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Abstract: Accurately predicting power consumption is essential to ensure a safe power supply. Var-
ious technologies have been studied to predict power consumption, but the prediction of power
consumption using deep learning models has been quite successful. However, in order to predict
power consumption by utilizing deep learning models, it is necessary to find an appropriate set of
hyper-parameters. This introduces the problem of complexity and wide search areas. The power
consumption field should be accurately predicted in various distributed areas. To this end, a cus-
tomized consumption prediction deep learning model is needed, which is essential for optimizing
the hyper-parameters that are suitable for the environment. However, typical deep learning model
users lack the knowledge needed to find the optimal values of parameters. To solve this problem, we
propose a method for finding the optimal values of parameters for learning. In addition, the layer
parameters of deep learning models are optimized by applying genetic algorithms. In this paper,
we propose a hyper-parameter optimization method that solves the time and cost problems that
depend on existing methods or experiences. We derive a hyper-parameter optimization plan that
solves the existing method or experience-dependent time and cost problems. As a result, the RNN
model achieved a 30% and 21% better mean squared error and mean absolute error, respectively,
than did the arbitrary deep learning model, and the LSTM model was able to achieve 9% and 5%
higher performance.

Keywords: genetic algorithm; deep learning; power consumption prediction; hyper-parameter;
recurrent neural network; long short-term memory

1. Introduction

In many countries, power consumption is increasing due to rapid economic growth
and population growth [1]. Electrical energy is consumed in tandem with its production
due to its physical characteristics, so the accurate prediction of power demand is extremely
important for a stable power supply. For accurate power demand, power consumption is
predicted through AMI and IoT sensors in cities, buildings and furniture. Recently, ICT
technology has been extensively applied to the energy field, and smart grids (intelligent
power grids) that use energy efficiently are being implemented [2,3]. This means that
a new electricity consumption ecosystem is being created, and at its center is the smart
grid. It is time for efficient power management in society as a whole to achieve carbon
neutrality. To this end, it is necessary to fuse ICT technology to predict power consumption
more accurately, efficiently, and according to patterns. Various technologies are being
studied to predict power consumption. Previously, time series and prediction models
were generally used [4]. ARIMA-based models [5], statistical models using single time
series data or multivariate linear regression models using multivariate data related to
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power demand have generally been used to predict consumption. However, predictions by
nonlinear models are more efficient than linear models. Machine learning and deep learning
models are generalized nonlinear predictions, and their frequency of use in power demand
prediction research has been increasing [5,6]. The structure of deep learning models is
divided into an input layer, a hidden layer and an output layer by statistical learning
algorithms. Each layer has a weight and allows the resulting value to be approximated
to the actual value according to the weight. The structure of this deep learning model
is determined by a number of hyper-parameters. The model must have an appropriate
structure to ensure optimal performance. However, the optimal hyper-parameter value
is irregular and highly influenced by the user’s experience [7]. There is also a very large
search space for finding the optimal structure. To this end, it is necessary for researchers
to design many deep learning models, or optimal values can be derived with high time
and monetary costs [8]. There are traditional methods for random search and grid search,
but the risk of falling into local optima is high. Genetic algorithms are methodologies
described in Darwin’s theory of evolution [9,10]. The objective is to derive excellent genes
through genetic mechanisms and natural selection. In order to find the optimal solution to
complex algorithms through natural evolution, it is appropriate to find the optimal solution
using genetic algorithms. Deriving the optimal hyper-parameter value of deep learning
models using genetic algorithms is a lightweight procedure that can achieve appropriate
performance without requiring expertise or high time and cost consumption. In this study,
the optimal hyper-parameter values of the deep learning model were derived using the
genetic algorithm to obtain higher performance than the deep learning model depending
on the user’s empirical evidence. The proposed method also obtained higher performance
than a random search. It was confirmed that deriving the optimal hyper-parameter value
of the deep learning model using genetic algorithms can enable appropriate performance
without requiring expertise or high time and cost consumption. The composition of this
paper is as follows. Section 2 looks at existing methods for predicting power consumption
and optimizing prediction models. Section 3 proposes a method for optimizing power
consumption prediction models. Section 4 compares the performance of the proposed
method. Finally, Section 5 presents the conclusions of this study.

2. Related Works
2.1. Deep Learning Model

In recent years, many researchers have investigated various algorithms for predicting
actual power demand. The deep learning model, called the artificial neural network,
includes a forward neural network and a backpropagation neural network consisting of
nonlinear functions, such as activation functions [11,12]. These deep learning models
are used in various ways, such as Convolutional, Recurrent and Reinforcement models,
according to the characteristics of the data and the domains. Power consumption prediction
is being developed mainly with Recurrent Neural Networks (RNNs) [13].

The RNN is a cyclic neural network that is linked to the next hidden layer of the neural
network according to time, and it is a model that considers the impact of previous samples
on the next sample [14]. Because the prediction of power consumption determines the
future according to seasonality and time, this paper uses a one-way RNN structure. RNN
models can obtain power demand values that determine and predict whether historical
data affect previous data according to the weight Wh between weights W1, W2 and neural
networks, as shown in Figure 1.

Long Short-Term Memory (LSTM) is a neural network that compensates for the short-
comings that existing RNN models have, including difficulty remembering information
that is far from the predicted values [15]. The LSTM model layer consists of five structures:
the Cell State, Forget Gate, Input Gate, Cell State Update and Output Gate. The equation
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for each module is as follows. Figure 1b shows a simple LSTM structure. The portion to
which each of the four equations is applied inside LSTM can be identified.

ft = σ
(

W f ·[ht−1, xt] + b f

)
(1)

it = σ(Wt·[ht−1, xt] + bi), C̃t = tan h(WC·dht−1, xte+ bc (2)

Ct = ft ∗ Ct−1 + it ∗ C̃t (3)

ot = σ(Wo[ht−1, xt] + bo), ht = ot ∗ tan h(Ct) (4)
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2.2. Hyper-Parameters of Deep Learning

As mentioned in the previous section, the deep learning model has parameters for
optimization, such as various layers and activation functions. Hyper-parameters can change
the performance of the model and prevent over-fitting or under-fitting. Activation functions
can be used to introduce nonlinearity, especially in algorithms. At first, nonlinearity
was introduced through the tan h activation function, and many deep learning models
were developed with the advent of the Rectified Linear Unit (ReLU). However, the ReLU
activation function treats all negative numbers as zero. Activation functions Leaky RELU
and ELU have also been introduced and are used to activate negative numbers [16,17]. The
two activation functions are utilized by multiplying a small parameter (a, alpha value) or
0.1 without treating negative values as zero. In addition, the optimization algorithm for
optimizing the model is an algorithm for reducing the loss of the model. It is generally called
Gradient Descent (GD). However, GD’s optimization problem is that it requires a lot of time.
Stochastic Gradient Descent (SGD) has generally been used to solve this problem. SGD
allows faster convergence by randomly selecting data samples and calculating the slope
for one sample [18]. Based on SGD, the ADAM optimization function can appropriately
select the step size and optimization direction for optimization by estimating the mean and
variance values [19]. ADAMAX is an algorithm extended to Lp Norm from a method for
optimizing the learning rate based on the L2 Norm of the ADAM optimization function [20].
Thus, for deep learning, there are various hyper-parameters that must be generalized by
preventing over-fitting and under-fitting, such as learning rate and dropout, as well as
various activation functions and optimization functions.

2.3. Neural Architecture Search

NAS stands for Neural Architecture Search and is a research field that has emerged
with deep learning models [21]. Deep-learning-based models also need to have a network
structure in order to achieve appropriate performance according to the given data or a
domain. More specifically, the NAS automatically designs the structure of the network
model. Quickly finding a network structure that can optimize the performance of the model
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through NAS can reduce the time and cost of the training process. To optimize the network
model structure, measures such as reinforcement learning and Bayesian optimization, as
well as random search and grid search, are used. However, these methods consume a lot of
time [22,23]. NAS may need to design a layer structure in a complex area, but it can also
adjust the number of units in a fixed layer to derive lightweight and optimal performance
with an appropriate number of parameters.

2.4. Genetic Algorithm

Research using machine learning techniques or genetic algorithms to accurately predict
existing power demand continues. Genetic algorithms derive effectiveness from various
optimization problems [9,10,24–26]. Genetic algorithms use populations of multiple po-
tential solutions to navigate, transfer excellent solutions to the next generation, and thus
converge on global solutions. The theory of genetic algorithms is easy to use, and the
search for optimal solutions is excellent. Therefore, the advantage is that it can be applied
in various ways to optimization problems and can effectively be applied to problems with
large search spaces or many constraints.

The genetic algorithm is generally composed of four parts: generation, population,
mutation and crossover. Each generation consists of a population capable of solving
problems. Parent chromosomes list the best genes that satisfy the fitness function among
the genes that make up the population. The evaluation function is used to measure the
performance and fit of the chromosomes. Excellent genes are selected using an evaluation
function. The next generation is created by crossing over the best genes. This allows only
the best chromosomes to remain and satisfies the evaluation function as generations pass.
However, because the algorithm can fall into regional optimization, it generates a mutation
to derive the global optimization. Thus, one of the characteristics of genetic algorithms
is not to limit a single chromosome to a search space, but to have a large search space,
called a population of many chromosomes, which reduces the probability of falling into
a regional solution. The number of chromosomes constituting the generation may be
variously configured according to an optimization problem.

2.5. Genetic-Algorithm-Based Optimal Model

The genetic-algorithm-based optimal model not only optimizes learning parameters
using genetic algorithms, but it also optimizes the structural parameters of deep learning
models. Models optimized using genetic algorithms generally achieve higher performance
by automatically optimizing model structure parameters without investing much time or
cost based on user experience. Through this process, the optimal model for data character-
istics is generated, rather than comparing deep learning models with different parameter
counts with each other and comparing the overall layer model structure.

3. Deep Learning Network and Hyper-Parameter Optimization
3.1. Genetic Algorithm for the Deep Learning Model

The network architecture of the deep learning model for power consumption pre-
diction, as well as the genetic algorithm structure for hyper-parameter optimization, are
shown in Figure 2. The network architecture and hyper-parameter coefficients according
to the flowchart are determined as shown in Figure 3. The genetic algorithm proposed in
this paper allows us to find not only the learning coefficient but also the optimal value
of the layer coefficient of the deep learning model. We initialize the first generation for
the optimization of network structure and hyper-parameter optimization through genetic
algorithms. One generation consists of the number of units in the layer, the activation
function (RNN Model), the optimization function, the batch size, the dropout coefficient
and the learning rate. For hybridization, the performance is measured using an evaluation
function, and a new gene is generated by crossbreeding the higher genes. The genetic
makeup of the exact RNN model is shown in Table 1, and the genetic makeup of the LSTM
model is shown in Table 2.
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Table 1. RNN gene: hyper-parameters.

Gene Min Max

Layer 1 Unit 20 50
Layer 2 Unit 20 50
Layer 3 Unit 20 50
Activation
Function tan h Leaky ReLU ELU

Optimizer SGD ADAM ADAMAX
Dropout 0.01 0.2

Batch size 20 50
Learning Rate 0.001 0.015
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Table 2. LSTM gene: hyper-parameters.

Gene Min Max

Layer 1 Unit 20 50
Layer 2 Unit 20 50
Layer 3 Unit 20 50
Optimizer SGD ADAM ADAMAX
Dropout 0.01 0.2

Batch size 20 50
Learning Rate 0.001 0.015

To quickly find the optimal global solution for the genetic algorithm, the number
of Epochs was designated as five. After learning five times, a test dataset was utilized
to compare the mean squared error (MSE) performance; therefore, the best chromosome
could be selected. A new generation was created by selecting an upper chromosome and
hybridizing the two upper chromosomes at an arbitrary ratio. After generating a new
generation by selecting a higher chromosome, a mutation value was added to at least one
randomly designated chromosome. The range of mutant chromosome values for applying
mutant chromosomes to new generations is shown as follows in Table 3.

Table 3. Mutation values.

Gene Min Max

Layer 1 Unit −10 10
Layer 2 Unit −10 10
Layer 3 Unit −10 10

Activation Function Random
Optimizer Random
Dropout −0.1 0.1

Batch Size 100 200
Learning Rate −0.1 0.1

A mutated chromosome applies a random value between the minimum and maximum
values expressed in Table 3 to the new chromosome to generate the next generation to
which the mutation is applied.

3.2. Dataset

In this study, the data used in the deep learning model for optimizing the actual power
consumption prediction were the power consumption data of the construction of Building
No. 7 at Chonnam National University. The data consisted of 11,232 data points collected
on an hourly basis over a total of 468 days from 1 January 2021 to 13 April 2022.

Figure 4 shows the normalized data. In order to utilize actual power data, outliers
were not removed or used. In order to use the power consumption data for deep learning,
the window size was designated and configured; therefore, the power consumption could
be predicted by viewing the window size. To this end, the window size was designated as
20. For the generalization of the general deep learning model, the dataset was classified
as 80% training data and 20% testing data. The dataset configuration was approximately
as shown in Table 4. The power consumption data consisted of a minimum of 0 kWh to a
maximum of 297.49 kWh. This introduced a problem in which a long time was required
during the optimization process when learning with the deep learning model, or there may
have been bias toward changes in some values. To prevent this, the data were normalized
to the training dataset and applied to the testing dataset.
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Table 4. Configuring the dataset used for training.

Training Dataset Test Dataset

Input Target Input Target
(8985, 20, 1) (8985, 1) (2227, 20, 1) (2227, 1)

4. Results and Discussion
4.1. Experimental Setting

Neural networks were created to implement the method proposed in this study
using Python and Keras bases. This learning environment has been studied using high-
performance servers that support the Intel i9 X-series CPU, 128 GB RAM, Ubuntu 18.04
and the NVIDIA RTX 3090 GPU. A total of 50 generations of genetic algorithms were
computed, and the parent chromosome for hybridization was set to five genes. The
evaluation function compared the performance of the chromosomes using the MSE. For
the performance comparison, the learning parameters of the existing RNN model, LSTM
model, genetic-algorithm-based RNN, LSTM model and random-search-based RNN model
are shown in Table 5. As shown in Table 5, the RNN model sets the layer unit to 40, the
activation function to tan h, the optimizer to ADAM, the dropout to 0.15, the batch size
to 10 and the learning rate to 0.01. The LSTM model was set in the same way, except for
the active function. As a result, the optimizer for both random search and the proposed
method derived the ADAM function. The hyper-parameters derived by the random search
method and the proposed method were generally large for layer units 1 and 2, and they
were small for layer 3 unit. In the LSTM model, the derived layer 2 unit was small. The
dropout was smaller than that of the heuristic model, and the batch size was large. The
learning rate was very small compared to that of the previous one. It can be seen that the
biggest difference was in the active function, batch size and learning rate.

Table 5. Performance comparison of existing deep learning models and optimized deep learning models.

Gene RNN Random-Search-Based
RNN

Genetic-Based
RNN Model LSTM Genetic-Based

LSTM Model

Layer 1 Unit 40 44 42 40 50
Layer 2 Unit 40 47 59 40 20
Layer 3 Unit 40 35 29 40 31
Activation
Function tan h Leaky

RELU ELU - -

Optimizer ADAM ADAM ADAM ADAM ADAM
Dropout 0.15 0.08 0.02 0.15 0.04

Batch Size 10 28 40 10 20
Learning Rate 0.01 0.002 0.008 0.01 0.004
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Table 6 compares the time required for the proposed method and that of the the
random search method in this paper. The values in the table are the time taken to learn
10 genes consisting of parameters in 5 Epochs. Random search took an average of 665
s to learn each generation, and the proposed method took 704 s in the first generation.
However, it was confirmed that the average generation time was less than that of the
random search method. We found that the proposed method learns 4% faster on average
than random-search-based methods.

Table 6. Comparison of generational time required between the proposed method and the random
search method.

Random-Search-Based Method Proposed Method

Generation 1 668 704
Generation 2 666 683
Generation 3 662 612
Generation 4 665 602
Generation 5 664 598

Average running time 665 639.8

4.2. Result

Figure 5 shows the average MSE values for each generation through a genetic algo-
rithm. In the figure, it can be seen that the minimum value, maximum value and average
value are low on average. Figures 6 and 7 visualize the fitness value derived when 10 genes
are applied over 50 generations to optimize hyper-parameters by applying our proposed
algorithm to the RNN and LSTM models. Looking at the fitness value for each gene, it can
be seen that the newly derived genes can be used to find the global optimal solution as well
as the continuous optimization as the generations progress.
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MSE and Mean Absolute Error (MAE) performance indicators were used to compare
the performance of the optimal hyper-parameters in this paper. The formulas for MSE and
MAE are as follows. The MSE and MAE performance indicators are the most popular error
functions used to optimize deep learning models.

MSE =
1
n ∑n

i=1

(
Ŷi −Yi

)2 (5)

MAE =
1
n ∑n

i=1

∣∣Ŷi −Yi
∣∣ (6)
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Table 7 compares the performance of a model optimized by the method proposed
in this paper, an existing model and a random-search-based model. The optimized RNN
model shows a 30% improvement in MSE and a 21% improvement in MAE compared
with the existing RNN model. The optimized LSTM model shows a 9% improvement in
performance based on MSE and 5% improved performance based on MAE. The MSE of the
RNN model found through random search showed a difference of 5% and 3%. It can be
seen that the method proposed in this paper finds the optimum hyper parameter.

Table 7. Comparison of performances.

Performance
Function RNN Random-Search-Based

RNN
Genetic-Based
RNN Model LSTM Genetic-Based

LSTM Model

MSE 0.00421 0.00314 0.00298 0.00261 0.00239
MAE 0.04884 0.03955 0.03874 0.0348 0.033

In Figures 8 and 9, the predicted values of the model are visualized. It can be seen that
the LSTM model performs better by default than the RNN model and that the model learned
using hyper-parameters derived from the proposed method makes accurate predictions.
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5. Conclusions

In this paper, the goal was to optimize the network structure of RNN models and
LSTM models for a given power consumption dataset using genetic algorithms, as well
as for the learning environment. The method of optimizing the genetic-algorithm-based
hyper-parameters proposed in this paper was designed based on experience and time by an
expert with existing artificial intelligence model knowledge and power-related knowledge.
However, by automating these problems through the method proposed in this paper, not
only was the artificial intelligence model for power requirement prediction optimized,
but the performance was also enhanced. By learning the power requirement data of the
actual building, it was possible to optimize the MSE and MAE performance by up to 30%
and by at least 5%. Based on the MSE and MAE performance evaluation functions, the
heuristic RNN model had MSE and MAE performances of 0.00421 and 0.04884, whereas
the random-search-based RNN model had MSE and MAE performances of 0.00314, 0.03955.
However, the genetic-algorithm-based RNN model achieved the highest performance
with 0.00298 and 0.03874. Based on the LSTM model, it also had the existing MSE and
MAE performances of 0.00261 and 0.0348, and the genetic-algorithm-based LSTM model
achieved the highest performance with 0.00239 and 0.033. It can be seen that our applied
genetic algorithms found the appropriate hyper-parameters of the deep learning model for
power consumption prediction. In addition, it was found that the proposed method could
be optimized by including not only parameters for learning but also the hyper-parameters
of the deep learning structures in the range of genetic algorithms. In addition, although
genetic algorithms can be parallel processed, this paper did not utilize the advantages
of parallel processing. In addition, there exists a problem in which the computational
complexity increases according to the fitness function. In the future, studies that solve these
problems or initial gene selection according to power patterns will remain to be conducted.
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