. The proposed model achieves the automatic segmentation
and quantitative assessment of LV. The proposed model achieves the state-of-the-art accuracy by
effectively utilizing various hyperparameters, such as batch size, batch normalization, activation
function, loss function and dropout. Our method demonstrated a statistical significance in the
endo- and epicardial walls with a dice score of 0.96 and 0.93, respectively, an average perpendicular
distance of 1.73 and percentage of good contours of 96.22 were achieved. Furthermore, a high positive
correlation of 0.98 between the clinical parameters, such as ejection fraction, end diastolic volume
(EDV), end systolic volume (ESV) and gold standard was obtained.

Keywords: CVDs; U-Net; CNN; segmentation

1. Introduction

Medical experts depend on the reliable quantification of cardiac function for the
diagnosis and prognosis of cardiovascular diseases (CVDs) [1]. Cardiac magnetic resonance
imaging (CMRI) is currently considered the gold standard for the quantification of cardiac
function [2]. The quantification of cardiac MR images that include ventricular mass, left
ventricular (LV), end-diastolic (ED), and end-systolic (ES) volumes are recommended by
cardiologists for the assessment of various aspects of CVDs. The quantitative parameters
are routinely calculated by cardiologists using short-axis CMR images. Cardiac magnetic
resonance images (CMRI) segmentation is the prerequisite for the automatic diagnosis and
prognosis of cardiovascular disease [3]. Clinically, segmentation involves the delineation
of LV myocardial boundaries. The segmentation across the entire cardiac cycle, which
comprises 20–40 phases per patient, is desirable but manually segmenting the frames in
the entire cardiac cycle is practically unfeasible because of the required workload and the
large number of phases involved. For this reason, clinicians often segment the end-diastole
and end-systole.
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The automated segmentation of the left ventricle myocardium is an active area of
research and significant contributions have been made to date. A wide range of models
have been adopted for segmentation; these are image pixel-based models, deformable mod-
els, cardiac atlases-based models, and statistical models [3]. Recently, segmentation using
deep learning methods has been shown to outperform the traditional approaches [4,5].
However, a detailed comparative analysis on CMRIs segmentation using many automatic
segmentation models showed that 80% of the top-performing models produced anatomi-
cally implausible outcomes [6], although manual segmentation does not have these kinds of
inaccuracies. An example showing inaccurate segmentation and the corresponding manual
segmentation can be seen in Figure 1. The segmented images in the first row were achieved
using a convolution neural network, whereas the segmentation of the images in the second
row were carried out by an expert, as mentioned in [6].
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Figure 1. Images in the 1st row show inaccurate automated segmentation, while images in the
2nd-row show corresponding manual segmentation. Image courtesy of [6].

There are many reasons for the unlikely outcomes of the automatic segmentation
models. The reasons are [6]:

1. Variation in shape, intensity, and structure across the cardiac cycle, patients, and
pathological conditions;

2. Low contrast between myocardium and surrounding structure;
3. High contrast between blood and the myocardium;
4. Inherent noise due to motion artifacts; and
5. Brightness heterogeneity due to blood flow.

For this reason, clinicians still rely on semi-automated segmentation models in their
daily practice because of the inaccuracies in fully automated segmentation, even though
manual segmentation is also prone to inaccuracies. The largest segmentation inaccuracies in
both manual and automatic segmentation of short-axis CMRIs are typically found in basal
and apical slices. The reason for the inaccuracies is due to low tissues contrast ratios [7].

Therefore, many deep learning models [3,8–10] have been proposed to obtain clinical-
grade segmentation accuracies. The reason for the larger adoption of deep learning ar-
chitecture is due to the state-of-the-art performance of convolutional neural networks
(CNN) models in segmentation. Initially, CNN was used for whole object segmentation
and dominated many computer vision challenges [11,12], although CNN models are now
widely adopted for object segmentation. CNN architecture for segmentation uses encoders
and decoders models. The encoders are used to encode the input image into a represen-
tation that can be sent through the network, while the decoders are used to decode the
representation in the opposite direction. Encoders can be CNNs, while the decoders can be
deconvolutional or transposed neural networks with the purpose to create the segmentation
map. In general, segmentation using CNN achieves pixel-level classification. However,
segmentation using pixel-level classification fails to provide contextual information, which
is highly desirable for the medical image analysis [13]. Additionally, the pixel-level classifi-
cation requires a large number of annotated training samples for better performance, which
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is not possible for medical imaging. For example, any image given to the CNN model
can produce the segmentation map, as shown in Figure 2. Although the desired output
in medical image segmentation is not whether the target class is present but where the
target class is present. An example of context-based medical image segmentation is shown
in Figure 3. Therefore, for medical image analysis, deep learning architecture which can
provide good localization and the use of context is required. U-Net [14] is deep learning
architecture which fulfills all the requirements needed for medical image analysis.
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The advantages of U-Net model are:

1. It provides context based localized segmentation;
2. It does not require large samples for training and can produce acceptable levels of

segmentation accuracy with just a few training samples;
3. It provides more precise segmentation;
4. It is faster to train than most other segmentation model due to its context-enabled

segmentation approach.

U-Net was originally designed for context enabled segmentation and achieved a high
level of segmentation accuracy in biomedical images. U-Net has seen an explosion in usage
for medical image analysis. With this explosion, many advancements have been performed
in U-Net architecture that leads to modified versions of U-Net, such as MFP-UNet [15],
AdaRes-UNet [16], dense U-Net [17], Grid-Net [18], M-Net [19], etc. However, there is still
a huge scope for advancements in U-Net.

In the past, many authors have tested U-Net architecture with different hyperparam-
eters. The authors of [20] have proposed a fully convolutional network (FCN), 2D and
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3D U-Net. They have evaluated the performance of different deep learning architectures
with binary cross-entropy and dice loss. They found that a 2D U-Net with binary cross-
entropy loss is the best performing architecture. The authors of [21] also tested 2D and
3D U-Net architectures with different loss functions. They evaluated the performance of
2D and 3D U-Net architectures with cross-entropy loss (CE Loss), dice loss, and combined
cross-entropy–dice loss (Dice-CE Loss). The best architecture they attained was a 2D U-Net
with dice loss. In the two different studies [22,23], authors also proposed different U-Net
architectures and achieved dice loss.

Additionally, many authors proposed modified U-Net architectures, such as M-
Net [19], dense U-Net [17], and “Grid Net” [18]. The authors of [19] modified the way
U-Net calculates the feature maps. The M-Net architecture basically differs in the cal-
culation of feature maps in the decoding layers, which concatenates with the previous
layer. The network was trained using the weighted cross-entropy loss. The authors of [17]
pre-processed the image before passing it to the U-Net model. Pre-processing involves
the identification of the region of interest. Their method first applies Fourier transform
followed by a canny edge detector. Secondly, they applied Hough transform to the edge
map to identify the approximate radius of the LV. The network was trained using the sum
of cross-entropy and dice losses. Additionally, the network presented by the authors of [18]
utilizes a four-term loss function for training.

As we can see from the literature discussed above, the loss function has a great impact
on the performance of the network. However, there are also many hyperparameters, such as
batch size, batch normalization, dropout, etc., that have a great impact on the performance
of the network. In this research, we considered a wide range of loss functions and their
impacts which are thoroughly discussed. We have also tuned different parameters, such as
batch size, batch normalization [24], and dropout [25] to obtain a better performance.

The remainder of the manuscript is as follows. In Section 2, a literature survey has
been provided to validate the performance of proposed work with existing techniques. In
Section 3, the methodology and dataset are described in detail. In Section 4, experimental
results were presented, and the last section concludes the paper. In this research, the U-
Net model with various hyperparameters was evaluated to investigate the generalization
capability of the model. The hyperparameters selected for investigation are (i) batch size,
(ii) batch normalization, (iii) activation function, (iv) loss function, and (v) dropout.

Motivated by the limitations of existing techniques and given the fact that manual
segmentation by experts is the ground truth in cardiac MRI, the proposed methodology is
accurate and robust.

2. Materials and Methods
2.1. Data

In this study, data from Sunnybrook Cardiac Data (SCD), also known as the 2009 Car-
diac MR Left Ventricle Segmentation Challenge Data [26] were used. The dataset consists
of cardiac cine MRI images (CMRIs) from 45 patients distributed into four pathological
conditions. The pathological conditions are:

1. Normal (N)
A healthy group with ejection fraction (EF) > 55% and no hypertrophy.

2. Hypertrophy (HYP)
The left ventricle (LV) hypertrophy (HYP) group had normal EF (>55%), and the ratio
of left ventricular (LV) mass over body surface area is >83 g/m2.

3. Heart failure without infarction (HF)
The group had EF <40% and no late Gadolinium (Gd) enhancement.

4. Heart failure with infarction (HF-I)
The group had ejection fraction (EF) <40% and evidence of late gadolinium (Gd)
enhancement.
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The entire dataset is divided into three groups: (i) training, (ii) validation, and (iii) testing.
The pathological conditions and distribution of data is shown in Table 1. The average statistics
value based on pathological conditions is shown in Table 2.

Table 1. Distribution of data into different pathological conditions.

Set Pathological Conditions Cases

Training

N 3

HYP 4

HF 4

HF-I 4

Validation

N 3

HYP 4

HF 4

HF-I 4

Testing

N 3

HYP 4

HF 4

HF-I 4

Table 2. Average statistics value based on pathological conditions.

Evaluation Parameters N (n = 9) HYP (n = 12) HF (n = 12) HF-I (n = 12)

End Diastolic Volume (mL) 115.69 (36.89) 114.39 (50.46) 233.67 (63.21) 244.92 (86.02)

End Systolic Volume (mL) 43.10 (14.74) 43.11 (24.50) 158.28 (56.34) 174.34 (90.64)

Ejection Fraction (%) 62.93 (3.65) 62.72 (9.22) 33.09 (13.07) 32.01 (12.27)

2.1.1. Automatic Segmentation of Cardiac MRI

To perform the segmentation of LV myocardial boundaries, such as endocardium and
epicardium in 2D cardiac MR images, the U-Net model with various hyperparameters is
evaluated to investigate the generalization capability of the model. The hyperparameters
selected for the investigation are:

1. Batch size;
2. Batch normalization;
3. Activation function;
4. Loss function; and
5. Dropout.

The standard architecture of the U-Net [14] is used. The number of blocks in the
contracting and expanding path are optimized as per the hardware. Figure 4 shows the
proposed U-Net architecture.
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In contrast to the base U-Net architecture, all convolution operations are followed by
batch normalization. Unlike only the Relu [27] activation function in the standard U-Net
architecture, the Elu [28] activation is also used. A 10% dropout is employed after two
convolution operations, i.e., 10% of hidden units are randomly switched off, which makes
the deterministic model Bayesian. The architecture contains a contracting and an expansion
path, each with five successive blocks. Each block performs the following operations:

1. Convolution with 3 × 3 kernel size;
2. Batch normalization;
3. Convolution with 3 × 3 kernel size;
4. Batch normalization;
5. Dropout;
6. Max pooling (in contraction and transpose convolution in expansion).

Operations performed in each layer of the contraction and expansion paths are shown
in Figures 5 and 6, respectively. It can be seen from the figures that five types of operations
are performed at each layer. The only difference between the block in the contraction and
expansion path is in the last layer. The pooling layer in the expansion path is replaced by
the transposed convolutional layer.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 37 

 

 

5. Dropout. 
The standard architecture of the U-Net [14] is used. The number of blocks in the con-

tracting and expanding path are optimized as per the hardware. Figure 4 shows the pro-
posed U-Net architecture. 

 
Figure 4. Proposed U-Net architecture. 

In contrast to the base U-Net architecture, all convolution operations are followed by 
batch normalization. Unlike only the Relu [27] activation function in the standard U-Net 
architecture, the Elu [28] activation is also used. A 10% dropout is employed after two 
convolution operations, i.e., 10% of hidden units are randomly switched off, which makes 
the deterministic model Bayesian. The architecture contains a contracting and an expan-
sion path, each with five successive blocks. Each block performs the following operations: 
1. Convolution with 3 × 3 kernel size; 
2. Batch normalization; 
3. Convolution with 3 × 3 kernel size; 
4. Batch normalization; 
5. Dropout; 
6. Max pooling (in contraction and transpose convolution in expansion). 

Operations performed in each layer of the contraction and expansion paths are 
shown in Figures 5 and 6, respectively. It can be seen from the figures that five types of 
operations are performed at each layer. The only difference between the block in the con-
traction and expansion path is in the last layer. The pooling layer in the expansion path is 
replaced by the transposed convolutional layer. 

 
Figure 5. Operations in each layer of the contraction path. Figure 5. Operations in each layer of the contraction path.



Electronics 2022, 11, 3594 7 of 35

Electronics 2022, 11, x FOR PEER REVIEW 7 of 37 

 

 

 
Figure 6. Operations in each layer of the expansion path. 

The convolution kernels are initialized with the kernel initializer called He Normal. 
Generally, the size of the images in each dimension decreases by a factor of k-1 after each 
convolution operation, where k is the kernel size. However, we retain the size of the image 
throughout the convolution operations. The size retention is achieved using zero padding. 
The max-pooling operation is employed at the end of the convolution operation in the 
contraction path using a 2 × 2 convolutional kernel and stride 2, which down-samples the 
input array by a factor of 2. However, the transpose convolution operation is employed at 
the end of the convolution operation in the expansion path, which up-samples the input 
array by a factor of 2. For instance, if the size of the input image is 256 × 256 and kernel 
size is 3 × 3, then after convolution the size will be (256 − 3 + 1) × (256 − 3 + 1), i.e., 254 × 
254 and 127 × 127 after max-pooling with a 2 × 2 convolutional kernel. Similarly, if the 
input array size is 127 × 127, then after transpose convolution, the size becomes 254 × 254. 
After every down-sampling, the number of feature channels increases by a factor of 2. 
While after each up-sampling, the number of feature channels decreases by a factor of 2. 
Initially, we start with 8 feature channels and go up to 128 during contraction, and further 
decrease to 8 feature channels during expansion. The contracting path captures the con-
text, and the expansion path enables the precise location. Therefore, starting with a smaller 
number of feature channels may decrease the chance of overfitting and improve the con-
text capturing capabilities of the network. 

2.1.2. Number of Convolution Layers 
Model performance was evaluated with U-Net with different sizes. The results in 

Table 3 shows that U-Net with 23 convolution layers is more optimal with training time 
and accuracy. Adding more layers did not improve the accuracy of the model. 

Table 3. Model performance with convolutional layers. 

Convolution Layers Training Weights 
Training Time (100 Epochs, 
2 GPUs) 

Performance (Dice Coeffi-
cient) 

18 1.9 M 4 h 92–93% 
23 31 M 6 h 94–96% 
28 32 M 7.5 h 94–96% 

2.1.3. Number of Filters 
Model performance was evaluated with 16, 32, and 64 filters at the first convolution 

layer on the decoder path. The number of filters is doubled at every subsequent convolu-
tion layer (64- > 128- > 256- > 512- > 1024). The model with 64 filters at the first convolution 
layer showed the best performance. 

  

Figure 6. Operations in each layer of the expansion path.

The convolution kernels are initialized with the kernel initializer called He Normal.
Generally, the size of the images in each dimension decreases by a factor of k-1 after each
convolution operation, where k is the kernel size. However, we retain the size of the image
throughout the convolution operations. The size retention is achieved using zero padding. The
max-pooling operation is employed at the end of the convolution operation in the contraction
path using a 2 × 2 convolutional kernel and stride 2, which down-samples the input array
by a factor of 2. However, the transpose convolution operation is employed at the end of the
convolution operation in the expansion path, which up-samples the input array by a factor of 2.
For instance, if the size of the input image is 256 × 256 and kernel size is 3 × 3, then after
convolution the size will be (256 − 3 + 1) × (256 − 3 + 1), i.e., 254 × 254 and 127 × 127 after
max-pooling with a 2 × 2 convolutional kernel. Similarly, if the input array size is 127 × 127,
then after transpose convolution, the size becomes 254 × 254. After every down-sampling, the
number of feature channels increases by a factor of 2. While after each up-sampling, the number
of feature channels decreases by a factor of 2. Initially, we start with 8 feature channels and
go up to 128 during contraction, and further decrease to 8 feature channels during expansion.
The contracting path captures the context, and the expansion path enables the precise location.
Therefore, starting with a smaller number of feature channels may decrease the chance of
overfitting and improve the context capturing capabilities of the network.

2.1.2. Number of Convolution Layers

Model performance was evaluated with U-Net with different sizes. The results in
Table 3 shows that U-Net with 23 convolution layers is more optimal with training time
and accuracy. Adding more layers did not improve the accuracy of the model.

Table 3. Model performance with convolutional layers.

Convolution Layers Training Weights Training Time (100 Epochs, 2 GPUs) Performance (Dice Coefficient)

18 1.9 M 4 h 92–93%

23 31 M 6 h 94–96%

28 32 M 7.5 h 94–96%

2.1.3. Number of Filters

Model performance was evaluated with 16, 32, and 64 filters at the first convolution
layer on the decoder path. The number of filters is doubled at every subsequent convolution
layer (64- > 128- > 256- > 512- > 1024). The model with 64 filters at the first convolution
layer showed the best performance.

2.1.4. Batch Normalization

We experimented with adding a batch normalization layer between every convolu-
tional layer and activation layer in both the encoding and decoding paths. The default
parameters for the batch normalization layer, as implemented in Keras, were used. We did
not see any significant changes in the dice coefficient, accuracy, precision, recall, or F1-score.
No significant changes in training time were observed either.
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2.1.5. Dropout Layers

We also experimented with adding dropout layers before each up-sampling layer
in the encoding path. Dropout levels of 20% and 50% were tested. Although our tests
indicated that adding dropout layer did not improve the performance of the model, we did
include dropout layers in our final model since many of the solutions we studied suggested
performance improvement with them. In our final model, a dropout layer of 50% was
added after each convolution layer in the encoding path for a total of four dropout layers.

2.1.6. Loss Functions

In medical imaging, segmenting the region accurately is always desirable. Addi-
tionally, the segmentation accuracy depends on the quality of training. Deep learning
algorithms use gradient-based optimization to enhance the quality of training. Training is
an optimization problem that optimizes weights based on objective value. Therefore, the
quality of training largely depends on the loss functions. In this research, we investigated
the impact of different loss functions on segmentation. Generally, the loss functions are
categorized into four broad categories [29]. These are shown in Table 4.

Table 4. Distribution of loss functions based on its types.

Type Loss Function

Distribution-based Loss

Binary Cross-Entropy
Weighted Cross-Entropy
Balanced Cross-Entropy

Focal Loss
Distance map derived loss penalty term

Region-based Loss

Dice Loss
Sensitivity-Specificity Loss

Tversky Loss
Focal Tversky Loss
Log-Cosh Dice Loss

Boundary-based Loss Hausdorff Distance loss
Shape aware loss

Compounded Loss Combo Loss
Exponential Logarithmic Loss

Region-based loss functions aim to minimize the mismatch or maximize the overlap
regions between ground truth and predicted segmentation. Therefore, we considered
region-based loss functions because we were trying to maximize the overlap regions, since
binary cross-entropy is the default loss function in deep learning models. For this reason,
we considered that too. The detailed descriptions of loss functions can be found in [29].

2.1.7. Optimization

We trained the network using the proposed U-Net architecture with Relu- and Elu-
activation functions. We investigated the performance of segmentation using different loss
functions. So, there are 10 combinations overall to be investigated, as shown in Table 5. All
the models were trained on an 8 GB NVIDIA GeForce RTX 2070 GPU card, 32 GB RAM,
and Xeon E5 Processor. An ADAM [30] optimizer was used to minimize the loss function
to obtain a better accuracy.
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Table 5. Total combinations investigated.

Activation Function Loss Function Activation Function Loss Function

Relu

Binary Cross-Entropy

Elu

Binary Cross-Entropy
Dice Loss Dice Loss

Log-Cosh Dice Loss Log-Cosh Dice Loss
Tversky Loss Tversky Loss

Focal Tversky Loss Focal Tversky Loss

2.2. Performance Evaluation
2.2.1. Segmented Accuracy Assessment Metrics

The performance of the models was evaluated in terms of average perpendicular
distance (APD), dice metric, and percentage of good contours. However, all the clinical
factors, such as average ESV, EDV, and EF based on all modes, were also computed. The
evaluation parameters are defined below.

1. Average perpendicular distance measures the distance between manual and auto
contours, averaged over all contour points [31]. It was used to measure the closeness
of the segmented boundaries; the smaller the value, the closer is the boundary. The
value of APD measures in millimeters with the help of pixel spacing provided in the
DICOM field named PixelSpacing.

2. The dice metric was used to measure the overlapping or similarity between manual
and auto contours. Its value lies between 0 to 1, where 0 means no overlap and
1 means perfect overlapping. The dice metric between auto and manual contours can
be defined as:

DM(Auto, Manual) = 2
Auto ∩ Manual
Auto + Manual

3. The percentage of good contours is evaluated in terms of APD. It is basically the fraction
of contours out of total contours. The fraction of contours is selected if APD < 5 mm.

2.2.2. Clinical Metrics

Clinically relevant factors, such as ESV, EDV, and EF, are also calculated. EF can be
calculated as:

EF =
SV

EDV
× 100%

where SV is stroke volume and can be calculated as SV = EDV − ESV.
Furthermore, the clinical parameters are analyzed using regression and the Bland–

Altman plots.

3. Results and Discussion

In this research, 45 cases were tested. Initially, batch size and dropout were finetuned
to carry out further processing. We tested three different combinations of the batch size
such as 4, 8, and 16, and obtained good accuracy at batch size 4. Additionally, four different
combinations of the dropout were considered, i.e., 0.1, 0.15, 0.2, and 0.25, and obtained
good accuracy at 0.1 dropout value. Therefore, for the entire experiment, the batch size and
dropout were considered as 4 and 0.1, respectively, with active batch normalization. Two
activation functions, Elu and Relu, in combination with different loss functions, have also
been considered for the experiment. Optimization parameters considered for the research
are shown in Table 6. Out of 45 patients’ data, 15 were used for training, validation, and
testing. Hyperparameters and their corresponding values are shown in Table 6.
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Table 6. Hyperparameters and their corresponding values.

Hyperparameters Value/Name Hyperparameters Value/Name

Batch Size 4 Dropout 0.1

Activation Functions Relu/Elu

Loss Functions

Binary Cross-Entropy
Dice Loss

Log-Cosh Dice Loss
Tversky Loss

Focal Tversky Loss
Batch Normalization True

3.1. Data Pre-Processing

The Baseline Method involved rescaling the images so that each pixel was 1 mm × 1 mm
and then cropping the image from the center to either 256 × 256 or 176 × 176.

This method consisted of the following steps:

1. Orientation: Orientation shift based on the DICOM InPlanePhaseEncoding metadata,
which indicates the axis of phase encoding with respect to the image. A majority of
the images were “Row” oriented; thus, if the image was “Col” oriented, it was flipped
to be “Row” oriented.

2. Rescale: The image is rescaled based on the image’s Pixel Spacing values.

a. Rescale with the first Pixel Spacing value in both the x and y directions;
b. Rescale to 1 mm × 1 mm.

3. Crop: The image is cropped from the center to 256 × 256. In this project, 256 × 256
and 176 × 176 were used.

4. ROI Location.

In order to identify the left ventricle region of interest (ROI), two approaches were
used. The LV ROI crops the MRI image to focus the LV, which is expected to improve the
results of the segmentation task in terms of processing and accuracy. By using an ROI
image as the input into the U-Net, there is less noise in the image. The LV has four distinct
features within the MRI Image that were exploited in order to identify the ROI:

1. The heart cavity containing the LV is near the center of the MRI Image;
2. The frequency at which the LV moves is unique compared to the frequencies of other

heart muscles;
3. There is a degree of pixel variance around the LV muscle;
4. The LV is circular in shape.

All cardiac MR images are available in the DICOM format, while the boundary coordi-
nates of manual contours are available the in.txt format. All images were resized into 256
× 256 dimensions, and the contour coordinates were converted into the mask of the same
dimensions. A sample of the image mask combination is shown in Figure 7.
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3.2. Data Preparation and Training

Masks of all 45 patients were generated using the approach discussed in the data
pre-processing section, then all Dicom images from the training set and their corresponding
masks were grouped. The model considers the combination of image and mask and
minimizes the loss function to be trained. Therefore, the quality of training depends
on how well the minimization of loss function impacts segmentation accuracy. During
training, the performance parameters of the model are evaluated based on validation loss.
Two different models were developed, one for endocardium detection and another for
epicardium detection. The model for endocardium was trained using the endocardium
images and masks, while the model for epicardium was trained using the epicardium
images and masks. The loss curves of both the models minimizing the dice loss using the
elu and relu activation functions are shown in Figure 8a,b, respectively. The loss curve
minimizing the binary cross-entropy is shown in Figure 9. All the figures contain training
loss, validation loss, and the marking of the best model.
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Figure 9. (a): Learning curve during training minimizing dice loss for epicardium (top) and endo-
cardium (bottom) using the Elu activation. (b) Learning curve during training minimizing binary
cross-entropy for epicardium (top) and endocardium (bottom) using the Relu activation.



Electronics 2022, 11, 3594 14 of 35

To prevent overfitting, we also employed model checkpoints and early stopping con-
ditions. During the training, if there was no further improvement then the trained model
was saved for inferencing and training was stopped. We considered 200 epochs for training;
however, none of the models used the entire epochs for training. Mostly we obtained a
perfectly trained model within 100 epochs, which can also be seen in the learning curves in
Figures 9 and 10. Additionally, it can be observed from the above Figures that models with
the Elu activation function provide a “good fit”, as the validation error is slightly higher
than the training error and became better and better over the time or epochs. However, the
difference between validation and training errors was larger with the Relu activation and
was not consistent with time. Even after certain epochs, it produced high errors.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 37 

 

 

 

 

Figure 10. Learning curve during training minimizing binary cross-entropy for epicardium (top) 
and endocardium (bottom) using the Elu activation. 

3.3. Illustrated Results 

Figure 10. Learning curve during training minimizing binary cross-entropy for epicardium (top) and
endocardium (bottom) using the Elu activation.



Electronics 2022, 11, 3594 15 of 35

3.3. Illustrated Results

Once the model is trained, then it returns the mask as an output when a cardiac image
is given as an input to the model. Automatically segmented outputs from the SC-HF,
SC-HF-I, and SC-HYP test samples are shown in Figure 11. Each row contains a cardiac
image, manual contour, and automated segmented contour.
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Figure 11. Input images from the SC-HF, SC-HF-I, and SC-HYP test samples and the predicted
segmented mask or contour along with manual contour.

Figures 12–14 illustrate the manual and automatic segmentation of the endocardium
from the training, validation, and testing sets, while the epicardium segmentation is illus-
trated in Figures 15–17. In the figure, manual contours are marked in red, while automatic
contours are marked in yellow. Each row corresponds to the model-wise segmentation,
where the row-wise order of the models is as follows:

1. U-Net with focal Tversky loss;
2. U-Net with log-cosh dice loss;
3. U-Net with Tversky loss;
4. U-Net with dice loss; and
5. U-Net with binary cross-entropy loss.
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Figure 12. Automatic and manual segmentation results of the endocardium from the training set of a
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Figure 13. Automatic and manual segmentation results of the endocardium from the validation set
of a normal subject (SC-N).
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Figure 14. Automatic and manual segmentation results of the endocardium from the testing set of a
normal subject (SC-N).
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Figure 16. Automatic and manual segmentation results of the epicardium from the validation set of a
normal subject (SC-N).
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Figure 17. Automatic and manual segmentation results of the epicardium from the testing set of a
normal subject (SC-N).
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Figure 18 illustrates the missed and wrong classification. Misclassification commonly
occurs at the basal and apical slices due to low contrast between the cavity and the sur-
rounding tissues.
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Figure 18. Misclassification in automatic segmentation when the cardiac cycle approaches the apical slices.
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Figures 18–21 illustrates the automatic segmentation of epicardium and endocardium
from the training, validation, and testing sets for the SC-N category. The epicardium
boundary is marked with yellow color, while the endocardium boundary is marked with
magenta color.
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Figure 19. Automatic segmentation results of epicardium and endocardium boundaries from the
training set of a normal patient (SC-N).
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Figure 21. Automatic segmentation results of epicardium and endocardium boundaries from the
testing set of a normal patient (SC-N).
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3.4. Quantitative Analysis

The overall statistics of the automated segmentation results are shown in Tables 7 and 8.
Our results show that for endocardial boundaries, the average good contour (AGC) varies
between 92.49% to 96.1%, where the lowest contour detection was observed with the Relu
activation function. Similarly, the average perpendicular distance (APD) and dice metrics
(DM) vary between 1.68 mm to 2.07 mm and 0.9 to 0.93, respectively. Here also, the highest
value in APD can be observed when models were trained with the Relu activation function.
While for epicardial boundaries, the average good contour varies between 88.28% to 96.3%,
where the lower contour detection here is also observed with the Relu activation function.
Similarly, the APD and DM vary between 1.7 mm to 2.21 mm and 0.93 to 0.96, respectively.
The highest APD value is when models were trained with the Relu activation function. A
segmented result is considered as “good” if the average APD is 5mm [32]. Though, in most
of the cases, our algorithms produce ≤ 2mm. This signifies the overall performance of
the proposed models. The analysis also suggests that the performance parameters of the
endocardium are better than the epicardium. This is due to the low contrast between the
epicardium boundary and the surrounding tissues and the high contrast between the blood
and the endocardium boundary.

Table 7. Performance evaluation parameters for dice loss and Elu activation.

Patient
Group

Cases
Average Contour

Detection (%)
Average Good

Contour Detection (%)
Average Perpendicular

Distance (mm) Dice Metrics

Endo Epi Endo Epi Endo Epi Endo Epi

N 9 100 100 96.89 95.63 1.65 2.04 0.91 0.93

HYP 12 100 100 95.70 89.68 1.76 2.08 0.90 0.93

HF-NI 12 100 100 91.60 87.27 2.11 1.97 0.92 0.95

HF-I 12 100 100 97.09 97.72 1.66 1.62 0.94 0.96

Overall 45 100 100 95.3 (2.55) 92.6 (4.91) 1.79 (0.21) 1.93 (0.20) 0.92 (0.02) 0.94 (0.02)

Table 8. Performance evaluation parameters for dice loss and Relu activation.

Patient
Group

Cases
Average Contour

Detection (%)
Average Good

Contour Detection (%)
Average Perpendicular

Distance (mm) Dice Metrics

Endo Epi Endo Epi Endo Epi Endo Epi

N 9 100 100 97.86 95.43 1.72 1.97 0.91 0.94

HYP 12 100 100 93.93 91.23 1.76 2.00 0.90 0.94

HF-NI 12 100 100 86.94 83.50 1.92 1.74 0.93 0.95

HF-I 12 100 100 94.75 95.45 1.68 1.90 0.94 0.95

Overall 45 100 100 93.4 (4.61) 91.4 (5.63) 1.77 (0.11) 1.90 (0.12) 0.92 (0.02) 0.95 (0.01)

Region-based loss functions such as dice loss, Tversky loss, focal Tversky loss, and
log-cosh dice loss perform well in generalizing the segmentation performance. Though
the segmentation performance of the proposed UNet model is quite promising with all
loss functions. However, the models trained with focal Tversky loss and the Elu activation
produce overall better outputs. Our proposed approach performs better in the overall
sense, except that the percentage of average good contour detection for the endocardium
is less than the reported results of [33,34]. The performance evaluation parameters for
focal Tversky loss and Relu activation in reported in Tables 9–12. The evaluation with
different loss and activation functions are presented in Tables 13–18. The comparison of
the clinical parameters, such as EDV, ESV, and EF, are presented in Table 19. The clinical
parameters of all models are also quite promising. However, the models trained with
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region-based loss functions produce better outputs. Figures 22–24. illustrate the regression
and Bland–Altman plots of ESV, EDV, and EF using test dataset when the model was
trained using focal Tversky loss and Elu activation function. The regression plot calculates
the correlation between the predicted output with the manual. The graph between manual
and auto volume of ESV is correlated with a value of 99.60. Similarly, the plot of EDV and
EF are correlated with a value of 99.44 and 98.61, respectively. The obtained outputs show
a strong agreement between manual contours and the predicted contours. The output of
the Bland–Altman also shows a strong agreement between manual and auto contours.

Table 9. Performance evaluation parameters for focal Tversky loss and Elu activation.

Patient
Group

Cases
Average Contour

Detection (%)
Average Good

Contour Detection (%)
Average Perpendicular

Distance (mm) Dice Metrics

Endo Epi Endo Epi Endo Epi Endo Epi

N 9 100 100 96.45 96.38 1.68 1.70 0.91 0.95

HYP 12 100 100 97.34 96.69 1.72 1.90 0.90 0.94

HF-NI 12 100 100 93.05 92.85 1.87 1.78 0.93 0.95

HF-I 12 100 100 97.75 99.24 1.69 1.49 0.94 0.96

Overall 45 100 100 96.1 (2.14) 96.3 (2.63) 1.74 (0.09) 1.7 (0.17) 0.92 (0.01) 0.95 (0.01)

Table 10. Performance evaluation parameters for focal Tversky loss and Relu activation.

Patient
Group

Cases
Average Contour

Detection (%)
Average Good

Contour Detection (%)
Average Perpendicular

Distance (mm) Dice Metrics

Endo Epi Endo Epi Endo Epi Endo Epi

N 9 100 100 96.04 84.76 1.62 1.98 0.91 0.94

HYP 12 100 100 96.23 85.72 1.62 2.13 0.91 0.94

HF-NI 12 100 100 91.04 88.11 1.88 1.90 0.93 0.95

HF-I 12 100 100 97.37 97.60 1.61 1.86 0.94 0.95

Overall 45 100 100 95.2 (2.82) 89.0 (5.87) 1.68 (0.13) 1.97 (0.12) 0.92 (0.02) 0.95 (0.005)

Table 11. Performance evaluation parameters for Tversky loss and Elu activation.

Patient
Group

Cases
Average Contour

Detection (%)
Average Good Contour

Detection (%)
Average Perpendicular

Distance (mm) Dice Metrics

Endo Epi Endo Epi Endo Epi Endo Epi

N 9 100 100 97.75 100 1.63 1.64 0.91 0.95

HYP 12 100 100 95.53 91.93 1.70 2.07 0.91 0.93

HF-NI 12 100 100 90.71 87.64 1.91 1.91 0.93 0.95

HF-I 12 100 100 98.21 95.01 1.51 1.63 0.95 0.96

Overall 45 100 100 95.6 (3.43) 93.65 (5.20) 1.69 (0.17) 1.81 (0.21) 0.92 (0.01) 0.94 (0.01)
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Table 12. Performance evaluation parameters for Tversky loss and Relu activation.

Patient
Group

Cases
Average Contour

Detection (%)
Average Good Contour

Detection (%)
Average Perpendicular

Distance (mm) Dice Metrics

Endo Epi Endo Epi Endo Epi Endo Epi

N 9 100 100 98.40 93.13 1.95 2.11 0.90 0.93

HYP 12 100 100 95.88 95.10 1.95 2.22 0.89 0.93

HF-NI 12 100 100 88.44 83.79 1.95 1.92 0.93 0.94

HF-I 12 100 100 96.62 92.32 1.91 2.00 0.93 0.95

Overall 45 100 100 94.8 (4.39) 91.1 (5.00) 1.94 (0.02) 2.06 (0.13) 0.9 (0.20) 0.93 (0.01)

Table 13. Performance evaluation parameters for binary cross-entropy loss and Elu activation.

Patient
Group

Cases
Average Contour

Detection (%)
Average Good Contour

Detection (%)
Average Perpendicular

Distance (mm) Dice Metrics

Endo Epi Endo Epi Endo Epi Endo Epi

N 9 100 100 99.26 98.88 1.72 1.88 0.91 0.94

HYP 12 100 100 93.32 88.49 1.64 1.99 0.91 0.94

HF-NI 12 100 100 93.20 80.97 2.20 1.99 0.92 0.94

HF-I 12 100 100 98.31 95.51 1.67 1.85 0.94 0.95

Overall 45 100 100 96.02 (3.21) 90.96 (7.94) 1.8 (0.26) 1.92 (0.07) 0.9 (0.01) 0.94 (0.005)

Table 14. Performance evaluation parameters for binary cross-entropy loss and Relu activation.

Patient
Group

Cases
Average Contour

Detection (%)
Average Good Contour

Detection (%)
Average Perpendicular

Distance (mm) Dice Metrics

Endo Epi Endo Epi Endo Epi Endo Epi

N 9 100 100 97.12 100 2.19 1.83 0.88 0.94

HYP 12 100 100 91.22 92.99 2.03 2.01 0.89 0.94

HF-NI 12 100 100 89.07 87.00 2.22 1.76 0.92 0.95

HF-I 12 100 100 94.73 92.14 1.87 1.51 0.93 0.96

Overall 45 100 100 93.04 (3.58) 93.03 (5.34) 2.07 (0.16) 1.78 (0.21) 0.90 (0.02) 0.95 (0.009)

Table 15. Performance evaluation parameters for log-cosh dice loss and Elu activation.

Patient
Group

Cases
Average Contour

Detection (%)
Average Good Contour

Detection (%)
Average Perpendicular

Distance (mm) Dice Metrics

Endo Epi Endo Epi Endo Epi Endo Epi

N 9 100 100 97.28 97.22 1.94 2.15 0.90 0.93

HYP 12 100 100 94.69 89.78 1.77 2.17 0.90 0.93

HF-NI 12 100 100 93.18 84.24 2.00 2.22 0.92 0.94

HF-I 12 100 100 98.73 95.02 1.69 1.90 0.94 0.95

Overall 45 100 100 95.97 (2.50) 91.57 (5.79) 1.85 (0.14) 2.11 (0.14) 0.91 (0.02) 0.94 (0.009)
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Table 16. Performance evaluation parameters for log-cosh dice loss and Relu activation.

Patient
Group

Cases
Average Contour

Detection (%)
Average Good Contour

Detection (%)
Average Perpendicular

Distance (mm) Dice Metrics

Endo Epi Endo Epi Endo Epi Endo Epi

N 9 100 100 95.30 90.62 1.79 2.21 0.90 0.93

HYP 12 100 100 95.18 86.73 2.00 2.39 0.88 0.92

HF-NI 12 100 100 91.93 84.41 2.20 2.26 0.92 0.94

HF-I 12 100 100 87.55 91.37 1.96 1.98 0.93 0.95

Overall 45 100 100 92.49 (3.64) 88.28 (3.29) 1.99 (0.17) 2.21 (0.17) 0.90 (0.02) 0.93 (0.01)

Table 17. Comparison of LV endocardium and epicardium segmentation performance of all models
proposed in this research.

Loss Function + Activation Function
Dice Metrics Average Good Contour

Detection (%)
Average Perpendicular

Distance (mm)

Endo Epi Endo Epi Endo Epi

Focal Tversky Loss + Elu 0.93 (0.01) 0.96 (0.01) 96.1 (2.14) 96.3 (2.63) 1.74 (0.09) 1.7 (0.17)

Focal Tversky Loss + Relu 0.92 (0.02) 0.95 (0.005) 95.2 (2.82) 89.0 (5.87) 1.68 (0.13) 1.97 (0.12)

Tversky Loss + Elu 0.92 (0.01) 0.94 (0.01) 95.6 (3.43) 93.65 (5.20) 1.69 (0.17) 1.81 (0.21)

Tversky Loss + Relu 0.9 (0.20) 0.93 (0.01) 94.8 (4.39) 91.1 (5.00) 1.94 (0.02) 2.06 (0.13)

Dice Loss + Elu 0.92 (0.02) 0.94 (0.02) 95.3 (2.55) 92.6 (4.91) 1.79 (0.21) 1.93 (0.20)

Dice Loss + Relu 0.92 (0.02) 0.95 (0.01) 93.4 (4.61) 91.4 (5.63) 1.77 (0.11) 1.90 (0.12)

Log-Cosh Dice Loss + Elu 0.91 (0.02) 0.94 (0.009) 95.97 (2.50) 91.57 (5.79) 1.85 (0.14) 2.11 (0.14)

Log-Cosh Dice Loss + Relu 0.9 (0.02) 0.93 (0.01) 92.49 (3.64) 88.28 (3.29) 1.99 (0.17) 2.21 (0.17)

Binary Cross-Entropy Loss + Elu 0.9 (0.01) 0.94 (0.005) 96.02 (3.21) 90.96 (7.94) 1.8 (0.26) 1.92 (0.07)

Binary Cross-Entropy Loss + Relu 0.9 (0.02) 0.95 (0.009) 93.04 (3.58) 93.03 (5.34) 2.07 (0.16) 1.78 (0.21)

Table 18. Comparison of LV endocardium and epicardium segmentation performance between our
proposed approach and previous research using the same dataset.

Authors
Average Good Contour

Detection (%)
Average Perpendicular

Distance (mm) Dice Metrics

Endo Epi Endo Epi Endo Epi

Proposed (U-Net with Tversky Focal
Loss and Elu Activation) 96.15 96.29 1.74 1.72 0.92 0.95

Queiros [33] 92.70 95.40 1.76 1.80 0.90 0.94

Ngo and Carneiro [34] 97.91 - 2.08 - 0.90 -

Hu [35] 91.06 91.21 2.24 2.19 0.89 0.94

Liu [36] 91.17 90.78 2.36 2.19 0.88 0.94

Huang [37] 79.20 83.90 2.16 2.22 0.89 0.93

Irshad [38] - - 2.1 3.1 0.91 0.91

Overall

Proposed (U-Net with Tversky Focal
Loss and Elu Activation) 96.22 1.73 0.94

Ngo and Lu [39] 95.71 2.34 0.88

Poudel FCN [40] 94.78 2.14 0.902

Poudel RFCN [40] 95.34 2.05 0.9
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Table 19. Comparison of the clinical metrics of all models proposed in this research.

Loss Function + Activation Function
EF ESV EDV

Manul Auto Manual Auto Manual Auto

Focal Tversky Loss + Elu 38.85 36.77 111.48 117.73 182.3 186.19

Focal Tversky Loss + Relu 38.85 36.52 111.48 118.59 182.3 187.18

Tversky Loss + Elu 38.85 36.87 111.48 119.88 182.3 189.88

Tversky Loss + Relu 38.85 36.99 111.48 119.66 182.3 189.90

Dice Loss + Elu 38.85 30.73 111.48 120.33 182.3 173.73

Dice Loss + Relu 38.85 30.69 111.48 120.59 182.3 173.98

Log-Cosh Dice Loss + Elu 38.85 29.68 111.48 121.05 182.3 172.13

Log-Cosh Dice Loss + Relu 38.85 29.63 111.48 121.15 182.3 172.16

Binary Cross-Entropy Loss + Elu 38.85 28.93 111.48 122.35 182.3 172.17

Binary Cross-Entropy Loss + Relu 38.85 28.74 111.48 123.38 182.3 173.15
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Figure 22. Linear regression plot (Top) and Bland–Altman plot (Bottom) for ESV. Figure 22. Linear regression plot (Top) and Bland–Altman plot (Bottom) for ESV.
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Figure 24. Linear regression plot (Top) and Bland-Altman plot (Bottom) for EF.

4. Conclusions

In this research, we address the issue of LV segmentation in CMRI. The proposed
approach uses an improved U-Net model that uses context-enabled segmentation. The U-
Net model was evaluated with different hyperparameters, such as (i) batch size, (ii) batch
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normalization, (iii) activation function, (iv) loss function, and (v) dropout. Since loss functions
have a great impact on the segmentation accuracy. Therefore, many loss functions were
considered for this research. The performance of the loss functions on segmentation accuracy
was deeply analysed. Almost all loss functions produce quite promising results. However, the
overall performance of the U-Net model with focal Tversky loss is better than the others as it
outperformed other techniques, as shown in Table 18. The performance of all models was
evaluated in terms of dice metrics, average good contour detection, and average perpendicular
distance, and U-Net Model with focal Tversky loss achieved the highest values of these
evaluation metrics. The average good contour achieved 96.15 for endocardium, whereas it
achieved 96.29 for epicardium segmentation. The average perpendicular distance achieved
1.74 and 1.72 for endocardium and epicardium, respectively. The dice metric of 0.92 and
0.94 for endocardium and epicardium is highest compared to other techniques applied to
the dataset. While the clinical performance was evaluated in terms of end systolic volume,
end diastolic volume, and ejection fraction. The clinical parameters were also validated using
regression and Bland–Altman plots. The segmentation of complete cardiac anatomy, which
includes the right and left ventricle and left atrium, is the subject of our future research.

Author Contributions: Conceptualization, A.B. and P.M.; methodology, A.B.; software, A.B.; valida-
tion, A.B., P.M. and A.G.; formal analysis, A.B.; investigation, P.M. and A.G.; resources, A.B.; data
curation, A.B. and P.M.; writing—original draft preparation, A.B.; writing—review and editing, A.B.,
P.M. and A.G.; visualization, A.B.; supervision, P.M. and A.G.; project administration, P.M. and A.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The Authors have used the publicly archived datasets which was
made available on request by Sunnybrook Health Sciences Centre. The link for the dataset is
http://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/ (accessed on 15 June 2018).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. White, H.D.; Norris, R.M.; Brown, M.A.; Brandt, P.W.; Whitlock, R.M.; Wild, C.J. Left ventricular end-systolic volume as the major

determinant of survival after recovery from myocardial infarction. Circulation 1987, 76, 44–51. [CrossRef]
2. Tan, L.K.; Liew, Y.M.; Lim, E.; McLaughlin, R.A. Convolutional neural network regression for short-axis left ventricle segmentation

in cardiac cine MR sequences. Med. Image Anal. 2017, 39, 78–86. [CrossRef]
3. Sander, J.; de Vos, B.D.; Išgum, I. Automatic segmentation with detection of local segmentation failures in cardiac MRI. Sci. Rep.

2020, 10, 21769. [CrossRef] [PubMed]
4. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.; van Ginneken, B.; Sánchez, C.I. A

survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef]
5. Leiner, T.; Rueckert, D.; Suinesiaputra, A.; Baeßler, B.; Nezafat, R.; Išgum, I.; Young, A.A. Machine learning in cardiovascular

magnetic resonance: Basic concepts and applications. J. Cardiovasc. Magn. Reson. 2019, 21, 61. [CrossRef] [PubMed]
6. Bernard, O.; Lalande, A.; Zotti, C.; Cervenansky, F.; Yang, X.; Heng, P.A.; Cetin, I.; Lekadir, K.; Camara, O.; Ballester, M.A.; et al.

Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE
Trans. Med. Imaging 2018, 37, 2514–2525. [CrossRef] [PubMed]

7. Suinesiaputra, A.; Bluemke, D.A.; Cowan, B.R.; Friedrich, M.G.; Kramer, C.M.; Kwong, R.; Plein, S.; Schulz-Menger, J.; Westenberg,
J.J.; Young, A.A.; et al. Quantification of LV function and mass by cardiovascular magnetic resonance: Multi-center variability
and consensus contours. J. Cardiovasc. Magn. Reson. 2015, 17, 1–8. [CrossRef]

8. Khened, M.; Kollerathu, V.A.; Krishnamurthi, G. Fully convolutional multi-scale residual DenseNets for cardiac segmentation
and automated cardiac diagnosis using ensemble of classifiers. Med. Image Anal. 2019, 51, 21–45. [CrossRef] [PubMed]

9. Wu, B.; Fang, Y.; Lai, X. Left ventricle automatic segmentation in cardiac MRI using a combined CNN and U-net approach.
Comput. Med. Imaging Graph. 2020, 82, 101719. [CrossRef] [PubMed]

10. Cui, H.; Yuwen, C.; Jiang, L.; Xia, Y.; Zhang, Y. Multiscale attention guided U-Net architecture for cardiac segmentation in
short-axis MRI images. Comput. Methods Programs Biomed. 2021, 206, 106142. [CrossRef] [PubMed]

11. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 60, 84–90. [CrossRef]

12. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015, Boston, MA, USA, 7–12
June 2015; pp. 1–9.

http://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/
http://doi.org/10.1161/01.CIR.76.1.44
http://doi.org/10.1016/j.media.2017.04.002
http://doi.org/10.1038/s41598-020-77733-4
http://www.ncbi.nlm.nih.gov/pubmed/33303782
http://doi.org/10.1016/j.media.2017.07.005
http://doi.org/10.1186/s12968-019-0575-y
http://www.ncbi.nlm.nih.gov/pubmed/31590664
http://doi.org/10.1109/TMI.2018.2837502
http://www.ncbi.nlm.nih.gov/pubmed/29994302
http://doi.org/10.1186/s12968-015-0170-9
http://doi.org/10.1016/j.media.2018.10.004
http://www.ncbi.nlm.nih.gov/pubmed/30390512
http://doi.org/10.1016/j.compmedimag.2020.101719
http://www.ncbi.nlm.nih.gov/pubmed/32325284
http://doi.org/10.1016/j.cmpb.2021.106142
http://www.ncbi.nlm.nih.gov/pubmed/34004500
http://doi.org/10.1145/3065386


Electronics 2022, 11, 3594 34 of 35

13. Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-net and its variants for medical image segmentation: A review of
theory and applications. IEEE Access 2021, 9, 82031–82057. [CrossRef]

14. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference
on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241.

15. Moradi, S.; Oghli, M.G.; Alizadehasl, A.; Shiri, I.; Oveisi, N.; Oveisi, M.; Maleki, M.; Dhooge, J. MFP-Unet: A novel deep learning
based approach for left ventricle segmentation in echocardiography. Phys. Med. 2019, 67, 58–69. [CrossRef] [PubMed]

16. Baldeon-Calisto, M.; Lai-Yuen, S.K. AdaResU-Net: Multiobjective adaptive convolutional neural network for medical image
segmentation. Neurocomputing 2020, 392, 325–340. [CrossRef]

17. Khened, M.; Alex, V.; Krishnamurthi, G. Densely connected fully convolutional network for short-axis cardiac cine MR image
segmentation and heart diagnosis using random forest. In International Workshop on Statistical Atlases and Computational Models of
the Heart; Springer: Cham, Switzerland, 2017; pp. 140–151.

18. Zotti, C.; Luo, Z.; Humbert, O.; Lalande, A.; Jodoin, P.M. GridNet with automatic shape prior registration for automatic MRI
cardiac segmentation. In International Workshop on Statistical Atlases and Computational Models of the Heart; Springer: Cham,
Switzerland, 2017; pp. 73–81.

19. Mehta, R.; Sivaswamy, J. M-net: A convolutional neural network for deep brain structure segmentation. In Proceedings of
the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017;
pp. 437–440.

20. Baumgartner, C.F.; Koch, L.M.; Pollefeys, M.; Konukoglu, E. An exploration of 2D and 3D deep learning techniques for cardiac
MR image segmentation. In International Workshop on Statistical Atlases and Computational Models of the Heart; Springer: Cham,
Switzerland, 2017; pp. 111–119.

21. Patravali, J.; Jain, S.; Chilamkurthy, S. 2D-3D fully convolutional neural networks for cardiac MR segmentation. In International
Workshop on Statistical Atlases and Computational Models of the Heart; Springer: Cham, Switzerland, 2017; pp. 130–139.

22. Isensee, F.; Jaeger, P.F.; Full, P.M.; Wolf, I.; Engelhardt, S.; Maier-Hein, K.H. Automatic cardiac disease assessment on cine-MRI via
time-series segmentation and domain specific features. In International Workshop on Statistical Atlases and Computational Models of
the Heart; Springer: Cham, Switzerland, 2017; pp. 120–129.

23. Yang, X.; Bian, C.; Yu, L.; Ni, D.; Heng, P.A. Class-balanced deep neural network for automatic ventricular structure segmen-
tation. In International Workshop on Statistical Atlases and Computational Models of the Heart; Springer: Cham, Switzerland, 2017;
pp. 152–160.

24. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning 2015, Lille, France, 6–11 July 2015; pp. 448–456.

25. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

26. Cardiac Atlas Project. Available online: https://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/ (accessed on 15 June 2018).
27. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015,

arXiv:1505.00853.
28. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv

2015, arXiv:1511.07289.
29. Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational

Intelligence in Bioinformatics and Computational Biology (CIBCB), Online, 27–29 October 2020; pp. 1–7.
30. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
31. Tran, P.V. A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv 2016, arXiv:1604.00494.
32. Veress, A.; Phatak, N.; Weiss, J. The Handbook of Medical Image Analysis: Segmentation and Registration Models; Springer: New York,

NY, USA, 2005; Volume 3.
33. Queirós, S.; Barbosa, D.; Heyde, B.; Morais, P.; Vilaça, J.L.; Friboulet, D.; Bernard, O.; D’hooge, J. Fast automatic myocardial

segmentation in 4D cine CMR datasets. Med. Image Anal. 2014, 18, 1115–1131. [CrossRef]
34. Ngo, T.A.; Carneiro, G. Left ventricle segmentation from cardiac MRI combining level set methods with deep belief networks.

In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013;
pp. 695–699.

35. Hu, H.; Liu, H.; Gao, Z.; Huang, L. Hybrid segmentation of left ventricle in cardiac MRI using gaussian-mixture model and
region restricted dynamic programming. Magn. Reson. Imaging 2013, 31, 575–584. [CrossRef] [PubMed]

36. Liu, H.; Hu, H.; Xu, X.; Song, E. Automatic left ventricle segmentation in cardiac MRI using topological stable-state thresholding
and region restricted dynamic programming. Acad. Radiol. 2012, 19, 723–731. [CrossRef] [PubMed]

37. Huang, S.; Liu, J.; Lee, L.C.; Venkatesh, S.K.; Teo, L.L.; Au, C.; Nowinski, W.L. An image-based comprehensive approach for
automatic segmentation of left ventricle from cardiac short axis cine mr images. J. Digit. Imaging 2011, 24, 598–608. [CrossRef]
[PubMed]

38. Irshad, M.; Muhammad, N.; Sharif, M.; Yasmeen, M. Automatic segmentation of the left ventricle in a cardiac MR short axis
image using blind morphological operation. Eur. Phys. J. Plus 2018, 133, 148. [CrossRef]

http://doi.org/10.1109/ACCESS.2021.3086020
http://doi.org/10.1016/j.ejmp.2019.10.001
http://www.ncbi.nlm.nih.gov/pubmed/31671333
http://doi.org/10.1016/j.neucom.2019.01.110
https://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/
http://doi.org/10.1016/j.media.2014.06.001
http://doi.org/10.1016/j.mri.2012.10.004
http://www.ncbi.nlm.nih.gov/pubmed/23245907
http://doi.org/10.1016/j.acra.2012.02.011
http://www.ncbi.nlm.nih.gov/pubmed/22465463
http://doi.org/10.1007/s10278-010-9315-4
http://www.ncbi.nlm.nih.gov/pubmed/20623156
http://doi.org/10.1140/epjp/i2018-11941-0


Electronics 2022, 11, 3594 35 of 35

39. Ngo, T.A.; Lu, Z.; Carneiro, G. Combining deep learning and level set for the automated segmentation of the left ventricle of the
heart from cardiac cine magnetic resonance. Med. Image Anal. 2017, 35, 159–171. [CrossRef]

40. Poudel, R.P.; Lamata, P.; Montana, G. Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In
Reconstruction, Segmentation, and Analysis of Medical Images; Springer: Cham, Switzerland, 2016; pp. 83–94.

http://doi.org/10.1016/j.media.2016.05.009

	Introduction 
	Materials and Methods 
	Data 
	Automatic Segmentation of Cardiac MRI 
	Number of Convolution Layers 
	Number of Filters 
	Batch Normalization 
	Dropout Layers 
	Loss Functions 
	Optimization 

	Performance Evaluation 
	Segmented Accuracy Assessment Metrics 
	Clinical Metrics 


	Results and Discussion 
	Data Pre-Processing 
	Data Preparation and Training 
	Illustrated Results 
	Quantitative Analysis 

	Conclusions 
	References

