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Abstract: An algorithm that presents the best possible approximation for the theoretical Bézier
curve and the real path on which a mobile robot moves in a dynamic environment with mobile
obstacles and boundaries is introduced in this paper. The algorithm is tested on a set of scenarios that
comprehensively cover critical situations of obstacle avoidance. The selection of scenarios is made by
deploying robot navigation performances into constraints and further into descriptive characteristics
of the scenarios. Computer-simulated environments are created with dedicated tools (i.e., Gazebo)
and modeling and programming technologies (i.e., Robot Operating System (ROS) and Python). It is
shown that the proposed algorithm improves the performance of the path for robot navigation in a
highly dynamic environment, with dense mobile obstacles.
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1. Introduction

A Bézier curve is a parametric curve, very well-known nowadays due to its multiple
applications in science and engineering. It can approximate with high fidelity various
forms found in nature and in society (medical image reconstruction [1], human organs [2],
facial recognition [3], shape description [4], computer graphics and animation [5], traffic
control [6], bus parking [7], automatic parking [8], path planning for robots [9-19], etc).
Bézier curves were discovered by a French engineer named Piere Bézier [20]. He used them
for the first time in designing Renault and Citroen cars to improve the aesthetics of the
car’s shape [21].

Due to the increased interest in autonomous vehicle applications, in this paper, the
authors introduce a Bézier curve-driven algorithm for improving mobile robot navigation.
This research might be expanded to autonomous cars, too. However, initially testing
such algorithms on less costly vehicles, such as mobile robots, is desirable. The major
challenge is to prove that autonomous navigation driven by such algorithms among fixed
and mobile obstacles is carried out safely, without collisions, and smoothly. Up to this
moment, the scientific literature reports a variety of developments in the field of robot path
planning [22-25], etc.

To focus the research from this paper, investigations for documenting the state of the
art were conducted using Clarivate Analytics and Scopus. Past research was collected using
the keyword “path planning”, which returned 5945 independent titles. The investigation
was refined by looking inside this set with the keyword “Bézier curves”. The range of
articles narrowed to 260. This resulting subset was analyzed, and it was concluded that the
articles introduced in the next section are relevant to the purpose of this work.
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2. Background

According to [26], there are algorithms used to solve path-finding problems by means
of heuristic methods (the Dijkstra algorithm, A* algorithm [27], D* algorithm [28], and Lee
algorithm [29]), meta-heuristics, random methods, and the hybrid components of these
methods. The research from [30] provides information about a new parametrization of
motion primitives for wheeled mobile robots. A parametrization of third-order Bézier
motion primitives with continuous curvature (i.e., C> geometric curve continuity) in the
joints is proposed. The primitive is computed as a solution that satisfies the boundary
conditions for the position, orientation, and curvature at the endpoints. Besides the C?
continuity, the primitive has several improvements: computational efficiency, minimal
curve oscillations, and better convergence when applied to planning optimizers. These
previous properties result from choosing a low-order primitive. The instructions for
constructing primitives and an algorithm that connects the given way-points with the
primitives resulting in a C? path are provided. The practical applications of the proposed
primitives should be tested. An example of such applications is using the algorithm for a
path optimizer for minimal-time safe path planning in a warehouse under variable load.

Article [31] proposes a new approach for autonomous mobile robots to solve path-
planning problems by optimizing paths generated by random and traditional algorithms
with Bézier curves in an environment full of known obstacles in every aspect. The proposed
approach is applied in four stages: 1. The environment map consists of a grid. The cells
which correspond to the obstacles, start, and endpoints are marked. 2. A path is computed
from the previous map. This path begins from the starting point to go to the destination
point. The Lee algorithm or the RRT algorithm (Rapidly Exploring Random Tree) are used
to find the shortest path. 3. The raw path computed at step 3 contains too many nodes, so
it needs to be pruned. The pruning is performed using linear Bézier curves, with the result
of eliminating the extra nodes. 4. Along the path, the Spike nodes are smoothed using
quadratic Bézier curves to create a safe path by ensuring the continuity of the path. After
the four stages are run, the planned path between the starting point and the target point has
the properties of being smooth, having a minimal length, and having a limited curvature.
The simulation holds results that confirm the performance of the proposed stages. In this
article, achieving success depends on knowing the environmental conditions.

The technique from [32] uses third-order Bessel curves and an improved artificial fish
swarm algorithm. First, the morphological processing, such as the expansion of obstacles,
is carried out. During the path-planning process, an artificial fish swimming range of
16 directions and 24 fields based on Dijkstra’s algorithm is run. The algorithm provides
the movement rules of the artificial fish, which improves the accuracy of planning while
reducing the number of inflection points. By adding the sharing mechanism, the number
of operations of the fusion algorithm is reduced. The problem of mutual interference
between the optimal local solution and the optimal global solution is solved. A feedback
field of view is used, which limits the typically large field. Thanks to that, the oscillation
phenomenon caused by an excessively large field of view in the later stage of the algorithm
is avoided. The improved artificial fish swarm algorithm proposed in this paper generates
a collision-free, inflection-point-less, and shorter path connected by a sequential sequence
of path points. Finally, the continuity of the direction and curvature is smoothed by the
use of cubic Bessel curves. The use of cubic Bessel curves also satisfies the minimum
rotation radius to reduce the mechanical structure damage of the robot. By comparing the
simulation results of the proposed algorithm with the traditional fish swarm algorithm,
it can be observed that the proposed fusion algorithm has a shorter average path, fewer
inflection points, and is more consistent with the kinematic characteristics of the robot
while also ensuring a 100% correct planning rate. At the same time, the proposed fusion
algorithm makes use of Dijkstra’s algorithm, which causes an increase in computation, but
the fish-sharing mechanism offsets part of the computation.

A different strategy is observed in [33]. It combines the continuous high-degree Bézier
curve with an improved particle swarm optimization (PSO) algorithm. Compared with
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the other articles” smooth path-planning approaches, the proposed strategy improves
the smooth path planning of mobile robots. On the one hand, the smooth paths created
via the continuous high-degree Bézier curve are “smoother” than those composed of
several low-degree Bézier curve segments. The cause is that the high-order continuity
(e.g., the continuous curvature derivative) can be naturally satisfied along the smooth path
composed of a continuous high-degree Bézier curve. The smooth path obtained using the
new strategy is also optimal because the continuity requirements are connected directly
to the optimization criteria rather than inking several smooth curve segments. To deal
with the complex optimization problem of the continuous high-degree Bézier curve, an
improved PSO is suggested to overcome the frequently encountered problems of local
trapping and premature convergence. By introducing an adaptive fractional-order velocity
into the velocity updating function according to the state of the particle swarm evolution,
some “disturbances” will be brought to the particle swarm. As such, some “power” will
make it more likely to jump out of the local minima to explore and exploit the searching
space more thoroughly. Thus, the problems of local trapping and premature convergence
can be significantly improved. The advantages of the improved PSO algorithm were
verified by the comparison of several standards and modified PSO algorithms, and the
proposed algorithm was tested on several well-known standard benchmark functions.
The improvement of the new strategy takes effect by solving the formulated optimization
problem. This also has been confirmed by the smooth plan resulting during the simulations.

The authors intend to test the convergence of the algorithm with the help of computing
the weight coefficients of the fractional-order velocities in a parameter domain. Moreover,
they will test the performance of the improved PSO in other cases, such as the switching
delay, the randomly distributed delay, the sigmoid-function-based adaptive weight, and
the Markovian state jumping.

A chaotic particle swarm optimization (CPSO) algorithm to optimize the control points
of the Bézier curve is proposed in [34]. The control points of the Bézier curve have an
essential impact on discovering the optimal smooth path that minimizes the total distance
between the starting and ending points. The proposed algorithm is created in two variants:
CPSO-I and CPSO-II. Four experiments were conducted in this article. The first experiment
observed the results of the two proposed algorithms using different chaotic maps. The
results of this experiment share that the Singer and Sine maps were suitable for both
algorithms. The second experiment compared the CPSO-I, CPSO-II, and PSO algorithms.
The results of the second experiment revealed that (1) the CPSO-II algorithm achieved the
best results and (2) replacing random parameters with chaotic maps in the PSO algorithm
improved the performance of the PSO. The influence of the number of control points
was tested in the third experiment. The results proved that increasing the number of
control points increases the search space by adding extra dimensions. Therefore, a large
population for the PSO is required to scan the search space perfectly. In the last experiment,
the CPSO-II algorithm was tested against different numbers of obstacles, and the results
proved that increasing the number of obstacles increases the problem’s difficulty. However,
the proposed algorithm found the optimal path in most cases. The experiments in this
paper were performed using only a static environment. However, a dynamic environment,
i.e., moving obstacles, should be tested in the future to verify and extend the proposed
algorithm. Searching for the optimal path in a three-dimensional environment should be
tested in the future to simulate real robots’ movements, too.

Article [9] presents smooth route planning for mobile robots based on a Bézier quartic
transition curve and an improved particle swarm optimization (PSO) algorithm. A new
approach combined with a parametric cubic Bézier curve (PCBC) and particle swarm opti-
mization with adaptive delayed velocity (PSO-ADV) algorithms is developed to plan the
smooth path of mobile robots. The smooth path composed of PCBC segments can achieve
an equivalent curvature at the joints of the segments, and thus it is able to attain a continu-
ous curvature along the whole smooth path. Based on the mathematical formulation of the
smooth path-planning problem, the optimal smooth path can be obtained by regulating
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the control points and control parameters of the PCBC, which is essentially an intractable
optimization problem. Therefore, it is necessary to tackle this optimization problem and
some frequently encountered troubles (e.g., the premature convergence and local trapping).
A new PSO-ADV algorithm is developed, and by adding an adaptive delayed velocity term
that can give the particles more “power” to jump out of the local minima, the validity of
the PSO-ADV can be affirmed because of some simulation experiments on several famous
benchmark functions. The advantages of this method are validated by running several
experiments. The authors intend to work in the future on (1) the convergence analysis of the
PSO-ADV algorithm; (2) the new schemes that can be employed to boost the performance
of the PSO; and (3) the applications of the new smooth path-planning approach which
cover some more complicated cases, e.g., 3D path planning, multi-robot path planning, and
path planning in a severe environment.

The articles [35,36] present the Timed Elastic Bands (TEB) planner. It is an extensively
used local planner for complex environments. It is integrated into the Robot Operating
System (ROS) [37]. The TEB were formulated in [38]. The TEB planner is employed to
efficiently and rapidly estimate a discretized trajectory in the plan. Formulated as a multi-
objective optimization problem, the TEB planner takes into account constraints, such as
the path feasibility from a robot’s kinematics point of view, velocity limits, and obstacle
avoidance. Ref. [39] showcases situations when the TEB planner can be improved, such as
a curve detour, acceleration strategies, and slight trajectory oscillations.

The article [30] presents one of the few, if not the first approach that uses cubic Bézier
curves to discover motion primitives. To be able to use the primitives above, the given
requirements for the initial and final position, orientation, and curvature are taken into
account. A new parametrization method and an algorithm for computing the curve are
introduced. The input pieces of information are the position, orientation, and curvature
of the final output points. The proposed way of solving the problem consists of solving
a system of two quadratic polynomial equations without the need for optimization. It
is, therefore, computationally very efficient. While the initial information is needed, the
authors use the hypothesis that the designer has access to a set of points interpolated into
the final result. The final algorithm offers useful guidelines for choosing the right points
and also for choosing the orientation of the resulting curve.

Article [40] describes a trajectory optimization of an automatic spraying robot. A large
number of past articles proved that the initial trajectory of spray paint has a big influence
on the final result of the painting operation with regard to thickness and uniformity. The
results show that the operating time shrinks, the spray-painting efficiency increases, and the
paint waste decreases. The optimal initial trajectory is classically selected using the plane-
cutting method based on the cross-line cutting. It was determined that the U-direction
and the V-direction could both satisfy the requirements after optimizing the robot’s course.
That is, the thickness error is within the allowable error interval. However, the U-direction
method turned out to hold better results, and the spray-painting efficiency was higher. It
is mentionable that the shape of the work surface and the direction of the painting path
influence the result. Therefore, both of them should be fully considered to increase efficiency.
Firstly, the optimal initial trajectory of the spray-painting robot is chosen according to the
features of the Bézier triangular surface. Secondly, the paint thickness is mathematically
using the points from the Bézier surface. Finally, the trajectory along the Bézier surface
is optimized using the ideal point method with the uniformity of the paint thickness.
Another optimization objective used in the second step is the shortest spray-painting
time. The proposed method has the advantage that it automatically determines an optimal
path before the beginning of the spraying process, therefore significantly improving the
uniformity of the coating thickness. Finally, a spraying experiment proves the effectiveness
and practicability of the method.

Article [41] describes how a motion skill learning algorithm was proposed for a
quadruped robot. The algorithm helps with the motion planning and stable walking
of the quadruped robot on 5° and 11° slopes. First of all, the terrain slope is estimated
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using a proposed algorithm: the slope was estimated in relation to the robot’s foothold,
which proved sufficient for computing the desired body attitude angle. Subsequently,
the augmented random search (ARS) algorithm is used to develop a motion strategy for
the quadruped, which is sufficiently open so that the quadruped robot easily adjusts its
attitude to generate the desired body attitude. The Bezier curve was used to parameterize
the trajectory, increasing the learning speed. Experiments were run inside a simulation,
and the feasibility and effectiveness of the proposed framework held positive results. The
robot adaptively adjusted its attitude and followed a correct motion on the slope, proving
the required steadiness. To further validate our algorithm, the authors plan to transition
the experiments to the real world for their future work.

As presented in the previous paragraphs of this review section, there is relevant
research on mobile robot path planning, including some based on Bézier curves. However,
microscopic research is reported on how to create a navigation route that is both collision
free and time efficient in a highly dynamic navigation environment. We use Bézier curves
with the Casteljau algorithm in this exploratory research to tackle the problem. The next
section of the paper introduces the mathematical foundation of the Bézier curves, with
adaptations to be easily replicable for any mobile robot, and the methodology for deploying
navigation performances into comprehensive use cases.

3. Materials and Methods
3.1. Technical Prerequisites for the Proposed Method

The mathematical form for the Bézier curves is introduced in the next paragraphs of
this section.
In ref. [42], a Bézier curve of degree # is represented as:

P[tg,t]](t) = Z B?(t)Pir (1)
i=0

where P;, i = 1,...,n are control points, such that P(ty) = Py, P(t;) = Py, and B/'(t) is a
Bernstein polynomial given by:

t—t
f1—to

t—ty
ty —to

B = ()( )" ), ie{01,...,n}, 2
where t denotes the time variable.
The Bézier curve has properties for path planning, as follows:

1.  Bézier curve always passes through Py and P;;

2. Bézier curve is always tangent to the lines connecting Py —+ P; and P, — P,,_1 at Py
and Py, respectively;

3. Bézier curve always lies within the convex hull consisting of its control points.

In relation to the Bézier curves for mobile robot path planning, the Casteljau algorithm
is relevant in the view of the authors of this paper [42]. The Casteljau algorithm describes
a recursive method to subdivide a Bézier curve Py, (t) into two segments Py ,(t) and
Pleytz) (-

Let denoting with {PJ, PY, ..., P} the control points of Py, 1,) (t)- The control points
of P, 1,1 (t) and Py, 1,1 (t) can be computed by:

Pl=(1-0)P " voPllje{l,... n}ie{0,...,n—j}, 3)

where T = % Then, {PJ, P}, ..., P}} are the control points of Py, 1) and { Py, Pt Yy
are the control points of Pj;, 1.

A Bézier curve P, ;1 always passes through the point P(t;) = P by applying the
Casteljau algorithm to subdivide itself into Py, and Py, ;1. Moreover, it is always tangent

to Py 1P and P(t).



Electronics 2022, 11, 3568

6 of 20

The path-planning method introduced by the authors of this paper is motivated by
the mathematical facts above. The robot’s path will be modeled by Bézier curves which use
the obstacles as waypoints.

The Computational Geometry domain is also necessary for a number of steps from
the authors’ final algorithm. Methods for checking the position of points relative to poly-
gons, sorting points by special criteria, and simpler algorithms, such as Euclidean dis-
tance, are all employed inside the authors’ algorithm. Therefore, for further curiosities in
Sections 4 and 5, which present the proposed algorithm, it is recommended to see [43].

3.2. Brief Description of the Proposed Algorithm and Its Importance

The materials and methods described in the previous subsection above are deployed in
the proposed algorithm: the authors developed a local planner based on Bézier curves. The
proposed algorithm consists of using the fixed and mobile obstacles as waypoints inside
the classical Bézier curves and enhancing the algorithm using geometrical artifices. For
selecting and ordering the waypoints, the authors used the D* Lite algorithm to compute
the optimal path. The obstacles that are closest to the optimal path were used as waypoints,
but only after their positions are ordered by the time at which the guided robots will
theoretically surpass each waypoint’s current positions.

The authors discovered that using the obstacles as waypoints is a good starting point,
but it is not sufficient for the prevention of collisions. Through experimental simulations,
the algorithm was enhanced by adapting the Bézier curves.

The adaptations are based on using the obstacles’ predicted positions rather than the
current position. The choice has two useful results:

1. Collisions can be detected a number of seconds before they happen, therefore offering
the guided robot the choice between stopping and switching to a new route. The
current route is considered wrong if the trajectory of the obstacle collides with the
trajectory of the guided robot, or if following the current route would result in a critical
distance between the robot and the obstacles.

2. The predicted positions can be adapted to enhance the safety of the path. Let us
consider that the guided robot has to surpass two relatively close mobile obstacles.
Both obstacles are moving at a distance of less than 2 m to the guided robot. If one of
the obstacles slightly approaches the guided robot, meaning that the distance between
these two decreases, the waypoint which corresponds to the closest obstacle can be
adapted. Gradually moving the more dangerous waypoint, the one which is closest
to the guided robot, toward the less dangerous waypoint, the Bezier curve gradually
balances the distance toward both closest obstacles.

More exactly, the space between the guided robot and the more dangerous mobile ob-
stacles is increased by gradually moving the waypoints toward the fixed or less dangerous
waypoints, consequently increasing the safety of the planned path.

The proposed method has the advantage of applicability for any mobile robot type
and requires no identification of further parameters of mass, mass distribution, etc. These
extra parameters are taken out of the equation because the authors used significant in-
stances for the controllable parameters, instances that take into account critical values of
perturbation factors.

3.3. Developing Real-World Simulation Stages for Path-Planning Use Cases

To test the performance of the proposed algorithm, a two-phase deployment function is
further considered. It operates with three categories of parameters: performance indicators
for navigation, constraints associated to the navigation environment, and comprehensive
use cases (capable to cover all constraints). The first phase of deployment translates
the performance indicators into constraints. This process will reveal if performances and
constraints are properly related to each other. A relationship matrix (also called a connection
matrix here) is used to perform deployment. Further, a set of navigation uses cases (here
called scenarios) are imagined. Because we do not a priori know the comprehensiveness
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of the set of scenarios relative to the imposed constraints, deployment of constraints into
scenarios is necessary. A connection matrix between constraints and scenarios is also
adopted for this task. It reveals which scenarios are relevant and which can be rejected, as
well as if there are some drawbacks in the definition of the current set of scenarios such that
some of the scenarios to be improved or new scenarios to be designed and added to the set.

For this research, the following performance indicators are considered in relation to
the navigation process in simulations:

* Pyt navigation speed (maximum target 1.6 m/s);
*  Ppp: vital navigation space (minimum target 30 x 30 cm);
*  P,y3: planned curve tolerance (maximum target 3-15 cm).

For other applications, the set of performance indicators can be expanded, modified,
etc. This gives a character of generality to our methodology. For the practical problems
taken into account in this research, the following constraints have been selected:

¢ C1: the obstacles width and height (maximum target width x height: 600 x 500 mm);

e (C2: the velocity of the mobile obstacle (target 0.85 m/s, there were also videos with
1.8and 1 m/s);

®  (3: the direction of the mobile obstacles: straight lines with 90-degree edges;

e C4: the shape of the boundaries of the maneuvering space: rectangular space;

e (C5: the density of the fixed obstacles: 6 and 9 depending on scenario;

*  Cé6: the density of the mobile obstacles: 1, 5, 10, 15 obstacles, depending on scenario;

e (C7: the direction of the mobile obstacles as compared to the robot’s direction: perpen-
dicular, tangent, parallel.

The set of constraints can be altered for other practical cases. This indicates the general
character of the proposed methodology. The authors use the symbols of performance indi-
cators Py 1, Per 2, Per r3 and constraints Cy, Cz, Cs, Cy, Cs, Cg, C7 to visualize the deployment
process. It is shown in Table 1, where values 9, 3, 1, and 0 have the following meanings:

¢  Strong connection between the constraint and performance indicator = 9;

e  Average connection between the constraint and performance indicator = 3;
¢ Weak connection between the constraint and performance indicator = 1;

*  No connection between the constraint and performance indicator = 0.

Table 1. Connection matrix. This connection matrix describes the dependency between constraints
and performance indicators. The numbers are selected based on simulations’ visual results.

c1 C2 C3 c4 Cs5 Cé c7
Perf1 1 9 3 9 3 9 3
Pe 2 9 3 3 9 9 3 9
Py f3 1 9 9 3 0 9 9

As data in Table 1 indicate, the authors see at least a strong connection (value 9) on
each row and on each column; therefore, the authors conclude that the set of constraints
is adequate and sufficient to deploy the performance indicators into practical use cases
(generically described by the set of constraints).

Not having the possibility to establish on an analytical, quantitative basis the right
package of scenarios, the authors propose here a new technique. A number of scenarios
are firstly imagined by considering real-life situations where the robot will have to operate.
Further, these scenarios are evaluated with respect to the set of constraints. Only scenarios
that have at least a strong connection with at least one constraint will be kept. The final set
can be further refined by eliminating some of the remaining scenarios that do not provide
unique characteristics with respect to the others, and by this process, the above-mentioned
rule of strong relationships along the rows and columns is not affected. It might happen
that some constraints suffer of strong relationships with the set of scenarios. In this case,
new scenarios must be imagined and tested until the problem is fixed.
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Based on this idea, scenarios (also called here stages) are inspired from real-life cases
(e.g., office building, school, supermarket, etc.). The proposed scenarios (stages) in this
paper capture obstacles associated with actors (i.e., adults, children, other robots) located
in different environments (schools, library, supermarket, etc.) and in different contexts
(e.g., different distances related to the tested mobile robot, various speeds and movement
directions of the obstacles). A variable number of obstacles are considered for each scenario,
too. In this research, the authors started with the consideration of sixteen stages.

The full description of the sixteen stages is listed in Table 2.

Table 2. The full description of the simulations created in Gazebo.

The 1st Stage

At the library, a person inspects the shelves, stops, chooses a book, moves to the book registration area, and
leaves the room.

The 2nd Stage

Director’s room. A syrup bottle fell and broke in the middle of the room. Two robots are wet vacuuming, two
robots are dry vacuuming, and a robot cleans the hard-to-reach areas of the room.

The 3rd Stage

Ten children develop various skills in a room specially set up for them. They run, tell stories in a group, and play
various games.

The 4th Stage

Fifteen robots carry documents and perform various other tasks. The difficulty of this route consists of the large
number of robots and their variable paths. Some of the robots stop because they have completed their tasks
while others continue to work.

The 5th Stage

At the conference room, obstacles are represented by a person talking on the phone, a group of three people who
talk during the break and then return to their seats, and three speakers. The people that do not leave the seats
represent the fixed obstacles while the other people are mobile obstacles.

The 6th Stage

Ten cleaning robots are performing various tasks in a room currently under renovation. They all follow different
paths over different distances.

The 7th Stage

The day before vacation. The gym will be closed in ten minutes, and there will be only five children. Two are
taking the running test. Furthermore, the other three are doing group exercises.

The 8th Stage

The robot replenishes the stocks of perfumes for the four tables. In order to fulfill the objective of having all
eight types of obstacles in the same sequence, the robot starts its activity in the space between the perfume
shelves, after which it will move to each table separately.

The 9th Stage

This stage represents an employee located in a supermarket. Its task is to collect the money from each cash
register and deposit it in the special box.

The 10th Stage

A robot cleans a classroom after the pupils leave the class empty. The robot inspects the entire room.

The 11th Stage

A difficult variant of the Third Stage was improved by increasing the number of mobile obstacles. In this case,
fifteen students are present in the room. They perform various activities (e.g., tell stories, play, argue and
reconcile, dance, run).

The 12th Stage

An automatic product packaging shop. The robots take the gift from the conveyor belt, and other robots take the
gifts according to their size and take them to other packing places. Moreover, the shop has robots that deal with
the delimitation of the area to avoid the injury of trespassers. Moreover, this place contains robots that inspect
the gifts. People take their gifts using the windows that are present along the desks.

The 13th Stage

Ten students are in the reading room. People read, choose books from the shelves, and talk with the librarian
and her assistant. A group of four students just entered the room, but because they did not find seats, they chose
to leave. An energetic teacher enters, asks questions, and leaves the room.

The 14th Stage

An enhanced version of the Fourth Stage, which contains extra obstacles. The cleaning robots preparing the

conference room for the upcoming visit of the general manager. The unexpected visit had just been announced,
and the employees celebrated their colleague’s birthday. To avoid an unpleasant situation, the company’s staff
chose to clean the room as quickly as possible so they brought in several extra robots to clean the area on time.

The 15th Stage

It is the first day of school. A robot comes to check if the room has been properly sanitized before the day starts.

The 16th Stage

They are mobile robots. These mobile obstacles reach speeds that are higher than any robot’s speed from the
previous stages.

The link to the animations regarding the scenarios mentioned above is provided
in Appendix A. The set of sixteen stages is connected to the set of constraints. Results
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are shared in Table 3. In this table, symbols used for stages are (51, Sy, ..., etc.) and for
constraints are (Cq, Cy, . . ., etc.). Values in the matrix have the same meaning as for the case
of the matrix from Table 1.

Table 3. The second connection matrix describes how relevant each constraint is for all 16 stages.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

cl1 9 1 3 0 1 1 1 3 3 1 3 9 9 0 1 3
c2 1 1 9 1 1 1 1 1 1 1 3 3 3 1 1 9
c3 9 3 3 3 3 9 1 1 3 1 9 9 3 3 1 9
c4 3 1 3 9 3 3 1 1 3 1 3 9 3 9 1 9
¢ 3 0 1 1 1 1 0 3 3 3 1 3 9 0 1 1
C6e 1 3 3 9 3 3 1 1 3 1 9 9 3 9 1 3
c7 1 3 3 9 3 9 1 1 3 1 9 9 3 9 1 9

Based on the results from Table 3, nine stages have been selected, considered sufficient
to cover the requirements of the problem. They are reflected in Table 4. The selection was
based on having at least a strong connection between each row and each column. The
performance of the adapted Bézier curve algorithm was further tested for the nine selected
stages. According to the results from Table 4, each selected stage can be seen online in a
video in Appendix A.

Table 4. The nine scenarios selected for testing the algorithm.

S1 S3 S4 S6 S11 S12 S13 S14 S16
C1 9 3 0 1 3 9 9 0 3
Cc2 1 9 1 1 3 3 3 1 9
C3 9 3 3 9 9 9 3 3 9
C4 3 3 9 3 3 9 3 9 9
C5 3 1 1 1 1 3 9 0 1
Cé6 1 3 9 3 9 9 3 9 3
c7 1 3 9 9 9 9 3 9 9

Figure 1 showcases the rooms and the obstacles used within each stage. The meanings
of various objects illustrated in Figure 1 are as follows:

(a) Stage 1—"A day in a library.” The four blue rectangles represent the study banks.
The large blue rectangle represents the book registration office. The red rectangles
represent the bookshelves. The white disc represents a person looking for a book.

(b) Stage 2—“Gym”. The ten white circles represent children performing various activities
in the gym (four children tell a story, two pairs of children run, two children measure
the land to form two squares). The gray rectangle is a space intended for gymnastics
exercises. In order to carry out these exercises safely, the gray space must remain free.

(c) Stage 3—"“Robots’ room”. The fifteen red circles represent robots that bring, carry, and
place documents in the room. The room’s walls have windows through which the
robots receive or give documents.

(d) Stage 4—"Renovating room”. The ten red circles represent cleaning robots. Their
movements helped to clean the floor because the owners were not careful when they
painted the room.

(e) Stage 5—“Improved gym.” The fifteen white circles represent children. Four of the
children tell stories. Two came together in the room; they argued, moved apart, and
got back together after a few moments. Two groups of three students compete; one
child dances, and two children measure squares to understand geometry better. The
grey rectangle represents free space for jumping.

(f) Stage 6—"Automatic room for gifts.” The ten red squares represent robots. The gray
rectangles and squares represent tables. Small gifts are placed on the small gray
squares to be wrapped. The room’s walls have windows for people to place small gifts
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(8)

(h)
(i)

directly on the tables. The small red squares represent the robots that spin around the
table to wrap gifts. Near the doors, two robots ensure that no unauthorized person
enters. The gray cube at the top right of the room is the space where the cards and
labels are stored. The red square that moves to this gray cube brings the labels and
cards closer to the gifts. The second robot moves back to the gray rectangle in the
middle of the room to the table on which the gifts are stored until they are enriched
with an address and a card. After they are stored, the robots take the gift and send it
back to the person.

Stage 7—"The Library.” Inside this stage are two types of fixed obstacles: the red and
the blue bodies. Red is used for the shelves and blue for the desks. The ten light gray
cylinders are the pupils who look for books, the librarian, and their assistant.

Stage 8—"“Faster cleaning”. The red bodies denote cleaning robots that are deployed
to clean the conference room.

Stage 9—"Interaction of faster robots.” The five red cubes are robots programmed
to move faster. The two blue parallelepipedic bodies are workbenches. The gray
parallelepiped is also a fixed obstacle. Inside this room, there is also a light gray
rectangle representing the map’s origin, i.e., inside this body, the robot’s coordinates
are considered to be (0,0,0).

- -
”

Figure 1. The nine stages selected using Tables 1 and 3. The captures are taken from Gazebo. The

white and colored objects represent mobile and fixed obstacles. The full description of the nine stages
can be found above, listed from (a) to (i). (a) Stage 1; (b) Stage 2; (c) Stage 3; (d) Stage 4; (e) Stage 5;
(f) Stage 6; (g) Stage 7; (h) Stage 8; (i) Stage 9.

A view in Gazebo of how the robot moves in each of the nine stages with the con-

sideration of a classical navigation algorithm provided by the ROS libraries can be found
in Appendix A. The classical navigation algorithm (i.e., TEB planner) is currently used in
many practical applications. As the simulation shows, there are many situations where the
robot collides with obstacles or moves along unjustified trajectories, which consume time
and space. Three such cases are shown in Figure 2 for illustrative purposes.
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Figure 2. Illustrative examples of weaknesses detected while running the classical TEB planner inside
the 9 stages. The blue rectangle represents the robot, red arrow represents the path, the grey shadow
represents the obstacles, red arcs represent the contours of the obstacles detected by the ROS packages.
(a) Stage 1, the planner cannot avoid collision when passing through narrow corridors; (b) Stage 2,
planner passed through obstacle instead of slowing or detouring; (c) Stage 3, planner crosses the
obstacle’s frontal side.

As shown in Figure 2a, the classical TEB planner algorithm does not prevent collisions
in the cases of narrow passages. As shown in Figure 2b, the planned path gets very close to
the detected obstacles, so for a real robot, this will lead to collisions. In the case shown in
Figure 2c, the algorithm chooses a longer path. After that, the planned path passes through
the frontal side of the obstacle, resulting in a collision.

A complete list of collisions can be consulted by triggering the corresponding link
indicated in Appendix A. An additional case that could be highlighted, but not captured
in a single image, is how the TEB planner behaves when the robot and a mobile obstacle
frontally approach each other. The TEB planner has no method capable of determining
and selecting a single direction (left or right) as a prevention measure but instead switches
between a left turn and a right turn. In the end, the robot hits the obstacle. This behavior
can be observed by triggering the corresponding link indicated in Appendix A (see the first
collision from Stage 8).

3.4. The Simulation Environment

The authors chose to test the proposed algorithm using the ROS ecosystem’s Gazebo
simulation environment and an actual robot’s specifications. The following subsections
contain details about the robot, the simulations, and the set configurations.

For more details about ROS, see [44].

3.5. The Robot’s Specifications

The Viper robot was modeled in the Gazebo simulator on the same principles as in [45]
or [46]. The authors’ use case is that the robot’s construction is much simpler. The robot
has only one driving wheel on each side, and we use a belt drive for the second wheel on
each side. The values for the masses and inertial forces for all the robot links are introduced
as per the real robot. To construct the model, all of the robot’s components were modeled
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in CAD to obtain the proper configurations. Moreover, the robot presented in the Gazebo
simulations has 1:1 ratio to the actual robot.
The actual robot which we configured for Gazebo has the following components:

e Two Maxon MDP TS10439 motors that drive two tracks;

¢  Two US Digital-S4T encoders;

*  One Roboteq motor driver;

e One Sick TIM561 Lidar;

*  One Intel NUC D54250WYK mini-pc;

¢ On the Intel NUC, the operating system is Ubuntu 14.04, and the ROS distribution
is Indigo.

3.6. Obstacle Detection Mechanism

In our case, for the obstacle detection inside the Gazebo simulations, the authors used
the following:

*  ROS driver for the Sick Tim 561 2D laser scanner. The parameters were set according
to the official configuration, which can be found at https:/ /cdn.sick.com/media/pdf/
6/46/446/dataSheet_TiM561-2050101_1071419_en.pdf (accessed on 10 August 2022).

Using this sensor, we extracted the information from the environment created in
Gazebo. These data were then fed to:

¢ A global planner of A* type, see [47];
* A 2D cost map with multiple layers, see [48].

The global planner and the 2D cost map were already included in the ROS Navigation
Stack implementation. Most of the parameters for these two remained at recommended
values, and none influenced the obstacle detection mechanism.

The information from the environment is also captured by a 2D Simultaneous Local-
ization and Mapping (SLAM) algorithm; see [49].

We used the ROS implementation for the algorithm published in the paper “A flexible
and scalable SLAM system with full 3D motion estimation”, see [50].

For the global planner, 2D cost map, and SLAM mentioned above, most of the settings
were set to the recommended (default) values.

To exemplify the performance of the proposed algorithm with adapted Bézier curves,
the most critical situations from the nine stages have been extracted. Some are related to
collisions, and others are related to unreasonably large detours. When the robot frontally
approaches an obstacle, it intermittently turns to the right and left to decide what direction
to follow which is another area to test and validate the behavior of the proposed algorithm.

The following sections highlight the application of the proposed algorithm in the
context of the selected stages to demonstrate its capability for smoothing robot trajectory
and avoiding collisions with obstacles (fixed or mobile). Firstly, the focus is on the classical
Bézier curves; after that, the proposed algorithm is analyzed.

4. The Adapted Bézier Curves Algorithm

The first algorithm developed by the authors consists of leveraging basic mathematical
properties that all Bézier curves possess.

Environments that are relevant for real-world applications contain many mobile
obstacles. For this reason, there are multiple paths that the robots can follow, and methods
such as Corridor Map Method were designed in past studies. For a series of clear examples,
see [51].

The authors designed an algorithm that gradually builds the path inside a desirable
corridor. This corridor is the selection of obstacles that are closest to an optimal path.
The optimal path is computed using the grid-based D* Lite algorithm. Two examples are
presented in Figure 3.


https://cdn.sick.com/media/pdf/6/46/446/dataSheet_TiM561-2050101_1071419_en.pdf
https://cdn.sick.com/media/pdf/6/46/446/dataSheet_TiM561-2050101_1071419_en.pdf

Electronics 2022, 11, 3568

>

X i R B
B x
X
X
X

X

Optimal Path Optimal Path
X Obstacle X Obstacle

X A Initial Position A A Initial Position

B Goal A B Goal

Corridor Corridor
4 Robot Position X & Robot Position

Simple Corridor Real Environment Corridor

Figure 3. Examples of corridors.

The authors use the following method to select the obstacles:

1.  The algorithm will consider only the obstacles whose distance to the optimal path at
any time is lower than 2 m.

2. The obstacles closest to the robot’s current position are selected only if their direction
vector intersects the robot’s direction vector. In other words, when the closest points
pose no collision risk, it is considered that the robot has already surpassed them.

The obstacles must be minimal to prevent situations like the one presented in Figure 4.

X

X Optimal Path
Obstacle
Initial Position
Goal
AA Corridor

A Robot Position

X
@3> X

Incorrect Selection of Obstacles
Figure 4. Selection of too many obstacles leads to the selection of multiple corridors.

Including unnecessary waypoints affects the selection of the optimal corridor because
the resulting corridor contains obstacles inside it, as can be seen in Figure 4. The authors’
solution is to detect whether there are obstacles (red crosses) inside the green polygon with
vertices A, 1,2, B, 6, 5, 4. If such points are detected, they need to be removed. The authors
numbered the obstacles inside Figure 5.

5 X% B
6 ©
4)( %
35
X Optimal Path
X 2 X Obstacle
1 A Initial Position
B Goal
A‘ Corridor
A Robot Position

Incorrect Selection of Obstacles

Figure 5. How to remove extra obstacles from selection.
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The figure above showcases that obstacle 3 is inside the selection of points. To trans-
form it into a boundary point, we need to remove one of the closest points and recheck
whether point 3 it has become a boundary point.

E.g., after removing the obstacle denoted with 1, the corridors denoted with orange 1
and 2 become parts of a singular corridor, meaning that the robot will pass through both of
them, as shown below in Figure 6.

5 % B

X Optimal Path
Obstacle
Initial Position
Goal
A‘ Corridor

A Robot Position

@3> X

Incorrect Selection of Obstacles

Figure 6. How the corridors merge after removal of extra obstacles.

The authors mention that there are cases when it is not sufficient to remove one point,
but the solution is simple. If no point suffices, selections of 2 points are tried out. If no
combination of 2 points suffice, combinations of 3 points are tried out, etc.

The final step before substituting the obstacles’ positions as waypoints in the classical
Bézier curve formula is sorting these points. The algorithm accomplishes this by iterating
the points along the optimal path and adding the obstacle closest to the current point to the
sorted list.

Figure 7 showcases the adapted Bézier curves algorithm’s steps. In the legend, the
blue triangle denotes the robot’s position, the green circle denotes the goal’s position, A
and B are the initial and the end position for the robot, the red squares denote the dynamic
obstacles. For Figure 7 b-d, the green lines denote the border of the followed corridor and
the cyan lines denote the absolute optimal path. Inside Figure 7d, the cyan curve denotes
the optimal path generated by the authors’ algorithm.

Figure 7a shows the initial setup of the dynamic environment.

Figure 7b shows the first step: search of the absolute optimal path.

Figure 7c shows the second step: selection of an optimal corridor from point A to point B.

Figure 7d shows the third step: computing the planned path (cyan curve) which will
be used by the robot to traverse the dynamic environment.

For obtaining the cyan path from Figure 7d, the algorithm iterates through the
next steps:

®  The algorithm uses a grid-based algorithm such as D* to compute a path of optimal
distance (Figure 7b);

e For the chosen path, the algorithm selects a set of obstacles that are the closest to the
optimal path and represent the boundaries for the optimal corridor, Figure 7c;

¢ The points are ordered by the time when the robot will reach the closest position to
each one of the points, as can be seen in Figure 7d;

*  The algorithm generates a Bézier curve. This curve represents the planned path, as is
shown in Figure 7d.

In practice, mobile robots are different in their design. They vary in speed, navigation
space, gauge, capacity to turn in different directions in a unit of time, and capacity to
accelerate and decelerate. Under such circumstances, the authors identified collisions
between the robot and obstacles while testing the adapted Bézier curve algorithm presented
in this section.
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Figure 7. Steps of the Adapted Bézier Curve Algorithm.

The authors developed a series of experiments in which the robot collided with the
obstacles using the classical Bézier curve model. They represent the space of investigation
for an improved algorithm. The complete collisions grouped by the stage where they took
place are accessible in Appendix A.

5. Improved Bézier Curve Model for Collision Avoidance

The nine stages indicate, employing simulations in Gazebo, a multitude of collisions.
These simulations were calibrated for a mobile robot that used the standard TEB planner
from ROS. Therefore, an improved version of the classical algorithm is proposed to face a
highly dynamic environment. Some of these simulations were recorded and can be found
in Appendix A. Enhancements of the algorithm refer to two extra features:

1. Instead of using the obstacles’ current position, the algorithm predicts the obstacles’
position as waypoints by delaying the position by two seconds.
2. A new way of path planning when the distance to the closest two obstacles is critical.

The features above are used simultaneously in the algorithm, but the best results are
due to the second enhancement, as can be observed in the simulation, whose key moments
are captured in Figure 8.

At the start, the robot planner generates a path from A to B (the cyan line in Figure 8a).
The cyan line represents the global planner route relative to what the robot perceives at
the start moment; as the robot has a scan radius and advances toward the target, the path
changes (see the cyan line in Figure 8b, right-side image).

Figure 8a through Figure 8d present how the enhancements action while the robot
traverses the dynamic environment. Figure 8a present how the algorithm predicts the
position of the obstacles, orders them as notes in the previous section, and creates the
smooth path. Figure 8b presents that when the robot is closer to obstacles, the two closest
predictions (orange circles denoted 1’ and 2’) are gradually positioned such as the robot
passes uniformly (at equal distances) between obstacle 1 and obstacle 2. Figure 8c also
showcases the movements of the two closest obstacles. Figure 8d showcases how the closest
obstacles are not taken into account after the robot successfully surpasses the obstacles’
direction of deplasation.
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Figure 8. Collision prevention using the improved Bézier curve algorithm.

As shown in Figure 8, the predicted positions are represented as orange circles and
labeled according to the predicted obstacles. If the obstacle is labeled as 1, the prediction
will be labeled as 1". For this experiment, the predictions are computed using their current
speed, direction, and a constant time of 3 s.

The second feature of the improved algorithm includes multiple steps, as highlighted
in Figure 8b—d. First, let us note that the waypoints used in computing the cyan-colored
Bézier curve are the orange predictions (see Figure 8b). When the robot enters the zone
preceding the most critical area, the closest waypoint gradually moves toward the second
closest waypoint until it perfectly overlays it. The superposition happens when the robot
enters the critical area. As a result, the robot’s direction tilts toward the second nearest point.

As shown in Figure 8c, after the robot enters the critical zone, the two overlaid
waypoints will gradually move from the closest obstacle’s prediction to the second closest
obstacle’s prediction. After the robot surpasses the obstacles, precisely at the moment
it is closest to the two superpositioned predicted obstacles, the far two waypoints are
eliminated. As shown in Figure 8d, the path remains smooth when using this strategy.

The area preceding the critical zone and the critical zone were delimited using simple
rules: whether the distance from the robot to the closest waypoint is less than or equal to 6,
respectively, 4 m.

When running the enhanced algorithm, the robot passes between the two closest
obstacles by moving toward the second closest obstacle. On the final route, the robot keeps
the obstacles at an equal distance. Informally, the robot moves through the middle of the
corridor. The link to the recording of the experiment is available in Appendix A.

The Collision Prevention of the Improved Bézier Curve Model

Figure 9 lists screen captures of running the proposed algorithm, and the full record-
ings are available in Appendix A.
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Figure 9. How various collisions are prevented using the adapted Bezier curve algorithm from
Section 5. (a) Resolving a collision inside a tight, fixed-width corridor; (b) resolving a lateral collision
in Stage 9; (c) resolving a frontal collision in Stage 8.

The collision prevention previously illustrated in Figure 8 does not suffice in resolving
all collisions, because it provides no option of choosing between stopping the guided robot
or detouring dangerous obstacles. The authors developed resolutions for the cases from
Figure 9.

The strategies used for cases (a) through (c) also make use of adapting the waypoints
but use more conditional cases. Cases (b) and (c) illustrate the conditions. For case (c), the
space between the red mobile obstacle and the black shelf was detected as large enough
to pass between them, whereas for case (b), the initial trajectory was colliding with the
obstacles, so the guided robots stopped for two seconds, after which they look for a detour
by using the right-side wall as waypoints.

When a mobile obstacle frontally approaches, the guided robot uses waypoints around
the fixed corridor to either accelerate toward and exit or place itself beside one of the fixed
corridor sides. For case (a), the robot’s speed was high enough to exit the corridor before
the predicted point; therefore, there was no need to stop beside the shelf.

6. Discussion

The discussions from this section are grouped into two parts: the comparative analysis
with peer models and the algorithm’s performance.

A peer comparison is a complex issue as long as access to information from other re-
searchers is needed. Tests were conducted with our solution considering a much more com-
plex navigation environment than the cases exemplified in the research cited in Section 2.
In addition, we have considered the robot’s navigation algorithm’s physical parameters.
From a technical point of view, the enhanced algorithm proposed in this paper proves to be
highly agile, with issues that were not considered in the previous research.

In terms of the performance, the proposed navigation model resulted from a systematic
deployment of performance indicators. The tests indicate that the targets related to the
performance indicators were met without hitting obstacles.

7. Conclusions

The autonomous navigation of mobile robots is a growing interest for researchers
and practitioners, especially with the development of industry 4.0 and autonomously
driven vehicles. If vehicles come up with a single type of mechanical architecture of the
rolling platform, mobile robots are designed with various kinds of rolling architectures.
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This introduces an additional noise factor concerning the agility of navigation because the
construction of the rolling platform strongly influences the performance of the navigation
algorithms. In addition, mobile robots operate in indoor spaces too, where the navigation
rules are not established. In these environments, there are small spaces for maneuvering,
mobile obstacles move in unexpected directions and at incredible speeds, the density of
obstacles is random, and the robot’s tasks are diverse.

The test conducted with the TEB planner used by mobile robots driven by the ROS
navigation algorithm generates an undesired behavior when the obstacles are dense and
the entropy in the environment is high. This behavior means intermittent turns to the left
and to the right around a central point of the robot without moving until the algorithm
finds a moment of opportunity to select a specific direction of movement. If the dynamics
in the environment are high, this behavior repeats again and again. This is not a natural
movement of a mobile object (e.g., a person) in an indoor space. In addition, even in this
behavioral mode, collisions cannot be avoided for some critical cases (e.g., denser mobile
obstacles and higher speeds of the mobile obstacles).

In this research, adapted Bézier curves have been proposed in an attempt to improve
the navigation algorithm of a mobile robot (with the physical parameters included in the
simulation) in a highly dynamic environment with space constraints for maneuvering. The
tests indicate that even if classical Bézier curves bring improvements in the navigation
algorithm, if the environment becomes too dense and too dynamic, collisions can happen,
except when the robot moves very slowly (which is not necessarily aligned with the perfor-
mance expectations). However, paths become smoother, and more than this, the algorithm
cancels the undesired left-right turns around a point of the robot while deciding what
direction to follow. The algorithm is further improved to avoid collisions by introducing
features that increase the robot’s agility. They anticipate movements in the navigation space
and act accordingly to avoid collisions.

There are still limitations in our research. We did not yet test a wider variety of mobile
robots with various gauges and mechanical architectures to argue that the algorithm is
robust to any robot structure. Moreover, navigation is not only about movement with a
certain speed and obstacle avoidance.
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Appendix A

1.  The classical algorithm: https://github.com/rst-tu-dortmund/teb_local_planner
(accessed on 1 September 2022).

2. The stages without a robot: https://drive.google.com/drive/u/0/folders/16sY4
6mjjswDUVzS8Xt-7Pr3hEIJSIflk (accessed on 1 September 2022).

3. The stages tested in this paper: https://drive.google.com/drive/u/0/folders/1XES8
OpbbFfL7j0KhhXgSR6pqVhmCN2Lf8 (accessed on 1 September 2022).

4.  The collisions detected when using the classical TEB planner: https://drive.google.
com/drive/u/0/folders/1NK8drqK1aaMV881W1BEZRXO60OK59YziL (accessed on
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1 September 2022). In the folder above, you can browse all the detected collisions for
each stage, by opening the folders named Stage 1, Stage 2,.. ., Stage 8.

5. The simulations with the enhanced algorithm: https://drive.google.com/drive/
folders/10_m9ZilqUh2t_ZIvFIpsqP2YkpOiSsVn (accessed on 1 September 2022).
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