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Abstract: In this paper, the innovations in device design of the gate-all-around (GAA) nanosheet
FET are reviewed. These innovations span enablement of multiple threshold voltages and bottom
dielectric isolation in addition to impact of channel geometry on the overall device performance.
Current scaling challenges for GAA nanosheet FETs are reviewed and discussed. Finally, an analysis of
future innovations required to continue scaling nanosheet FETs and future technologies is discussed.

Keywords: gate-all-around nanosheet FETs; multi-Vt offerings; bottom dielectric isolation; power-
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1. Introduction

Gate-all-around (GAA) nanosheet field effect transistors (FETs) are an innovative next-
generation transistor device that have been widely adopted by the industry to continue
logic scaling beyond 5 nm technology node, and beyond FinFETs [1]. Although gate-
all-around transistors have been researched for many years, the first performance bench
marking on scaled pitch of 44/48 nm CPP (contact-poly-pitch) was presented less than
five years ago [2–8]. To fully appreciate the advantages provided by stacked nanosheet
gate-all-around transistors, it is important to understand some of the challenges faced by
the state-of-the-art FinFETs, and, in general, the trends that have motivated industry wide
innovations over the years. Historically, device architecture innovations have been driven
by short channel effects (SCEs) that come into play while achieving power performance area
(PPA) scaling. SCEs occur when the channel length is on the same order of magnitude as
the source-drain depletion layers [9]. Over the years, several innovations, such as the stress
technology and high-k metal gate, have enabled scaling [10,11]. FinFETs were the first-ever
change in architecture in the history of transistor devices to enable scaling by introducing
the trigate control, thereby giving the gate-length scaling another few generations of run-
time [12,13]. The gate-all-around nanosheet FETs are only the second time in the history of
transistor devices, that a completely different architecture is adopted by the industry.

Scaling FinFETs beyond 7 nm node results in exacerbated SCEs, motivating a move
from a tri-gate architecture to a gate-all-around architecture [14]. Among the gate-all-around
architectures explored by the semiconductor industry, while the nanowires provided best
electrostatic control, wider nanosheets are the ones that provide higher “on” current and
improved electrostatic control over FinFETs [15,16]. Figure 1 shows a schematic of a
FinFET and a GAA nanosheet FET, where the key components of the two technologies
are highlighted. The components that are common between the two technologies include
the shallow trench isolation, source/drain epitaxies, and the high-k metal gate; whereas
the structural differences include a tri-gate for FinFETs vs. gate-all-around for nanosheets.
To achieve an advantage in performance, multiple nanosheets must be stacked on top of
each other, unlike FinFETs, where one fin constitutes one device. The channel thickness
is lithographically defined for FinFETs, which puts a limit on scaling due to patterning
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resolution, whereas this channel thickness (also referred to as TSi, thickness of silicon) is
defined through epitaxially grown layers of Si on top of epitaxially grown layers of low
concentration germanium SiGe, providing superior channel uniformity across wafer, and
eliminating process complications.

Figure 1. This figure shows a FinFET and a GAA nanosheet FET side-by-side. (a) A FinFET with
shallow trench isolation (STI), source/drain (S/D) epitaxy, and a high-k metal trigate is depicted
schematically. (b) A GAA nanosheet FET with STI, S/D epitaxy, bottom dielectric isolation (BDI),
and high-k all-around metal is pictured. Some features, such as BDI and isolation between gate and
S/D, are unique to the GAA nanosheet FETs.

Figure 2 shows a GAA-FET and highlights some of its key features that have been
carefully engineered and extensively studied over the last few years. These features include
discrete silicon sheets horizontally stacked to form one device, a high-k metal gate filling
the space between the silicon channels, bottom dielectric isolation from bulk substrate,
lithographically defined sheet width, process controlled gate-length, and inner spacer
formation for gate to source-drain isolation. Some aspects of these GAA nanosheet FETs,
such as inducing strain to increase hole mobility, have been a hot topic to improve overall
device performance, but will not be covered in this paper [17–19]. Other aspects, such
as multiple threshold voltage (Multi-VT) options for high power and low power devices,
impact of channel geometry on device performance, and integration and impact of full
dielectric isolation, are reviewed in this paper [20–24].

The structure of the remaining paper is as follows: Section 2 highlights the key
integration modules and shows a high-level process flow; Section 3 covers bottom dielectric
isolation—its need, integration, and impact on device performance; Section 4 explores
the impact of channel geometry on device performance, especially the impact of channel
geometry on the hole mobility; Section 5 discusses different integration approaches for
enabling multiple threshold voltages (multi-VT) in GAA nanosheet FETs; Section 6 briefly
discusses innovations in interconnects and power delivery networks that are needed to
extract the value from scaled nanosheet architecture; and, finally, Section 7 discusses the
direction of the transistor industry beyond GAA nanosheet FETs.
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Figure 2. This figure shows a schematic for a gate-all-around nanosheet FET, with its key features
highlighted. (a) shows a cut across the source-drain region where the key features highlighted are
the bottom dielectric isolation (BDI), the thickness of the silicon channels (TSi), the distance between
the silicon channels (Tsus), and the gate length (Lg). The inner spacer, and the n-type epi are also
highlighted here. (b) shows a cut across the gate region where the key features highlighted are
shallow trench isolation (STI), n-type work function metal (WFM), p-type WFM, the high-k metal
gate (HKMG), and the sheet width (Wsheet).

2. Integration of Gate-All-Around Nanosheet FETs

The integration of GAA nanosheet FETs involves several novel steps requiring a series
of innovations to enable this technology. The key integration modules are listed below: [21]:

1. Stacked nanosheet formation: a stack of SiGe and Si are epitaxially grown on the Si
substrate; the thickness of each layer can be controlled with high precision.

2. Fin reveal and STI: the devices are lithographically defined and shallow trench isola-
tion is performed to isolate neighboring devices.

3. Dummy gate formation: a poly silicon dummy gate is formed to enable down-
stream processing.

4. Inner Spacer and Junction formation: n-type or p-type source/drain epitaxial layers
are selectively formed on either sides of the exposed nanosheet ends [25].

5. Replacement metal gate formation:

• Dummy gate pull: the dummy gate is etched out to reveal a cavity, at the bottom
of which nanosheets are located,

• Sacrificial SiGe channel release: the SiGe channels in between the nanosheets are
etched out to enable filling up with high-k metal gate,

• High-k Metal Gate (HKMG) formation: an interfacial oxide, a high-k dielectric
layer, and the n-type or p-type work functions are selectively deposited.

3. Full Bottom Dielectric Isolation

In this section, we highlight the comparison between a full bottom dielectric isolation
(BDI) and punch through stopper (PTS) scheme as examined by [24]. To introduce the
problem, we first introduce the "fat-fin" effect that is unique to GAA nanosheets, where
process non-idealities can result in a structure that causes an increased capacitance in the
bulk region below the nanosheets, as shown in Figure 3. Although this structure is unique
to GAA nanosheets, the effect, also known as sub-fin leakage, exists for FinFETs and is dealt
with using the punch through stopper scheme. So, a comparison between this established
PTS scheme and novel BDI scheme is performed on the basis of off-state leakage current,
short channel effects, and effective capacitance (Ce f f ); it is shown that BDI could potentially
provide improved Ce f f and power-performance co-optimization.



Electronics 2022, 11, 3589 4 of 11

Figure 3. (a) A figure depicting a cross-fin cut showing high-k metal gate extension beyond the
bottom sheet due to poor process control. As the metal depth below the bottom device increases,
the performance penalty due to increased Ce f f ective also increases. (b) A figure showing improved
process control due to full bottom dielectric isolation (FBDI) in the source/drain region.

3.1. Integration

Integrating a full bottom dielectric isolation entails adding a high-concentration SiGe
layer at the bottom of the Si, SiGe nanosheet stack. Adding this layer, and later selectively
etching it, requires lowering of Ge concentration in the SiGe layers used for the nanosheet
stack. This introduces lower selectivity between Si and SiGe, resulting in Si loss during
SiGe channel removal—requiring careful consideration of the stack thicknesses to ensure
the TSi is not too thin at the end of the entire process flow. We can see the BDI sitting under
the S/D region in Figure 3b.

3.2. Experiments

Two splits of the PTS scheme of varying doping concentration are studied along with
a full BDI scheme at Vds = 0.7 V for Lmetal of 12 nm in a 44 CPP device, where their short
channel characteristics and power vs. performance is analysed.

3.3. Results and Discussion

As seen in Figure 4, full bottom dielectric isolation reduces the off-state leakage current
and the DIBL, thereby improving performance and decreasing power. An 18% decrease in
power is observed with a 4% improvement in performance between split with and without
BDI. The devices with BDI perform better, and they also show better immunity to process
variations with respect to sub-channel leakage control. So, full bottom dielectric isolation
may be considered as a critical element for enabling a well-performing GAA nanosheet FET.

Figure 4. This figure captures key performance metrics for GAA FETs using PTS scheme and full BDI.
(a) Iso f f extracted from Lg =12 nm devices on PTS and BDI splits. (b) DIBL extracted from Lg =12 nm
devices on BDI and PTS splits. (c) Power vs. performance correlation chart of wide sheet devices for
both with and without BDI layer [24].

4. Channel Geometry Impact

In this section, the mobility of electrons and holes as a function of channel geometry
are studied and ‘narrow sheet effect’ on carrier transport is observed [23]. TSi is one of the
knobs that can enable future Lg scaling needs by improving electrostatic control. Moreover,
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the quantization effects for TSi < 5 nm becomes severe in SOI and FinFETs, so, it is important
to study the same for GAA FETs.

4.1. Experiments

Since the mobility of holes (µh) is lower for the <100> plane, this plane will dominate
hole transport characteristics for pFETs in GAA nanosheet FETs. To study the impact
of <100> plane on hole transport, nanosheet devices are fabricated on <100> substrate
with <110> transport direction. Figure 5 shows a TEM from the experiments performed,
a channel length of 100 nm was chosen for this study. To study the impact of TSi on hole
mobility, silicon sheets of different thicknesses were epitaxially grown, and the TSi was
measured using TEMs.

Figure 5. A TEM cross-section of GAA nanosheet FETs. The TSi is uniform in thickness along the
Wsheet direction [23].

4.2. Results and Discussion

As seen in Figure 6a, the degradation of µh is attributed to increased phonon scattering
with thinner TSi. At high fields, as in the case of Ninv at 1013, the mobility is dominated by
surface roughness, whereas the peak mobility is primarily impacted by phonon scatter-
ing. So, the impact of mobility degradation is more profound for the peak mobility case.
However, this degradation of mobility is offset by sheet width Wsheet as seen in Figure 6b,
which is primarily influenced by the contribution of <100> vs. <110> planes. Wider sheets
have more contribution from the <110> plane, resulting in improved mobility, suggesting
that both phonon scattering and sheet geometry effects impact hole mobility. Moreover,
this dependence on Wsheet provides an additional knob for power and performance co-
optimization in GAA nanosheet FETs.

Figure 6. (a) This plot shows the extracted peak hole mobility and hole mobility for Ninv@1013/cm2

as a function of silicon channel thickness. Degradation in hole mobility is evident for thin sheet
values; (b) calculated <100> plane contribution to total We f f as a function of TSi (a pure geometrical
percentage of the whole nanosheet perimeter) [23].
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5. Enabling Multiple Threshold Voltages

The ability to co-integrate multiple threshold voltages (VT) is a key requirement for a
technology to become an industry standard. Given the unique architecture of GAA FETs,
the space for depositing the work function metals is limited as depicted in Figure 7. The
replacement metal gate process only leaves the space between the Si channels and inner
spacers open—to be filled with the work function metals as per technology requirements.
This space, also known as Tsus (refer Figure 2), can be controlled by controlling the thickness
of SiGe layer grown during the nanosheet stack development module, but is nevertheless
highly constrained, and must be engineered carefully to meet the industry standards for
device offerings.

Figure 7. This figure shows a close up view of the S/D cross-section. The width of the high-k metal
gate here is the gate length Lg, and the vertical thickness of this metal gate is determined by Tsus.
Additionally, the inner spacers and bottom dielectric isolation are highlighted.

5.1. Integration

Two different approaches are proposed to accommodate multi-VT offerings in GAA
FETs—(1) WFM modification and (2) Tsus modification [20]. A process flow overview for
WFM modification is presented in Figure 8. One of the challenges highlighted by the
integration sequence for VT modulation is that large Wsheet adds process challenges for
WFM etch back when WFM is pinched-off between Si channels. To overcome this, ref. [21]
proposed filling the space between sheets with a sacrificial material that is easy to etch,
selectively opening one of the FETs, and etching away the already deposited work-function
metal. This scheme is agnostic of p-type or n-type WFM, and enables both PG (p-FET first)
and MY (n-FET first) schemes. This same process can be repeated to achieve different sets
of work function metals or to achieve a different stack with more than two WFMs.

The second approach requires changing Tsus by changing the channel stack epitaxy
thickness during nanosheet formation. A larger space between sheets allows the deposition
of a larger volume of work function metal in this space, thereby modulating VT . This design
knob is unique to GAA nanosheet FETs when compared with FinFETs, thereby, allowing
more design space for Multi-VT options in these nanosheet FETs.
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Figure 8. An example of VT modulation as presented in [21] is shown here. (a) The gate region post
SiGe channel release; (b) WFM1 deposition; (c) sacrificial material deposition; (d) selective patterning
and etch of the deposited WFM; and (e) removal of patterning stack resulting in a structure with
WFM1 along one set of sheets.

Volumeless Multiple Threshold Voltages

A volumeless multi-VT is a term defined to represent a dipole-based VT option where a
dipole of thickness less than 5 Åis formed, followed by the base work function metals [26,27].
This innovative scheme provides space and gate resistance benefits as shown in the cited
references. However, this approach does not directly translate from FinFETs to GAA
nanosheet FETs, so dedicated integration of volumeless VT is proposed in [22]. Moreover, a
volumeless VT also helps with VT uniformity, which is important for uniform switching
of transistors.

5.2. Results and Discussions

Several different flavours of VT are created using novel integration sequence and using
the unique design knobs for GAA nanosheet FETs -(a) Tsus design; and (b) WFM pinch-off.
A dipole-based VT scheme for nanosheet FETs is also proposed. In addition to these knobs,
the TSi design as discussed in Section 4, can be modulated to provide a trade-off between
mobility and short-channel effects. So, overall, the GAA nanosheet FETs provide several
opportunities for application-based optimization, hence they are suitable for high-power
and low-power applications alike.

6. Current Challenges

This paper discusses some of the cutting-edge advances in the gate-all-around nanosheet
transistor technology over the last five years, and consolidates some of pioneering work in
the field. In this section, some of the processing challenges of this technology are covered
as reported in the literature. These processing challenges may be broadly categorized into
four areas: self-heating, mechanical stability during fabrication, device variability, and
Si–SiGe intermixing.

Self-heating effects (SHE) in nanoscale devices result in significant thermal cross
talk resulting in device performance degradation [28,29]. Studies have explored novel
substrates, such as diamond on silicon to provide improved SHE, but such a scheme is
less likely to be adopted in high-volume manufacturing. As such, this problem is open to
exploration and solution [30].

An aspect of nanosheet fabrication to carefully consider is the mechanical stability
of these sheets during the channel release process. Although nanosheets do allow design
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flexibility, aspect ratio of the sheets, and mechanical integrity of the inner spacer play
an important role in overall stability of these sheets [31]. Another aspect to optimize is
the device variability, which can result from several sources including, but not limited to,
line-edge roughness, gate-edge roughness, non-uniform work function metal deposition,
and random dopant fluctuations. A recent study analyzes these variability and proposes
solution for a complementary GAA nanosheet FET structure [32].

Finally, the initial Si-SiGe stack for nanosheets itself is susceptible to thermal intermix-
ing when going through numerous thermal cycles before the channel release step. There
have been several studies examining the extent of this intermixing and the mechanism of
such diffusion [33–35]. As long as the SiGe channels can etch selective to Si channel sheets,
and the Si sheets are not over-etched due to Si–SiGe intermixing, this effect is tolerable.

7. Future Outlook

Although the transistor-level innovation is sufficient to drive the industry forward to
the next technology nodes, this section briefly touches upon some innovations in the fields
of interconnects and power-delivery for completeness.

An interesting proposal in the field of power delivery is the buried power rail (BPR),
which proposes moving the power rails to be located below the transistor devices, thereby,
providing area on the front-side for routing flexibility, and to reduce conductor crowd-
ing [36,37]. However, such a scheme has a short run-path as the requirement of patterning
between the devices will limit contact poly pitch (CPP) scaling. To overcome this limitation,
the concept of backside power delivery network (BSPDN) has been proposed, with a recent
hardware demonstration of its feasibility [38]. However, this new paradigm brings several
technical challenges with it, such as back-side patterning, alignment between the structures
on the front-side to those on the back-side, and wafer thinning on the back-side of the
wafer. If the industry as a whole decides this is the correct direction, there are tremendous
opportunities of innovation for tool vendors and equipment manufacturers to enable this
technology at a large scale.

8. On the Horizon

Although the industry navigates current challenges to bring the GAA nanosheet FETs
to market, researchers are already thinking about what lies beyond nanosheet FETs. The top
contenders to continue Moore’s law scaling are the Vertical Transport FETs (VTFETs) [39] and
stacked transistors [40]. VTFETs change the carrier transport direction from the traditional
horizontal direction to vertical direction, thereby relaxing the contraints on scaling barriers,
such as gate-length (Lg), spacer thickness, and contact size; all of which can be optimized
for power or performance, based on the application. Stacked transistors offer a more
conventional scaling path by stacking the nFET and pFET transistor over each other, thereby
providing area benefit. However, both these technologies present several novel integration
and manufacturing challenges, which may be subject of a later review.

Looking beyond the immediate future, there is a large body work on novel materials to
enable 2-D transistors [41]. Molybdenum disulfide (MoS2) is one of the top contenders for
such technologies with ever improving performance based on mobility, contact resistance,
and doping [42]. Graphene is another strong contender for a long time, and literature has
been reporting ever improved performance for such transistors over the last decade [43].
Indium oxide is another contender for a wide-gap semiconductor material [44]. Although
these technologies are promising, there is an inherent barrier to entry for them due to the
large overhead cost of novel equipment for the foundries to enable large scale manufactur-
ing of such transistors. So, silicon based transistors will continue scaling for the coming
decades with the growing needs for transistors in existing and new industries.
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Abbreviations
The following abbreviations are used in this manuscript:

GAA FETs Gate-All-Around Field Effect Transistors
BDI Bottom Dielectric Isolation
STI Shallow Trench Isolation
WFM Work Function Metal
HKMG High-k Metal Gate
SCE Short Channel Effects
RMG Replacement Metal Gate
PTS Punch Through Stopper
MOL Middle of Line
BEOL Back End of Line
S/D Source/Drain
DIBL Drain Induced Barrier Lowering
TEM Transmission Electron Microscopy
VTFET Vertical Transport Field Effect Transistors
PPA Power, Performance, and Area
BPR Buried Power Rail
BSPDN Back-Side Power Delivery Network
CPP Contact Poly Pitch
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