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Abstract: Deep learning is successful in providing adequate classification results in the field of traf-

fic classification due to its ability to characterize features. However, malicious traffic captures insuf-

ficient data and identity tags, which makes it difficult to reach the data volume required to drive 

deep learning. The problem of classifying small-sample malicious traffic has gradually become a 

research hotspot. This paper proposes a small-sample malicious traffic classification method based 

on deep transfer learning. The proposed DA-Transfer method significantly improves the accuracy 

and efficiency of the small-sample malicious traffic classification model by integrating both data 

and model transfer adaptive modules. The data adaptation module promotes the consistency of the 

distribution between the source and target datasets, which improves the classification performance 

by adaptive training of the prior model. In addition, the model transfer adaptive module recom-

mends the transfer network structure parameters, which effectively improves the network training 

efficiency. Experiments show that the average classification accuracy of the DA-Transfer method 

reaches 93.01% on a small-sample dataset with less than 200 packets per class. The training effi-

ciency of the DA-Transfer model is improved by 20.02% compared to traditional transfer methods. 
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1. Introduction 

The advent of the Big Data era has been accompanied by an explosion of network 

traffic, and malicious programs and malicious traffic have been generated. Due to the fact 

that network traffic classification can associate traffic with its generation process, it is of-

ten used as the first step in the network malicious resource detection task in the network 

security domain [1]. Therefore, researchers have explored various methods to solve the 

network traffic classification problem, and the problem of accurate classification of net-

work traffic has become a hotspot in the field of research. 

The traditional traffic classification methods are broadly classified into three main 

categories [2]: port-based methods [3], payload inspection techniques [4], and machine 

learning-based methods [5,6]. As network technology evolves, all these methods face 

technical bottlenecks. For example, the widespread use of random ports and port mas-

querading has led to a significant decrease in the accuracy of the port-based methods. The 

payload inspection techniques also make it difficult to obtain packets due to the wide-

spread use of encryption. The machine learning approach relies on human experience to 

design network traffic characteristics, and its immediacy and responsiveness make it dif-

ficult to meet the rapid iteration of the application software. 

Deep learning has automated the end-to-end learning capabilities and characteriza-

tion of high-quality features on raw data. It is therefore widely used in many applications, 

such as computer vision [6,7], target detection [8,9], natural language processing [10,11], 
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and in the medical field [12,13]. In recent years, researchers also used deep learning for 

traffic classification tasks. However, deep neural networks have huge training parameters 

and rely on a high volume of data, requiring a massive amount of labeled samples. Ob-

taining labeled data in real-world scenarios is difficult and expensive, especially for mali-

cious traffic samples. Therefore, the classification of small-sample network traffic data is 

emerging as a new challenge. 

Deep transfer learning usually uses a model that is pre-trained on a large dataset as 

the feature extractor of the target dataset, and then fine-tunes the network by freezing part 

of the network layer to reduce the parameters that require training to adapt to small-sam-

ple datasets. This can solve the small sample problem to some extent. However, a study 

[14] revealed that the difference in distribution between the source and target datasets in 

transfer learning affects the network performance, and two datasets with a large differ-

ence may lead the target dataset to fail to converge on the transfer network. In addition, 

researchers usually recommend model transfer freezing parameters based on their own 

experience or layer-by-layer traversal, which is time-consuming and not general enough. 

The optimization of the parameter selection for transfer networks can further improve the 

accuracy and efficiency of classification networks. Therefore, finding the number of frozen 

layers of the source network structure suitable for the target dataset and the difficulties in 

fine-tuning the model due to the variability between large datasets and the target dataset 

have become obstacles for deep transfer learning to solve small-sample classification 

problems. 

This paper proposes a deep transfer learning method with double adaptive transfer 

to improve the performance of the small-sample malicious traffic classification. The dou-

ble adaptation includes data adaptation and model adaptation (DA-Transfer). Both data 

and model transfer adaptation modules jointly improve the accuracy and efficiency of the 

model. The main structure of the data adaptation module is a neural mapping network, 

which drives the distribution of the mapped target dataset close to the source dataset, and 

the mapped target dataset can be better adapted to the transfer network. The transfer 

adaptive module automatically outputs the network structure parameters, especially rec-

ommending the freeze layer strategy of the network structure. The module has the ability 

of fast recommendation of freezing parameters, which greatly improves the efficiency of 

model transfer. The two-dimensional adaptive module optimizes the transfer network 

performance and alleviates the contradiction between the small-sample dataset and the 

large number of neural network parameters. 

The main contributions of this work are as follows. 

• We propose a fused deep transfer learning approach, which combines data adapta-

tion and model transfer adaptation to improve the performance of a small-sample 

classification model for malicious traffic. 

• The data adaptation module reduces the distribution distance between the source 

and target datasets, which improves the transfer network’s ability to adapt to new 

data and enhances the classification accuracy of the transfer model. 

• A recommendation method for adaptive network parameters is investigated, which 

automatically outputs important parameters for transfer networks and improves the 

efficiency by 20.01% compared to the artificially designed network. 

2. Related Work 

Deep learning-based traffic classification: The traffic classification methods based on 

deep learning have been a hot research topic as deep learning has made progress in sev-

eral fields. In an earlier study, Wang et al. [15] proposed a traffic classification method 

using convolutional neural networks for representation of learning, which converts raw 

traffic data into images for the automatic extraction of traffic features. The method was 

validated by using three classifiers in two scenarios, and the results showed that the 

method can satisfy the accuracy requirements in practical applications. In addition, 
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Lotfollahi et al. [16] attempted to compare the effectiveness of the stacked auto-encoder 

(SAE) and convolutional neural network (CNN) in the traffic classification problem. The 

test results showed that the performance of the CNN was the best when used as the clas-

sification model, and the method obtained an average accuracy of 0.94 in the traffic clas-

sification task. In terms of the network fusion, Zou et al. [17] proposed a deep neural net-

work by combining CNN and RNN (called CNN + LSTM) and extracted packet-level and 

stream-level features (i.e., time-series features) to improve the classification accuracy. The 

experimental results on the ISCX VPN-nonVPN dataset [18] achieved an average accuracy 

of 0.91. Recently, Cui et al. [19] proposed a novel session-packets-based encrypted net-

work traffic classification model using capsule neural networks (CapsNet), called SPCaps. 

SPCaps introduces a twice-segmentation mechanism to dilute the interference traffic and 

increase the weight of effective traffic. Then, it learns the spatial characteristics of en-

crypted traffic using CapsNet and outputs the results of encrypted traffic classification by 

a softmax classifier. The model is superior to the most advanced encrypted traffic classifi-

cation method and achieves a recall rate of more than 0.99 for both application classifica-

tion tasks and traffic classification tasks on the ISCX VPN-nonVPN dataset. The above 

research [20–22] has been applied to a variety of network traffic task scenarios and has 

important reference values for the network traffic problem. 

Deep Transfer Learning: Yosinski et al. [23] were the first to investigate the transfer-

ability of deep networks; they transferred the network by directly transferring the param-

eters of the trained network A to network B layer by layer, freezing the parameters of the 

module transfer, and fine-tuning the remaining parameters of network B. The results of 

the study found that direct transferring of the parameters of the shallow part of the trained 

model has less impact on the accuracy of the target model, which confirms the transfera-

bility of deep networks. Neyshabur et al. [24] came to a similar conclusion that the lower 

layers of neural networks typically extract generic features, and the higher layers extract 

features that are strongly relevant to the task. Furthermore, researchers [25] found that the 

similarity of the domains plays an important role in capping the performance of transfer 

learning, i.e., the more similar the datasets are to each other, the better the transfer is. 

Based on the above research [26,27], it can be concluded that the transfer network greatly 

reduces the network parameters that need to be trained, which makes the datasets of 

small-sample tasks match it. 

Small-sample traffic classification based on deep transfer learning: Once the transfer-

ability of deep networks was proven, researchers started to apply deep transfer learning 

to the task of classifying small samples of network traffic. Guan et al. [28] applied deep 

transfer learning to solve the network traffic classification task of scarce datasets in 5G IoT 

systems. They trained the classification model through the network parameter transfer 

and network fine-tuning, and achieved adequate classification results. This work confirms 

that deep transfer learning is effective in solving the classification task of small-sample 

traffic datasets. In another study, Dhillon et al. [29] applied deep transfer learning to a 

hybrid CNN-LSTM model, and it performed well in small-sample intrusion detection 

tasks. Idriss [30] et al. applied the transfer learning method to the intrusion detection sys-

tem and updated the solution of the intrusion detection system based on deep learning 

(DL-IDS). This method achieved adequate results on multiple indicators, such as detection 

rate. Eva et al. [31] proposed a deep learning network based on deep transfer learning to 

solve the problem of zero-day attack detection. Experiments show that the detection rate 

of this method exceeds any previous intrusion detection system based on deep learning. 

The proposed deep transfer learning technology makes it possible to construct a large-

scale deep learning model to perform network classification tasks. These models can be 

deployed in the target domain of the real world, and they can maintain classification per-

formance and improve classification speed even when resources are limited. 
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3. Methods 

3.1. Datasets and Pre-processing Methods 

3.1.1. Dataset 

In this paper, two datasets are used to train the proposed transfer network model. 

One is a large dataset (source dataset) used to train the initial network, and the other is a 

small-sample dataset (target dataset) used to fine-tune the transferred model and perform 

classification tests. The details of the two datasets are as follows: 

 Source dataset: The ISCX VPN-nonVPN traffic dataset [18] consists of captured traf-

fic generated by different applications. In this dataset, the captured packets are divided 

into different pcap files, whose labels are divided into applications (e.g., Email, SFTP, etc.) 

and specific activities (e.g., voice calls, chats, file transfers, video calls, etc.). In this paper, 

we mainly use the application data as the source dataset to train the network. In addition, 

data balancing is performed on the dataset in order to test the transfer and classification 

capabilities of the proposed method. Table 1 presents the information of the data in the 

final dataset. 

Table 1. Source dataset details. 

Source Data 
Highest Visible Pro-

tocol 
Size (K) Quantity 

Email SSL&HTTPS 15,974 84,585 

YouTube HTTPS 623,616 271,593 

FTPS HTTPS 924,600 250,652 

Vimeo HTTPS 830,464 367,282 

Spotify HTTPS 172,032 98,600 

Torrent HTTPS 366,592 269,115 

Netflix HTTPS 1,355,776 160,789 

SCP HTTPS 545,792 183,286 

SFTP HTTPS 1,458,176 324,424 

Mean - 699,224 223,369 

Target dataset: In order to restore the model performance under realistic scenarios, 

the target dataset captures the attack behaviors of nine Trojans and uses Wireshark to 

obtain the traffic packets in the process. In order to approach the size of a small-sample 

dataset under realistic conditions, the target dataset uses part of the captured malicious 

traffic data. Table 2 presents detailed information and the number of packets of the nine 

types of captured Trojan traffic. This dataset supported a malicious traffic identification 

track for a domestic artificial intelligence competition as a public dataset. 

Table 2. Target dataset details. 

Target Data 
Highest Visible Pro-

tocol 
Size (K) Quantity 

Finalfantasy SSH 3180 116 

Freerat SSH 3114 200 

Chongqinghack TCP 1360 200 

Irat SSH 2343 175 

Poison-ivy SSH 2344 169 

Greydove HTTP 2257 189 

Shangxing2009 TCP 2344 200 

Suncontrol  TCP 2125 200 

Ximencontrol TCP 2051 200 

Mean - 2346 183 
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3.1.2. Pre-Processing 

The pre-processing implements the filtering and unified format of the network data, 

including filtering redundancy, truncating data, removing bad samples, and normaliza-

tion. Firstly, the information in the Ethernet header, which is not useful for traffic classifi-

cation, is removed. Secondly, the Transmission Control Protocol (TCP) and User Data-

gram Protocol (UDP) differ in the input format due to different header lengths by injecting 

zeros at the end of the UDP segment header and making it equal to the length of the TCP 

header. In addition, the IP address information is masked. The datasets are captured in a 

realistic simulation environment, discarding meaningless packets that do not contain any 

payload. Finally, to unify the sample size of the neural network input, a vector with a 

sample size greater than 1500 is truncated and zeros are filled for byte vectors smaller than 

1500. The normalization phase divides each element by 255 to normalize the byte vector. 

3.2. DA-Transfer Method 

3.2.1. Overall Framework of DA-Transfer 

The overall flow diagram of the proposed method is shown in Figure 1. The DA-

Transfer incorporates a data adaptation module and a model transfer adaptation module 

to improve the classification performance of small-sample traffic. The implementation 

process of the method consists of three parts: data adaptation, model parameter adapta-

tion, and transfer network training. Firstly, the target dataset is fed into the data adapta-

tion module to reduce the distribution distance from the source dataset to be close to the 

original attributes of the trained large network. Secondly, the mapped target dataset is 

input into the model parameter adaptation module together with the source dataset to 

obtain the recommended freezable network parameters. Finally, the transfer network pa-

rameters are adjusted according to the recommended information, and the mapped target 

dataset is fed into the pre-trained network for fine-tuning to finally realize a small-sample 

traffic classification model adapted to the target dataset. 

 

Figure 1. Overall framework of DA-Transfer. 
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3.2.2. Data Adaptation 

The data adaptation module uses a data mapping network to map the target dataset 

Y to dataset Y with a similar distribution to the source dataset X. This helps to reduce the 

range of parameter adjustment in the subsequent fine-tuning process and achieve the pur-

pose of improving the classification accuracy. 

The data mapping network is mainly a deep feed-forward architecture, the frame-

work of which is illustrated in Figure 2. Firstly, the source domain datasets are input into 

three continuous convolutional layers and a fully connected layer neural network to ob-

tain a preliminary mapping of the source domain data. After that, the learning phase of 

the neural network is entered to make the data distribution distances of X and Y close to 

each other, for which we need to define the data distribution distance of the two datasets. 

The maximum mean difference (MMD) [32] is used to quantify the distance between the 

X and Y distributions. MMD is a nonparametric measure used to compute the distance 

between distributions based on kernel embedding in the reproducing kernel Hilbert 

space. Given the domain samples (source) and (target) from two distributions, the MMD 

distance is calculated as follows: 

1 1

1 1
( , ) ( ) ( )

s tn n
s t

S t i i

i is t

MMD X Y x y
n n

 
= =



= −   (1) 

where x（ ） maps each instance to the kernel )()(),( j

T

iji xxxxk =  related Hilbert 

space  , and 
sn  and 

tn  are the sample sizes of the source and target domains. By min-

imizing the MMD distance as the goal of the neural network training, convergence is 

reached after multiple rounds of network training to obtain the data mapper. 

 

Figure 2. Data adaptation mapping network. 

3.2.3. Model Transfer Adaptive 

When transferring a model from a source dataset to a target dataset, filtering the 

number of layers of network parameters that the source and target datasets can share 
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ensures that the transfer model retains its ability to extract common features. The tradi-

tional approaches are mostly based on experience with the dataset or by freezing the net-

work parameters layer by layer and fine-tuning the parameters of the remaining layers 

[33]. Finding the optimal number of network layers, with shareable parameters based on 

the final classification accuracy, is effective but time-consuming. The goal of this work is 

to efficiently and accurately derive the number of layers so that the network can freeze 

parameters. 

The principle of freezing the parameters of a network layer is that the features ex-

tracted in that layer are common to the source and target datasets, i.e., the features ex-

tracted in that layer cannot identify whether the input data belong to the source dataset 

or the target dataset. Thus, the problem can be transformed into finding the number of 

network layers with higher losses when performing the source dataset and target dataset 

binary classification task. Assume that 
( , )x X Y

, where X and Y are the source and target 

datasets, y is the label for x, and 
{0,1}y

. The detailed steps are as follows. 

Step 1: Input x into the first n layers of the pre-trained neural network, and save the 

feature vectors’ output by the first n layers of the neural network. 

Step 2: The feature vectors of the first n layers are input into the fully connected layer. 

The binary classification task of determining whether x comes from the source dataset or 

target dataset is used as the goal, and the loss values of the model output with label y are 

calculated and saved. 

Step 3: Calculate the gradient of the loss value decline (shape of the loss curve is 

shown in Figure 3). When the gradient increases significantly, freeze the network layer 

parameters. 

 

Figure 3. A rapid change in the gradient occurs near the loss curve of the appropriate frozen layer 

number. 

3.2.4. Model Architecture and Training 

We built a source network based on 1D-CNN. It includes five one-dimensional con-

volution layers, three maximum pooling layers, three fully connected layers, and one clas-

sification layer. The number of neurons in the convolutional layer is set to 200, and a ReLU 

activation function is added after each convolutional layer. The two-dimensional tensor 

output by the convolutional layer is compressed into one dimension and sent to three 

consecutive fully connected layers. To prevent overfitting, a dropout rate of 0.05 is taken 
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after each fully connected layer, so a random set of neurons is set to 0 in each iteration. 

The detailed network hyperparameters are shown in Table 3. 

The source network is trained on the large dataset ISCX VPN-nonVPN, and then fine-

tuned on the target dataset as a transfer network. We set the batch size to 64, epoch to 20 

rounds, and the initial learning rate to 0.01. When the model is fine-tuned on the target 

dataset, the learning rate is set to 0.001 because the model has converged on the large 

dataset. 

The experiment optimizes the network hyperparameters from several angles. Firstly, 

the network convolution layer is set to five layers, the maximum pooling layer is set to 

three layers, the linear layer is set to four layers, and the filter is set to 200 because of the 

network complexity that cannot be supported by a small sample size. Secondly, the trans-

fer adaptive module uses a self-search method to automatically optimize the recom-

mended freezing parameters. In addition, we refer to the empirical parameter settings of 

the current network: the initial learning rate is set to 0.01, the convolution kernel size is 

set to 5, and the dropout is 0.05. 

Table 3. Network hyperparameters. 

Operation Kernel Size Strides Channels Dropout Nonlinearity 

Input 

packet 
- - - - - 

Convolu-

tion 
5  1 200 0.05 ReLU 

Convolu-

tion 
5  1 200 0.05 ReLU 

Max pool-

ing 
- 2 - 0.05 - 

Convolu-

tion 
5 1 200 0.05 ReLU 

Convolu-

tion 
5 1 200 0.05 ReLU 

Max pool-

ing 
- - - 0.05 - 

Convolu-

tion 
5 2 200 0.05 ReLU 

Max pool-

ing 
- - - 0.05 - 

Flattening - - - - - 

FC - - 200 0.05 ReLU 

FC - - 100 0.05 ReLU 

FC - - 50 0.05 ReLU 

Output FC - - 9 - Softmax 

4. Results 

4.1. Classification Performance 

4.1.1. Malicious Traffic Dataset Testing 

We randomly divide the target dataset into three separate sets, where 50% of the 

samples are used for training and adjusting weights and biases, 30% of the samples are 

used for validation in the training phase, and the last 20% of the samples are used for 

testing the model. In order to better evaluate the classification performance of the DA-

Transfer model, we introduce the confusion matrix, as shown in Table 4. This matrix 
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describes the number of samples in the dataset that are correctly or incorrectly classified 

by the classifier, and it is commonly used in classification problems. 

Table 4. Confusion matrix. 

 
Predict 

Positive Negative 

Actual 
Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

Based on the confusion matrix, three metrics are often used to evaluate the model. 

Precision refers to the proportion of instances that are predicted to be correct and positive 

in all the instances. It is expressed as follows: 

TP
Precision

TP FP
=

+
 (2) 

The abnormal class recall rate refers to the proportion of all the positive classes that 

are predicted to be correct. It can also be called the detection rate (DR), as follows: 

TP
DR Recall

TP FN
= =

+
 (3) 

F1-score is a comprehensive indicator of accuracy and recall, which is expressed as: 

2* *
1

precision recall
F score

precision recall
− =

+
 (4) 

We use the training data of the target dataset to train two traffic classification models, 

namely the direct training model and the DA-Transfer model, and use the test data to test 

the two models. Figure 4 shows the normalized confusion matrix for the classification 

results of the test datasets obtained by the two models. 

The average classification accuracy of the direct training model for the nine classes 

of the dataset is 0.72, and the DA-Transfer model reaches 0.93, demonstrating the effec-

tiveness of our method for small-sample datasets. In terms of the classification accuracy 

of Finalfantasy, Irat, and Poison-ivy, the classification accuracy of the direct training 

model is 0.54, 0.59, and 0.43, which is because the number of packages for these three types 

of training is less than 90, which is insufficient to support the huge amount of data re-

quired by the neural network. The DA-Transfer method shows 0.83, 0.81, and 0.84 accu-

racy on these three types of data due to the transfer of the feature extraction ability of the 

source network. It can prove the effectiveness of our method for small-sample datasets. 
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Figure 4. Classification accuracy of small-sample datasets. (a) Performance of the direct training 

model. (b) Performance of the DA-Transfer model. 

Figure 5 is the loss function curve of the direct training model and the DA-Transfer 

model. Figure 5 shows that the direct training model begins to converge near the training 

round of 400, while the DA-Transfer model begins to converge near 200. Experiments 

show that the DA-Transfer method can transfer the knowledge trained in the source da-

taset to the target dataset, so as to better complete the classification task of the target da-

taset. 

 

Figure 5. (a) The loss curve of the direct training model. (b) DA-Transfer model loss curve. 

4.1.2. Comparison with Existing Networks 

We compare the performance of six classification models, which are the direct train-

ing model, the DA-Transfer method training model, the classical traffic classification 

model by Deeppacket [16], CNN-LSTM [17], and the transfer classification models 
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proposed by Idrissi et al. [30] and Eva et al. [31] in the past two years. The accuracy, recall 

rate, and other measurement indicators that achieved sufficient results in the study [34,35] 

are used to test the model. The ROC curves and PR curves of the six models are shown in 

Figures 6 and 7. Precision, recall rate, and other indicators are shown in Table 5. 

Figure 6 shows the ROC curves and AUC values of the six methods on each type of 

data in the test set. The x axis of the ROC curve represents the false positive rate (FPR) and 

the y axis represents the true positive rate (TPR). The curves closer to the upper left corner 

of the graph represent the superior performance of the classifier. It is obvious from the 

graph that the ROC curve of each type of DA-Transfer method is closer to the upper left 

corner. The AUC value of the average ROC curve represents the average accuracy of the 

model for nine classifications of datasets. The AUC values of the six methods are DA-

Transfer (0.99), direct training (0.92), Deeppacket (0.96), CNN-LSTM (0.96), Idriss (0.93), 

and Eva (0.97). The results show that the DA-Transfer method is superior to other meth-

ods. 

 

Figure 6. ROC curve of six traffic classification methods: DA-Transfer, direct training, Deeppacket, 

CNN-LSTM, Idriss, and Eva. 
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When the positive and negative distributions of the test samples are uneven, PR can 

more effectively reflect the quality of the classifier than ROC. In order to comprehensively 

evaluate the model, we evaluated the PR indicators for the six models. We calculate the 

average precision (macro-Prediction) and average recall (macro-Recall). We draw the 

macro-Average PR curve and calculate the mean average precision (mAP), as shown in 

Figure 7. When the accuracy and recall rate are high, the model performance is better, so 

the curve is expected to be close to the upper right corner. Figure 7 shows that the PR 

curve for the DA-Transfer method is closer to the upper right corner and the mAP is 

higher. Therefore, the average classification performance of the DA-Transfer model for 

the nine test set classifications is better than the other methods. 

 

Figure 7. Macro-Average PR curves of six classification models. 

We evaluated the prediction, recall, F1-score, and t-test metrics of six classification 

models, as shown in Table 5. The DA-Transfer method is superior to other methods in 

prediction, recall, and F1-score. We also conducted a 10-fold cross-validation and calcu-

lated the standard deviation to evaluate the model uncertainty. The results show that the 

DA-Transfer method is equal to the Eva method in model stability and superior to the 

other four methods. The t-test indicator shows significant differences between DA-Trans-

fer and the other five methods. A t-test value of less than 0.05 (***) indicates a significant 

difference between the two models. Table 5 shows that DA-Transfer has significant dif-

ferences compared with direct training, Deeppacket, CNN-LSTM, and Idriss, and has no 

significant difference from the Eva method. The above experimental results show that the 

DA-Transfer method has a slight advantage over the Eva method and is significantly bet-

ter than the other four methods. 

Table 5. Prediction, recall, F1-score, and t-test index of the six classification methods. ***means 

that the statistical test has a significant difference. 

Model Prediction Recall F1-Score t-Test 

DA-Transfer 92.8 (±1.53) 92.83 (±0.82) 92.81 (±0.55) - 

Direct training 79.44 (±2.84)  85.66 (±1.56) 85.28 (±1.23) 0.0005 (***) 

Deeppacket 76.42 (±1.99) 77.90 (±1.12) 77.15 (±0.84) 0.0003 (***) 

CNN-LSTM 82.85 (±3.14) 83.26 (±1.68) 83.05 (±1.44) 0.007 (***) 

Idriss 89.27 (±1.91) 89.35 (±2.01) 89.31 (±1.81) 0.001 (***) 

Eva 91.86 (±1.30) 91.54 (±1.02) 91.70 (±0.72) 0.19 
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4.1.3. Ablation Experiments 

We set up ablation experiments on the target dataset to demonstrate the importance 

of each module of our proposed DA-Transfer method by testing the accuracy of four clas-

sification models, which are trained as follows: direct training of randomly initialized net-

works, add data adaptive module training network, training a network using model ad-

aptation, and both add data adaptive module and model adaptive module training net-

work. 

Figure 8 shows the classification accuracy of each model for each category. More reg-

ular distribution after data adaptation helps the model to distinguish classification bound-

aries during training, so the classification accuracy of the model is slightly improved com-

pared to non-adapted data. 

Transferring the network that has undergone model adaptation further trains the 

model to extract advanced features for small-sample datasets while retaining the feature 

extraction capability of the source network, and its accuracy is higher than those of the 

first two models without transfer. The data adaptive transfer network reduces the distance 

between the source dataset and the target dataset, and inherits the feature extraction abil-

ity of the transfer network to achieve the best classification accuracy. The result shows 

that both the data adaptation module and the model transfer adaptation module of the 

proposed DA-Transfer method play important roles in the performance of the final model. 

 

Figure 8. Classification accuracy of ablation experiments on nine data classes. 

4.2. Data Adaptation Performance 

We designed a data mapping network to reduce the distribution distance between 

target and source datasets and to verify the effectiveness of the mapping network. We 

introduce the t-SNE (t-distributed stochastic neighbor embedding) algorithm [36] to han-

dle the data visualization. This algorithm is a nonlinear dimensionality reduction algo-

rithm that can reduce the high-dimensional data into two dimensions, better displaying 

the distribution of the data. 

Figure 9a shows the original distribution distances of the source and target datasets, 

where the red circles represent the data distribution of the target dataset and the blue 

circles represent that of the target data, from which it can be seen that the data distribution 

of the target dataset is scattered and differs greatly from that of the source dataset. 

The scattered data distribution leads to poor classification boundaries, easily result-

ing in poor classification performance, while the large difference in data distribution of 
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the source and target datasets causes a larger adjustment of the transferred model param-

eters, resulting in low model training efficiency. After the data adaptation module, we use 

the MMD distance as the loss function to reduce the distribution distance between the 

source and target datasets from 6.49 to 0.16. As can be seen in Figure 9b, the distribution 

of the target dataset after performing data adaptation is more regular, and the distribution 

distance between the source and target datasets is significantly reduced. 

 

Figure 9. (a) Original data distribution of source and target datasets. (b) Data distribution of source 

and target datasets after data adaptation module. 

4.3. Time Consumption and Effect Analysis 

In order to evaluate the efficiency of our proposed DA-Transfer method, we tested 

the time consumption of the traditional pre-training and fine-tuning transfer method, the 

DA-Transfer method, and classical Deeppacket and CNN-LSTM traffic classification 

methods in training 200 packets with 80% classification accuracy. Since the Idrissi and Eva 

transfer classification methods do not select the optimal number of frozen layers during 

model transfer, they freeze all convolutional layers. Therefore, the comparison of time 

consumption with their transfer and training is not referential. Through the comparison 

of model accuracy in Section 4.2, it can be found that the transfer methods of Idrissi and 

Eva need to be improved for model accuracy. Figure 10 shows the time consumption of 

the four methods, where the blue part shows the time required to determine the transfer 

freeze parameter (only the traditional model transfer method and DA-Transfer method 

have this part), the orange part shows the time required for model training, and the yellow 

part shows the time required for data adaptation (including the training of the mapping 

network and mapping the dataset, which is included in the DA-Transfer method only). 

As can be seen, since the traditional transfer method requires layer-by-layer training 

to find the transfer freeze parameters, our proposed model transfer adaptive module is 

capable of adaptively recommending freeze parameters without retraining, which re-

duces the time spent on this part by about 42%. At the same time, since the target dataset 

mapped by the data adaptive module has a smaller amplitude for the fine-tuning model, 

the model fine-tuning time represented by the orange part is shortened by about 51% 

compared to the traditional transfer method. The classical Deeppacket and CNN-LSTM 

traffic classification methods contain quantity parameters that need to be trained. There-

fore, the model requires more training rounds, and accordingly, the training time in-

creases. Therefore, even with the addition of the time consumption of the data adaptation 

module (yellow part in the figure), which is not available in the other three methods, the 

total time consumption of the DA-Transfer method training network is 20.01% higher than 

that of traditional model transfer methods, and is efficient in traffic classification. 
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Figure 10. Time consumption of four classification methods. 

4.4. Model Transfer Improves Efficiency 

The problem of low efficiency and reliance on manual experience when freezing pa-

rameters of traditional screening transfer networks needs to be solved. In this paper, a 

model transfer adaptive module is designed, which converts the traditional task of finding 

the number of shared parameter layers into a binary classification problem in the source 

domain and target domain. This method has no special requirement for the source and 

target domains. Therefore, we believe that this method is generalized. 

Figure 11 shows the time consumption of our proposed method compared to the tra-

versal search method in recommending frozen parameters, and the effect of freezing pa-

rameters of different layers of the network on the classification accuracy. Compared with 

the traversal search method, the model adaptation module does not need to retrain the 

parameters other than the frozen layer. Since it converts the problem into a binary classi-

fication problem, it also reduces huge parameters in the linear layer compared with the 

multi-classification problem, shortening the time to recommend the freezing of parame-

ters. 

The line in Figure 11 shows the performance of the trained network in the classifica-

tion accuracy of the small-sample datasets when freezing parameters of different layers. 

Freezing less than two layers makes it difficult to train the huge number of remaining 

network parameters for small-sample datasets, which affects the classification accuracy. 

As the number of frozen layers increases, the number of network layer parameters that 

need to be data-driven decreases, and the network classification accuracy gradually in-

creases. When the number of frozen layers exceeds the recommended number of layers 

by two, the parameters of the frozen network layers may extract the high-level features of 

the source dataset instead of the common features of the two datasets, which makes the 

remaining parameters insufficient to extract the high-level features of the target dataset. 

This causes the final extracted features to fail in completing the classification task, and the 

network classification accuracy gradually decreases as the number of frozen layers in-

creases. 

We presume that the appropriate network freezing layer parameters are crucial for 

classification accuracy. The model transfer adaptive module proposed in this paper has 

improved both the accuracy and efficiency of the model. 
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Figure 11. The freezing parameter recommendation module improves the accuracy and efficiency 

of the network model. 

5. Discussion 

5.1. Model Analysis 

In order to resolve the contradiction between the small-sample datasets and the huge 

number of deep learning parameters, we propose a small-sample malicious traffic classi-

fication method based on deep transfer learning, which adds model transfer adaptation 

and data adaptation modules to the traditional transfer learning method. 

The traditional method relies on the experience of the network model designers, 

which is not suitable for the current traffic data iteration speed and does not have gener-

alization ability. We propose an adaptive network transfer module that enables the model 

to adaptively freeze parameters of the transfer model when performing transfer based on 

the variability between the source and target datasets. 

Meanwhile, since small-sample datasets have limited ability to fine-tune the transfer 

model, and as the variability between the source and target datasets has a significant im-

pact on the accuracy of the fine-tuned model, we designed the data adaptation module in 

the traffic classification framework. The traditional processes of data adaptation are often 

based on feature-level mapping, and such methods may lose the high-level features of the 

target dataset, while the small-sample dataset needs to be mined for features that can be 

distinguished from each other among different classes in a small number of samples. 

Therefore, we designed a neural network-based data adaptation module, which works on 

the original data and enables the target dataset close to the source dataset. After the data 

adaptation module, the target dataset needs less fine-tuning for the parameters of the 

transfer network, and it is better adapted to the transfer network, improving the classifi-

cation accuracy of the model for small-sample datasets. 

We make a fusion of the model and data adaptation modules to jointly serve the 

model transfer for small-sample datasets. This approach reduces the difficulty in transfer-

ring model fitness and transfer efficiency. The fusion method significantly improves the 

test classification performance, with an average accuracy of 0.93 and a 20.01% improve-

ment in the training efficiency. 
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5.2. Limitations and Future Research 

In this paper, we explored the task of classifying small samples of network traffic. 

The proposed DA-Transfer method demonstrates better performance than the conven-

tional methods. Moreover, the existing methods have some limitations that need atten-

tion, and further improvements are planned for future research. 

Firstly, the DA-Transfer method based on the deep network module is not interpret-

able enough to condense the experience on traffic features. The coding and decoding of 

packet structures by neural networks are the basis of traffic classification, especially the 

realistic meaning corresponding to the characterization features. As a data transmission 

structure with context semantics, the traffic packet has rich meanings in the paragraph 

information of a single data segment and the related information in the previous and later 

texts. The DA-Transfer extracts low-level and high-level network traffic features at the 

bottom and top levels, respectively. These features are difficult to summarize in the cur-

rent interpretation. The end-to-end learning method improves the training effect, but vis-

ualization is needed to understand the representation mechanism of features. 

Secondly, the recommendation algorithm with frozen layers in the transfer learning 

improves the training efficiency, and more network parameters can apply a similar tuning 

strategy. At present, the deep network realizes automatic feature extraction, meta-learn-

ing, and box self-search. Other methods provide suggestions on the network structure. 

The DA-Transfer method has achieved considerable benefits in the frozen layer. Future 

research can further expand the scope of parameter optimization and provide a combina-

tion strategy for multiple parameters of the overall network design. 

Finally, the real-time network traffic classification needs further optimization, in-

cluding the real-time performance of the algorithm output and fast iteration of the real 

network environment. The real-time performance of the algorithm requires the simplicity 

and efficiency of the method. The DA-Transfer method retains the original large-scale net-

work structure and parameter quantity, which requires certain computing resources and 

storage space. The huge network is difficult to apply on portable devices, and the param-

eter redundancy occupies a large amount of device storage. In future research, the model 

size can be simplified by the lightweight method of knowledge distillation, or pruning to 

reduce the equipment operation basis of the algorithm and expand its application scenar-

ios. Upon facing the problem of rapid iteration in the network environment, the classifi-

cation model should have the ability to capture and identify new application traffic in real 

time. The DA-Transfer method needs to adjust with the changes in the network environ-

ment, open up new category space, and expand the classification ability of new samples 

through a class incremental method, so as to face the updating and iteration of practical 

applications. 

6. Conclusions 

We propose a malicious traffic classification method for small-sample datasets. The 

method combines both data adaptation and model transfer adaptation components. In the 

data adaptation, we designed a mapper based on neural networks to reduce the distribu-

tion distance between the mapped target and source datasets, and the transfer classifica-

tion model can be better adapted to the target dataset. In addition, in the model transfer, 

we propose an adaptive parameter freezing method, which can accurately and efficiently 

determine the number of network layers that can freeze parameters during model trans-

fer. Through the method of data adaptive and model adaptive fusions, we finally trained 

a classification network that demonstrates suitable classification accuracy and efficiency 

on small-sample datasets. This paper can provide a new perspective for deep network 

transfer tasks as well as small-sample classification tasks. 

Author Contributions: R.W. is mainly responsible for research design, data analysis, and manu-

script writing for this study. J.F. is mainly responsible for data collection and manuscript editing. 

M.Z. is mainly responsible for research design. R.Z. is mainly responsible for research design. M.G. 



Electronics 2022, 11, 3577 18 of 19 
 

 

is mainly responsible for data collection and production of charts. X.L. and Z.Q. are mainly experi-

ment design and preparation. All authors have read and agreed to the published version of the 

manuscript. 

Funding: This work was supported by the National Key Research and Development Project of 

China (2019QY1302). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Publicly available datasets were analyzed in this study. These data 

can be found at: https://www.unb.ca/cic/datasets/vpn.html (Accessed 5 June 2020). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Haque, M.; Palit, D. A review on Deep Neural Network for Computer Network Traffic Classification. arXiv Prepr. 2022, 

arXiv:2205.10830. 

2. Biersack, E.; Callegari, C.; Matijasevic, M. Data Traffic Monitoring and Analysis; Springer: Berlin/Heidelberg, Germany, 2013. 

3. Dainotti, A.; Pescape, A.; Claffy, K.C. Issues and future directions in traffic classification. In Network IEEE; IEEE: Piscataway, 

NJ, USA, 2012; Volume 26, pp. 35–40. 

4. Khalife, J.; Hajjar, A.; Diaz-Verdejo, J. A multilevel taxonomy and requirements for an optimal traffic-classification model. Int. 

J. Netw. Manag. 2014, 24, 101–120. 

5. Lashkari, A.H.; Draper-Gil, G.; Mamun, M.; Ghorbani, A.A. Characterization of Encrypted and VPN Traffic Using Time-Related 

Features. In Proceedings of the International Conference on Information Systems Security and Privacy (ICISSP), Rome, Italy, 

19–21 February 2016. 

6. Yamansavascilar, B.; Guvensan, M.A.; Yavuz, A.G.; Karsligil, M.E. Application identification via network traffic classification. 

In Proceedings of the 2017 International Conference on Computing, Networking and Communications (ICNC), Silicon Valley, CA, USA, 

26–29 January 2017; IEEE: Piscataway, NJ, USA, 2017. 

7. Schreiber, L.V.; Amorim, J.G.A.; Guimarães, L; Matos, D.M.; da Costa, C.M.; Parraga, A. Above-ground Biomass Wheat Esti-

mation: Deep Learning with UAV-based RGB Images. Appl. Artif. Intell. 2022, 36, 2055392. 

8. Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object Detection with Deep Learning: A Review. arXiv 2018, arXiv:1807.05511.  

9. Zheng, H.; Liu, J.; Ren, X. Dim target detection method based on deep learning in complex traffic environment. J. Grid Comput. 

2022, 20, 8. 

10. Samant, R.M.; Bachute, M.; Gite, S.; Kotecha, K. Framework for Deep Learning-Based Language Models using Multi-task Learn-

ing in Natural Language Understanding: A Systematic Literature Review and Future Directions. In IEEE Access; IEEE: Pisca-

taway, NJ, USA, 2022. 

11. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016. 

12. Ho, Q.-T.; Le, N.Q.K.; Ou, Y.-Y. mCNN-ETC: Identifying electron transporters and their functional families by using multiple 

windows scanning techniques in convolutional neural networks with evolutionary information of protein sequences. Brief. Bi-

oinform. 2022, 23, bbab352. 

13. Le, N.Q.K.; Ho, Q.T.; Nguyen, V.N.; Chang, J.S. BERT-Promoter: An improved sequence-based predictor of DNA promoter 

using BERT pre-trained model and SHAP feature selection. Comput. Biol. Chem. 2022, 99, 107732. 

14. Jiang, J.; Shu, Y.; Wang, J.; Long, M. Transferability in Deep Learning: A Survey. arXiv 2022, arXiv:2201.05867. 

15. Wei, W.; Ming, Z.; Zeng, X.; Ye, X.; Sheng, Y. Malware traffic classification using convolutional neural network for representa-

tion learning. In Proceedings of the 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13 Jan-

uary 2017; IEEE: Piscataway, NJ, USA, 2017. 

16. Lotfollahi, M.; Zade, R.S.H.; Siavoshani, M.J.; Saberian, M. Deep Packet: A Novel Approach for Encrypted Traffic Classification 

Using Deep Learning. Soft Comput. 2017, 24, 1999–2012. 

17. Zhuang, Z.; Ge, J.; Zheng, H.; Wu, Y.; Han, C.; Yao, Z. Encrypted Traffic Classification with a Convolutional Long Short-Term 

Memory Neural Network. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and Com-

munications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems 

(HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; IEEE: Piscataway, NJ, USA, 2018. 

18. Draper-Gil, G.; Lashkari, A.H.; Mamun, M.S.I.; Ghorbani, A.A. 2019. UNB VPN-nonVPN Dataset (ISCXVPN2016). Available 

online: https://www.unb.ca/cic/datasets/vpn.html/ (accessed on 5 June 2020). 

  

https://www.unb.ca/cic/datasets/vpn.html


Electronics 2022, 11, 3577 19 of 19 
 

 

19. Cui, S.; Jiang, B.; Cai, Z.; Lu, Z.; Liu, S.; Liu, J. A Session-Packets-Based Encrypted Traffic Classification Using Capsule Neural 

Networks. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 

17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 

Zhangjiajie, China, 10–12 August 2019; IEEE: Piscataway, NJ, USA, 2019. 

20. Fauvel, K.; Finamore, A.; Yang, L.; Rossi, D. A Lightweight, Efficient and Explainable-by-Design Convolutional Neural Network 

for Internet Traffic Classification. arXiv Prepr. 2022, arXiv:2202.05535. 

21. Kim, K.; Lee, J.H.; Lim, H.K.; Oh, S.W. Deep RNN-based network traffic classification scheme in edge computing system. Com-

put. Sci. Inf. Syst. 2022, 19, 165–184. 

22. Cheng, J.; He, R.; Yuepeng, E.; Wu, Y.; You, J.; Li, T. Real-time encrypted traffic classification via lightweight neural networks. 

In Proceedings of the GLOBECOM 2020-2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; IEEE: 

Piscataway, NJ, USA, 2020; pp. 1–6. 

23. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable Are Features in Deep Neural Networks? MIT Press: Cambridge, MA, 

USA, 2014. 

24. Neyshabur, B.; Sedghi, H.; Zhang, C. What is being transferred in transfer learning? arXiv 2020, arXiv:2008.11687. 

25. Shang, F.; Li, S.; He, J. Improved application of transfer learning in network traffic classification. J. Phys. Conf. Ser. 2020, 1682, 

012011. 

26. Fan, Y.; Li, Y.; Zhan, M.; Cui, H.; Zhang, Y. IoTDefender: A federated transfer learning intrusion detection framework for 5g 

IoT. In Proceedings of the 2020 IEEE 14th International Conference on Big Data Science and Engineering (BigDataSE), Guangzhou, China, 

31 December 2020–1 January 2021; IEEE: Piscataway, NJ, USA, 2020; pp. 88–95. 

27. Wan, X.; Liu, H.; Xu, H.; Zhang, X. Network Traffic Prediction Based on LSTM and Transfer Learning. In IEEE Access; IEEE: 

Piscataway, NJ, USA, 2022; Volume 10, pp. 86181–86190. 

28. Guan, J.; Cai, J.; Bai, H.; You, I. Deep transfer learning-based network traffic classification for scarce dataset in 5G IoT systems. 

Int. J. Mach. Learn. Cybern. 2021, 12, 3351–3365. 

29. Dhillon, H.; Haque, A. Towards Network Traffic Monitoring Using Deep Transfer Learning. In Proceedings of the Trust, Security 

and Privacy In Computing And Communications, Guangzhou, China, 29 December 2020–1 January 2021; IEEE: Piscataway, NJ, USA, 

2021. 

30. Idrissi, I.; Azizi, M.; Moussaoui, O. Accelerating the update of a DL-based IDS for IoT using deep transfer learning. J. Electr. 

Eng. Comput. Sci. 2021, 23, 1059–1067. 

31. Rodríguez, E.; Valls, P.; Otero, B.; Costa, J.J.; Verdú, J.; Pajuelo, M.A.; Canal, R. Transfer-Learning-Based Intrusion Detection 

Framework in IoT Networks. Sensors 2022, 22, 5621. 

32. Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Scholkopf, B.; Smola, A. A kernel two-sample test. JMLR 2012, 13, 723–773. 

33. Devlin, j.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. 

arXiv 2019, arXiv:1810.04805. 

34. Le, N.Q.K.; Kha, Q.H.; Nguyen, V.H.; Chen, Y.-C.; Cheng, S.-J.; Chen, C.-Y. Machine Learning-Based Radiomics Signatures for 

EGFR and KRAS Mutations Prediction in Non-Small-Cell Lung Cancer. Int. J. Mol. Sci. 2021, 22, 9254. 

https://doi.org/10.3390/ijms22179254. PMID: 34502160; PMCID: PMC8431041. 

35. Hung, T.N.K.; Le, N.Q.K.; Le, N.H.; Van Tuan, L.; Nguyen, T.P.; Thi, C.; Kang, J. An AI-based Prediction Model for Drug-drug 

Interactions in Osteoporosis and Paget's Diseases from SMILES. Mol. Inform. 2022, 41, e2100264. 

https://doi.org/10.1002/minf.202100264. Epub 22 January 2022. PMID: 34989149. 

36. van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. 

 


