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Abstract: In the field of computer vision technology, deep learning of image processing has become
an emerging research area. The semantic segmentation of an image is among the utmost essential
and significant tasks in image-processing research, offering a wide range of application fields such as
autonomous driving systems, medical diagnosis, surveillance security, etc. Thus far, many studies
have suggested and developed neural network modules in deep learning. To the best of our knowl-
edge, all existing neural networks for semantic segmentation have large parameter sizes and it is
therefore unfeasible to implement those architectures in low-power and memory-limited embedded
platforms such as FPGAs. Building an embedded platform with that architecture is possible after
reducing the parameter size without affecting the module’s architecture. The quantization technique
lowers the precision of the neural network parameters while mostly keeping the accuracy. In this
paper, we propose a quantization algorithm for a semantic segmentation deep learning architecture,
which reduces the parameter size by four to eight times with a negligible accuracy abatement. As
long as the parameter size is reduced, the deep learning architecture is improved in terms of required
storage, computational speed, and power efficiency.

Keywords: deep neural networks; quantization; fully convolutional network; SegNet; HR-Net; edge
device; Taguchi method

1. Introduction

Image segmentation partitions an image into multiple sets. Because of advancements
in visual recognition systems, image segmentation has become a significant area in the
image-processing field. Image segmentation [1,2] is further categorized into two parts,
semantic segmentation and instant segmentation. In this article, we focus on semantic
segmentation [3]. Semantic segmentation allows for the labeling of pixels with a set of
categorized objects. An instance of semantic segmentation is the inherent classification,
detection, and boundary localization of each pixel of an image. There are earlier non-deep
learning approaches to semantic segmentation, i.e., texton forest [4] and random-forest-
based classifiers [5]. Semantic segmentation also plays an essential role in a wide range of
applications [6,7], e.g., in clinical diagnosis [8,9] to examine and understand disease through
medical imaging. An autonomous driving system [10,11] provides partial automatic or
fully automatic driving tasks. A robot navigation system [12] provides self-localization,
path planning, and map interpretation to ensure smooth mass production and also to
avoid dangerous situations in unsafe weather and natural disaster conditions. Typically,
deep learning techniques have provided more precise, more accurate, and faster semantic
segmentation than traditional non-deep learning methods.
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The implementation of semantic segmentation neural networks in edge devices is
a difficult task, although it is an advantageous objective that would provide real-time
power efficiency and portable deep learning architecture for semantic segmentation. Edge
devices have limited memory storage and low operational power. Embedded platforms
such as FPGAs are more effective than a GPU and CPU in terms of cost, speed, and power
efficiency [13]. In this era, FPGAs are rapidly surpassing other embedded platforms such
as the GPU [14] as deep learning accelerators in real-time applications of machine learn-
ing. However, with high computations and storage restrictions, the implementation of
large-parameter-size neural networks in edge devices is not straightforward. Therefore, op-
timization techniques such as quantization or pruning are used to compress neural network
models into suitable parameter sizes. Because of the development of deep learning-based
applications and service latency, reliability and cost play important roles. These factors
are directly related to the used types of embedded platforms. In 2020, Wang et al. [15] con-
ducted a comprehensive survey of deep learning architecture implementation in an edge
device and discussed various application scenarios and fundamental enabling techniques.
Furthermore, several [16–18] studies have discussed the benefits of edge computing devices
for deep learning applications, although prevailing studies are still flourishing and have
limitations in terms of resources.

In computer vision technology, image processing with deep learning architecture is
an emerging area of research and has set a benchmark in computer vision research. Prior
semantic segmentation network parameters such as weights and activations are floating
numbers during training and inference and require large memory storage, as well as high
operational power. Therefore, the implementation of floating point semantic segmentation
networks in edge devices is not straightforward. The efficient implementation of deep
learning architecture in edge devices requires the burdenless computation of neural network
inferences such as storage. The two most popular neural network compression techniques
are quantization and pruning, which provide a reduction in the size of architectures and
hence reduce the required storage and operation power of neural network modules. The
pruning technique provides the removal of less-sensitive weights, increases computational
speed, and decreases the required storage size, whereas the quantization technique provides
a reduction in the precision of the type of data used to compress neural network modules
while mostly keeping the accuracy.

In this paper, we propose a quantization algorithm for semantic segmentation ar-
chitectures, which provides a low-precision deep learning architecture for the semantic
segmentation of an image, which could be implemented in edge devices such as FPGAs.
Furthermore, we search for a sub-optimal quantized architecture using the Taguchi method.

Our most important contributions are as follows:

1. We propose a quantized semantic segmentation neural network. By using the Taguchi
method, we find the suitable quantization bit length, i.e., 8 bits, to maintain accuracy
higher than 80%, with reduced required storage.

2. Finally, the proposed architecture deploys an edge device and we discuss its imple-
mentation.

This paper is organized as follows. In Section 2, we survey the different studies about
semantic segmentation and quantization techniques. Section 3 discusses the proposed
quantization technique and briefly discusses the Taguchi method and circuital aspect for
sub-optimal QSSN. Section 4 discusses the experimental setup of the proposed algorithm.
Section 5 concludes this paper.

2. Background

Semantic segmentation is a subclass of image segmentation, which has a wide range
of real-time applications. For semantic segmentation task realization, several prior deep
learning architectures have been suggested. Typically, deep learning architectures for a
semantic segmentation task have large parameter sizes, which makes them unfeasible for
deployment on edge computing devices because of edge device resource restrictions such as
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memory and operational power. Quantization techniques could allow for the compression
and optimization of deep learning architectures. Thus, in this study, we propose a compact
deep learning architecture for semantic segmentation.

2.1. Semantic Segmentation Neural Network Architecture

For semantic segmentation, various deep learning architectures have been suggested,
which produced optimistic predictions. In 2015, the most favored semantic segmentation
architecture was the fully convolutional network (FCN), as suggested by J. Long et al. [19].
As illustrated in Figure 1, an FCN is constructed with locally connected layers with no
dense layers such as the convolutional layer, pooling layer, and upsampling layer. Because
there are no dense layers, there is a reduction in the computations and parameters. To
improve the segmentation details, information is fused from the layers with different
strides, i.e., FCN-32, FCN-16, and FCN-8. However, the FCN architecture is not fast
enough for real-time inference; it also leaves out the global context information of the
image and is complex for a 3D image. In 2016, Vasin et al. [20] suggested an architecture
for semantic segmentation based on a recurrent neural network (RNN) termed “ReSeg”,
which is an extended form of ReNet [21], followed by an upsampling layer and a nonlinear
softmax layer.

Figure 1. Fully convolutional network layout.

In 2015, Ronneberger et al. [22] suggested a convolutional network based on an
FCN for image segmentation termed “U-net”. The basic architecture consists of two
paths. The first is the analysis path, also known as the encoder/contracting path, which
provides the classification information. The second is the synthesis path, also known
as the decoder/expansion path, which allows a network to learn localized classification
information as well as enhance the resolution of the output. In 2016, Çiçek et al. [23]
suggested a 3D U-net based on the basic U-net framework, which provides 3D volumetric
segmentation. Unlike a traditional U-net, all 2D operations are replaced with corresponding
3D operations such as convolutional, max pooling, and up-convolutional. The advantage
of a 3D U-net over a basic U-net is the faster training process with minimal annotations.

In 2017, Vijay et al. [24] suggested an encoder–decoder architecture termed “SegNet”.
As illustrated in Figure 2, the architecture consists of an encoder network that corresponds
to the decoder networks, followed by a pixel-wise classification layer. Each network consists
of 13 convolutional layers. The output of the final decoder is fed to the multi-class softmax
classifier, which provides the class expectation value for each pixel independently. The
SegNet model size is smaller than the FCN but its inference time is larger than the FCN
because of the decoder network. Furthermore, several studies [25–28] have called for
semantic pixel-wise labeling. Chen et al. [25], for example, suggested a deep convolutional
neural network (DCNN) layer with a fully connected Conditional Random Field (CRF),
which improves the localization property. Noh et al. [26] suggested another architecture
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adopted from VGG-16, which identifies pixel-wise class labels and predicts segmentation
masks. Nico et al. [29] suggested speeding up semantic segmentation by applying a
histogram of oriented depth (HOD) descriptors.

Figure 2. Encoder–decoder architecture for semantic segmentation.

Most existing deep learning architectures first encode the input image into low-
resolution representations and extract the image information. Then, they reconstruct
the high-resolution representations from the encoded low-resolution representations. Wang
et al. suggested [30] an HR-Net architecture that provides high-resolution representation
throughout the process. The HR-Net providing high-resolution representation throughout
the process has two key characteristics. The first is that all high-to-low convolution streams
are connected in parallel instead of in series; the second is the continuous process to and
from the information through the resolutions. There is a repetition of multiresolution
fusions to boost the high-resolution representations with the help of the low-resolution
representations and vice versa. As shown in Figure 3, it is a three-stage architecture, which
begins with a high-resolution convolution stream, followed one by one by high-to-low-
resolution convolution streams. Each stage consists of several components such as parallel
multi-resolution convolutions, repeated multi-resolution fusions, and representation heads.
There are three kinds of representation heads illustrated in HR-Net, as shown in Figure 4,
i.e., HRNetV1, HRNetV2, and HRNetV2p. In HRNetV1, the representation of the output is
from the high-resolution stream. The other three representations are ignored. In HRNetV2,
the output is represented as high resolution after rescaling the low-resolution stream along
with two more representations. In HRNetV2p, multi-level representations are constructed
by downsampling the high-resolution representation output from HRNetV2 to multiple
levels. HR-Net provides better accuracy than the FCN and SegNet modules; however,
the resolution is higher throughout the process and has a higher memory cast and power
efficiency. Therefore, the real-time realization of HR-Net with an edge device is not feasible.

In 2021, Wang et al. [31] suggested an algorithm for a new supervised learning paradigm
that provides pixel-wise contrastive semantic segmentation. In 2022, Zhou et al. [32] sug-
gested a prototype view for rethinking semantic segmentation, which provides a representa-
tion of each class as a set of non-learnable prototypes, relying solely on the mean features of
several training pixels within that class, unlike in the prior method. In 2022, Zhou et al. [33]
suggested the volumetric memory network (VMN), which provides segmentation rules for
3D medical images. The VMN involves a memory-augmented network design and quality-
assessment module. The memory-augmented network design allows the fast encoding of
past segmentation information, whereas the estimation of the segmentation quality is done
through the memory-augmented network. Still, image segmentation is a challenging issue



Electronics 2022, 11, 3561 5 of 13

because of ample intra-class variations, context variations, and ambiguities originating
from occlusions and low image resolutions. Due to the limitations of convolutional filters,
the global information in the image may not be fully accessed. Meanwhile, such informa-
tion is particularly important for segmentation when designing the problem. To overcome
this issue, in 2021, Strudel et al. [34] suggested a transformer approach for semantic seg-
mentation, which captures the global context efficiently. In 2022, Hatamizadeh et al. [35]
suggested a transformer-based segmentation architecture for 3D medical images, which
includes a transformer encoder, providing an efficient model capable of learning long-range
dependencies and effectively capturing global contextual representations at multiple scales.

Figure 3. High-resolution network layout.

Figure 4. Illustration of head representation of HR-Net.

2.2. Comparison of Semantic Segmentation Architecture

In this section, we summarize all three semantic segmentation methods based on
performance. Ideally, multiple aspects of a model should be evaluated, such as quantitative
accuracy, speed (inference time), and storage requirements (memory footprint), in real-time
applications. Several metric factors are evaluated to measure the performance of semantic
segmentation such as pixel accuracy, mean pixel accuracy, mean intersection over union
(m-IoU), mean accuracy, etc. Table 1 summarizes the three semantic segmentation methods’
performances in terms of the m-IoU and mean accuracy of the different datasets.

In machine learning, FP 32-bit neural network models require a lot of memory, i.e.,
hundreds of MBs; they also require more operating power, i.e., hundreds of watts. These
needs make the FP 32-bit neural networks unstable for implementation in an embedded
system such as an FPGA. The issue of parameter size and computation complexity can
be reduced by transforming full-precision networks into low-precision networks. The
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quantization [36] approach is a way to create a clone of the original neural network, which
is a low-bit new neural network with acceptable accuracy and a much lower parameter size.
In this research paper, we simulate an arbitrary quantized bit of a semantic segmentation
deep learning architecture. Further, we apply the Taguchi method to find a suitable case
combination that provides better accuracy with limited use of both storage and power.

Table 1. Comparison of semantic segmentation neural networks for different databases.

Ref. Methodology Topology Datasets Mean Acc. Mean IoU

[19] FCN = 8 s VGG-16 Cityscapes - 65.3
PASCAL-Context. - 35.1

[24] SegNet VGG-16

Cityscapes - 57
CamVid 71.2 60.1

SUN-RGBD 44.76 31.84
Cityscapes - 57

[30] HR-Net

HRNet V2-W40 Cityscapes - 80.2
HRNet V2-W48 - 81.1

HRNet V2-W48 PASCAL-Context. - 54

HRNet V2-W48 LIP 67.3 55.9

2.3. Quantization Technique in Neural Networks

In computer vision technology, the implementation of a deep learning architecture
in an edge-computing device for real-time application in various fields heightens the
stipulation of an architecture’s optimization. Quantization [37] is a technique that provides
a low-precision compact deep learning architecture with negligible altered accuracy. In 2016,
Courbariaux et al. [38] suggested using the binary neural network (BNN), which is a 2-bit
quantized convolutional neural network that allows for a reduction in the parameter size.
Other studies [39–43] suggested using an improved version of Courbaiaux et al.’s BNN
by controlling the learning rate, gain factor, and backpropagation of a BNN, as arithmetic
operations in BNNs computed by bitwise operations provide an extensive reduction in
parameter size and hence ultimately power efficiency. In 2021, Vandersteegen et al. [44]
suggested a quantization scheme based on power-of-two quantization scales, which provides
4-bit weights and 8-bit activations. Table 2 shows the accuracy of quantized neural networks
and full-precision neural networks. It is obvious that the accuracy of quantized neural
networks is higher than 85%, which is more suitable for real-time robotic applications.

Table 2. Accuracy of different methodologies on the CIFAR-10 database.

Ref. Methodology Topology Acc. (%)

[45] Simonyan et al., Full Precision FP32 97.09
[38] Courbaiaux et al., BNN BNN 89.85
[39] Rastegri et al., XNOR-Net BNN 89.83
[40] Zhou et al., BNN+ DoReFa-Net 87.16
[43] Darabi et al., BNN+ AlexNet 87.16

However, the semantic segmentation architecture has a larger parameter size than
other neural network architectures. Some semantic segmentation architectures have been
modified and implemented in edge computing devices such as FPGAs. Olaf R. et al. [22]
suggested a modified CNN-based architecture for semantic segmentation termed “U-Net”,
which can be implemented in an FPGA. In 2019, Vogel et al. [46] suggested an architecture
for semantic segmentation for an FPGA, which uses an 8-bit quantization method. In 2019,
Shimoda et al. [47] suggested an FCN-based semantic segmentation architecture for an
FPGA, which provides an 8-bit quantization network with a filter-wise pruning technique
that causes a drastic reduction in parameter size as well as computational complexity. In
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2020, Miyami et al. [48] suggested a 3-bit quantized CNN-based architecture for semantic
segmentation with 11 TOPs/s at a 300 MHz computational speed.

3. Proposed Quantized Semantic Segmentation Neural Network

In this section, we first discuss the quantization technique for the quantized semantic
segmentation neural network (QSSN). Afterward, we introduce the Taguchi method and
evaluate the best-quantized bit length for the suboptimal conditions, leading to an improved
version of the architecture that provides better accuracy. Finally, the proposed QSSN
architecture is implemented in an FPGA accelerator.

3.1. Quantization Technique of Full Semantic Segmentation Neural Network

Quantization is a process in machine learning (ML) that allows for building a similar
ML model in which all operations and computations occur at low precision. On the other
hand, the parameter size is reduced; hence, the new architecture improves execution
performance and efficiency. Since the FPGA is an embedded platform that has limited
storage and low-power operations, we should transform an FP 32-bit ML model into an
equivalent model that provides a parameter size under the BRAM size and requires low
power to operate. The above target can be achieved by applying the model optimization
method, that is, quantization.

Quantization Method

In this subsection, we discuss the mathematical equation of the quantization scheme [49].
The weight and activation of each convolutional layer are quantized into b-bit integers, which
correspond with their bit representations of the floating point values. Assume that the range
of floating point values and b-bit integers are, respectively, xε[α, β] and xqε[αq, βq], then the
quantization of x is given as

x
q
= round

(
1
s

x + z
)

(1)

where s is defined as the scale factor and z is the zero point. The scale factor and the zero
point are represented, respectively, in Equations (2) and (3), which represent the α, β, and
b-bits of the quantitation length.

s = (2b − 1)/(α− β) (2)

z = −round(β.s)− 2b−1 (3)

When the real values of the weights and activations fall beyond the defined range, i.e.,
beyond [α, β], then the quantized values also lie outside of [αq, βq]. To resolve this issue of
falling beyond the range, the use of the clip function is defined as

clip(x, u, v) = {
u if x < u
x if u ≤ x ≤ v
v if x > v

(4)

The quantization of x beyond the defined range is defined as

x
q
= clip[round

(
1
s

x + z
)
] (5)

The dequantizer function (xd) is defined in Equation (6), which computes an approxi-
mation of the original input of the real value, i.e., x ≈ x

d
.

x
d
=

1
s

(
x

q − z
)

(6)
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As shown in Figure 5, the quantization data flow diagram shows the conversion of a
high-precision form into a low-precision form. The full-precision 32-bit float inputs into the
quantizer, which provides an arbitrary low-precision output with different bit sizes such as
2-, 4-, 8-, or 16-bit. The input float tensors first go to max and min operations; afterward,
they are fed to the dequantizer operations. Finally, an arbitrary bit results as the output
from the dequantizer. The needless conversion to and from the float is eliminated in the
next stage after the conversion of the individual operations. Numerous quantizer and
dequantizer operations are required in the presence of consecutive sequences of floating
equivalents. At this stage, pattern recognition operations are involved, which allow for the
cancellation and removal of each other. This could be applied on a large scale to the models,
where all operations have quantized equivalents, and offers a graph where all of the tensor
calculations are performed in a quantized bit without having to convert to floating values.

Figure 5. Schematic Flow Diagram: Quantization Algorithm of Deep Learning Architecture.

3.2. Taguchi Method-Based Sub-Optimal Quantized Semantic Segmentation Neural Network

In this subsection, we discuss the proposed quantized semantic segmentation neural
network (QSSN) and search for suitable quantized bit lengths for the sub-optimal conditions
using the Taguchi method, which is based on an orthogonal array, i.e., it is a statistical
approach proposed by Dr. Taguchi while working for the Nippon Telephones and Telegraph
Company [50,51]. This method provides an experimental design during the process-design
stage and allows for a certain level of quality control for magnificent performance. In the
past few years, the Taguchi method has been used to design experiments in several fields,
such as engineering, biotechnology, and computer science to achieve the best performance
results [52–55]. There are three factors in the Taguchi method that should be appraised
while using the experimental design, i.e., the Taguchi loss function, offline quality control,
and orthogonal arrays.

Figure 6 shows a schematic flow diagram of the proposed sub-optimal QSSN, which
involves quantization, training, and finding suitable quantization bit sizes with a fixed
range of accuracy using the Taguchi method. First, the encoder–decoder semantic segmen-
tation model with full precision is quantized with a bit length of b-bits, i.e., 16, 8, 4, or 2.
The bit size of the proposed QSSN is assumed as a controlling factor for one input into the
Taguchi block. After the quantization process, the resulting architecture, i.e., the QSSN,
goes to the training block and evaluates the accuracy. The output of the training block
is the assumed accuracy and is used as one input for the comparator. The output of the
Taguchi block is the required accuracy and is used as the other input for the comparator. If
the output of the comparator is greater than or equal to zero it means that our requirement
is satisfied and the bit size is accepted; otherwise, the bit size needs to be altered again.

The forecast matrix of the design experiment of the proposed QSSN architecture is
illustrated in Table 3 and shows the eight optimal designs for the experiment, i.e., R1 to R8.
The Taguchi-based QSSN considers two factors: the first is storage, which is directly related
to the architecture’s parameter size; the second is the accuracy of the architecture, which
indicates the system’s robustness. The table shows the accuracies and storage performances
of the four different precisions in this study, i.e., 16-, 8-, 4-, and 2-bit, with two different
levels of data pruning, i.e., 96 × 96 and 48 × 48. The first concern of the QSSN is that the
accuracy must be higher than 80%; the second concern is the required storage. Hence, R1
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has the best and R8 has the worst accuracy. First, we set R1 as the maximum accuracy,
then, we locked the minimum accuracy at higher than 80%, i.e., R6. Afterward, between
R1 and R6, the accuracy was higher than 80% and was locked as the baseline accuracy, i.e.,
baseline 1 was R2 and baseline 2 was R5. For baseline 1, R2, the accuracy decreased by only
3.24%, with an 8.65% decrease in the required storage in comparison with the maximum
accuracy, R1. Similarly, for baseline 1, R2, the accuracy increased by 1.94%, with only 0.01%
extra storage required. Baseline 2, R5, had a lower accuracy of 0.09%; further, the required
storage was 3.10% extra in comparison with baseline 1, R2. Thus, baseline 1, R2, was the
best case in this study.

Figure 6. Schematic Flow Diagram of Sub-Optimal QSSN.

Table 3. Design experiment’s forecast matrix based on Taguchi method.

S. No. Precision Data Pruning
Resources Utilization (%)

Accuracy (%) Prediction
DSP LTU FF

1 16-bit 96 × 96 92 24.41 26.85 88.38 Maximum
2 8-bit 96 × 96 77 21.15 18.20 85.14 Baseline 1
3 4-bit 96 × 96 64 18.20 16.18 70.23
4 2-bit 96 × 96 57 14.30 14.16 60.14
5 16-bit 48 × 48 74 20.15 17.30 84.15 Baseline 2
6 8-bit 48 × 48 68 19.15 18.10 83.20 Minimum
7 4-bit 48 × 48 57 17.15 13.61 64.15
8 2-bit 48 × 48 47 14.20 12.25 54.19

4. Experimental Setup and Results

In recent years, edge devices such as FPGAs have become prominent alternatives,
with power-efficient and fast real-time accelerators in the area of deep learning. In this
section, we discuss the deployment of the proposed QSSN architecture on the FPGA. The
proposed QSSN architecture was deployed on the Xilinx ZCU104 FPGA, as illustrated in
Figure 7. The implementation began with the configuration of the hardware architecture,
which was performed by a pre-placed bit file and .tcl file in the PL block. Afterward, the PS
block initialized the video camera’s USB, basic HDMI-related settings, and QSSN weight
and threshold load. Once the camera captured the targeted image, an AXI4-Stream sent the
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image to the QSSN system in the PL. After the completion, the predicted image was sent to
the PS terminal and displayed on the screen.

Figure 7. The proposed QSSN system architecture on the FPGA.

Table 4 shows a performance comparison of the quantized neural networks. The first
four listed architectures were implemented on the FPGA platform and performed only
classifications. The binary CNN (BCNN) simple 2-bit quantized CNN showed an accuracy
of about 88%, whereas the third achieved up to 64%. However, the 8-bit CNN showed
87% accuracy with lower GOPS than the BCNN. The bottom two listed architectures,
i.e., SFCN and U-Net, performed semantic segmentation. U-Net had better GOPS than
SFCN; however, SFCN and U-Net achieved accuracies of less than 70%, which makes both
methods inefficient in real-time robotics applications. In this study, the QSSN architecture
achieved an accuracy of up to 85.15%, which is suitable for real-time robotics applications.

Table 4. Performance Comparison of Quantized Neural Networks.

Architecture Precision Platform GOPS GOPS/W Acc. (%)

BCNN 1-bit ZC702 722 218.78 88.61
BCNN 1-bit ZC7020 207.8 44.21 88.68

BCNN (YOLOv2) 1-bit VC707 1877 102.62 64.16
QCNN 8-bit ZC7Z045 84.3 8.65 87
SFCN 8-bit ZCU104 165.4 137.9 65.9
U-Net 3-bit Alveo 200 11,059 243.9 67.8

Proposed QSSN 8-bit ZCU104 1942 430.79 85.15

The proposed QSSN achieved exceptional performance in terms of computational
speed, power efficiency, and required memory storage. In addition, the parameter size
of the QSSN was compressed by up to six times; therefore, the storage demand was
reduced, as well as the complexity. Because of the quantized bits, all arithmetic operations
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were performed as bitwise operations so the computational speed was higher than in
full-precision neural network modules. The QSSN achieved accuracy that, although less
than full-precision architectures, is still negligible because for robotics applications, an
accuracy higher than 80.00% is more acceptable. According to the accuracy requirement,
the QSSN arbitrated the bit lengths in different layers; hence, it provided an arbitrary bit
size. Therefore, according to the edge device’s memory and required performance, it was
possible to alter the bit length. The foremost accomplishment of this proposed algorithm
was the power efficiency, which was ten times better than full-precision architectures.

5. Conclusions

This study proposes a QSSN, which provides an architecture with improved required
storage, enhanced power efficiency, and faster computational speed than conventional
segmentation architectures. The QSSN accuracy is not as high as full-precision architectures
but it is negligibly tolerated. The QSSN achieved an accuracy of 85.15% with quantized
8-bit precision, which is sufficiently acceptable for real-time robotics applications. The most
important edge device requirement is low-operational power. The QSSN architecture is six
times more compact than full-precision architectures, which enables QSSN deployment
on edge devices; hence, the QSSN is ten times more power-efficient than full-precision
architectures. This study also reveals that quantization below 8-bit precision causes a
drastic reduction in accuracy with a minimal reduction in storage size. Therefore, 4-bit
and 2-bit precision are not suitable, and the maximum low precision is 8-bit. In the future,
the output of the Taguchi block may include other performance factors such as parameter
size or operation power or a combination of two or more performance factors. In addition,
the quantization of each convolutional layer can be performed separately; however, it will
make computations more complex but we can still achieve higher accuracy with reduced
storage memory.
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