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Abstract: The topic of transformers is rapidly emerging as one of the most important key primitives in
neural networks. Unfortunately, most hardware designs for transformers are deficient, either hardly
considering the configurability of the design or failing to realize the complete inference process of
transformers. Specifically, few studies have paid attention to the compatibility of different computing
paradigms. Thus, this paper presents EFA-Trans, a highly efficient and flexible hardware accelerator
architecture for transformers. To reach high performance, we propose a configurable matrix comput-
ing array and leverage on-chip memories optimizations. In addition, with the design of nonlinear
modules and fine-grained scheduling, our architecture can perform complete transformer inference.
EFA-Trans is also compatible with dense and sparse patterns, which further expands its application
scenarios. Moreover, a performance analytic model is abstracted to guide the determination of archi-
tecture parameter sets. Finally, our designs are developed by RTL and evaluated on Xilinx ZCU102.
Experimental results demonstrate that EFA-Trans provides 23.74× and 7.58× improvement in energy
efficiency compared with CPU and GPU, respectively. It also shows DSP efficiency is between 3.59×
and 21.07× higher than others, outperforming existing advanced works.

Keywords: transformers; neural network; bank-balanced pruning; configurable and efficient hardware
accelerator; FPGA

1. Introduction

In recent years, transformers [1] have gained much popularity and have dramatically
improved the accuracy of important machine learning tasks. The pretrained models
such as BERT [2] have become the preferred architectures in natural language processing
(NLP), and many excellent visual transformer models [3,4] have also achieved state-of-the-
art performances.

With the in-depth research of neural network models, it is necessary to focus on
efficient hardware deployment and acceleration due to its long execution time. However,
existing convolutional neural network–oriented accelerators are designed for compute-
intensive convolution operations, making them defeated or suboptimal for processing the
particular structures of transformers. To the best of our knowledge, there are relatively
insufficient studies on transformer acceleration. The efficient acceleration framework
Ftrans [5] can quickly deploy the transformer model on FPGA, but its performance is
unsatisfactory and unable to meet the real-time requirements. Some existing transformer
accelerators sequentially hardwareize the network structure, in which they have dedicated
computing modules such as multiple unique PE banks to perform each multiply subroutine.
This implementation lacks configurability and cannot be adapted to other variants of the
workload. The A3 [6] and ELSA [7] in the open literature are hardware architectures for
accelerating the attention mechanism in various neural networks, which are not specifically
designed for the transformer. The authors of [8,9] simply implement a part of workloads
such as matrix multiplication or two building blocks in transformers while neglecting
nonlinear layers optimizations [8] or scheduling [9], resulting in the inability to complete
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the inference of the whole transformer layer. Furthermore, in order to deploy neural network
models in resource-constrained devices, the weight-pruning technique as a model compression
method has been commonly used in different DNN real-time applications [5,10–13]. Although
all the weight matrices are pruned in transformers, there are still some workloads such
as Q× KTand V × S in the computation process that belong to dense matrix operations.
However, research in this field so far almost simply considers a single dense/sparse
computing pattern [5,12–14], resulting in limited applicable scenarios.

To address these issues, this paper presents a high-performance and flexible hardware
architecture for transformers. The main contributions can be summarized as follows:

• We propose a high-efficiency architecture EFA-Trans for accelerating transformers
that possesses excellent configurability and can achieve high utilization in matrix
multiplication of different sizes.

• We implement and optimize two complicated nonlinear functions to obtain better
performance. Furthermore, we proposed a customized on-chip memories design,
which can realize the on-the-fly transformation of matrix transpose.

• EFA-Trans is compatible with dense and sparse computing paradigms, which can
dynamically switch during runtime, significantly reducing storage requirements and
overall latency. Experiments have demonstrated the effectiveness and computationally
inexpensiveness of our novel scheme.

• We devise a performance analytic model to evaluate the dependencies between latency
and sparsity ratio and architecture parameter sets. After a comprehensive analysis
of the model, we reach a balance between acceleration performance and resource
consumption of EFA-Trans.

The remainder of this paper is organized as follows. Section 2 presents the background
of the transformer network architecture and model pruning. Section 3 details the accelera-
tion architecture of EFA-Trans. Section 4 presents a performance analytic model to guide
the determination of architecture parameters. Section 5 gives the characteristics, resources,
and performance comparison results of our proposed architecture. Finally, Section 6 draws
the conclusions of this paper.

2. Background and Motivation
2.1. Attention-Based Transformer Models

The recent attention-based transformer models [1–4] have achieved a significant im-
provement on a wide range of NLP and Computer Vision (CV) tasks. Although the
connectivity among layers and the organization forms of these networks may be different,
they are all stacked by basic blocks. It can be noted that most of the trainable parameters
and calculations are in these stacks. In addition, in the architecture of transformers, the
decoder is similar to the encoder, and encoder is applied more universally. Our research
mainly focuses on the inference acceleration of the transformer model. Figure 1 shows the
basic structure of encoder in transformer, which is mainly composed of multihead attention
(MHA) layers and feed-forward network (FFN) layers. All these layers are followed by the
residual connection and layer normalization (LN). For an input sequence with L tokens,
embeddings are linearly transformed to three tensors: Q (queries), K (keys), and V (values)
by multiplying the embedding matrix with different weight matrices (L× dq, dk, dv). After
feeding the Q, K, V tensors into the MHA layer, the attention probabilities are produced by
employing the softmax function on Q× KT , and the dependencies between input tokens
can be obtained by multiplying attention probabilities with V. Followed by MHA, a residual
layer adds the attention outputs with embeddings and executes layer normalization. After
the operations of MHA are completed, the output of residual addition and LN layers is
fed into the FFN layer to generate the FFN output. Finally, another residual operation is
conducted and outputs block_out, which can be used as the input to the next block.
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Figure 1. Model architecture of the transformer encoder.

The detailed key computations of transformer encoder model are illustrated in Table 1.
X represents the input to an encoder, X1–X5 represent subsequent outputs after each
operation. MHA is the structure to measure the relationship among tokens, which can
be broken down into matrix multiplication, softmax function, and vector multiplied by
a scalar (COM1~4). In the position-wise feed-forward network of each layer, two linear
transformations are executed, which mainly contain vector matrix multiplication, and
the first one involves Rectified Linear Unit (ReLU). Residual Addition and LN layers are
inserted after each MHA and FFN. It mainly includes the addition of matrix elements and
the nonlinear functions. Specifying these computing loads can help us to efficiently map
the network building blocks to the hardware architecture.

Table 1. Computation for the transformer’s encoder with H attention heads.

Embedding and Positional Encoding

EM/PE X = Embedding(inputs) + PE(inputs)

Multihead Self-Attention

COM1 [Q, K, V] = X
[
WQ, WK , WV

]
COM2 S = So f tmax

(
QKT/

√
dk

)
COM3 Z0−H = V·S
COM4 X1 = Concat

(
Z0−H)·WO

Residual Addition and Layer Normalization A

LN-A X2 = LayerNorm(X + X1)

Position-Wise Feed-Forward

FFN1 X3 = ReLU
(
X2WF1 + bF1)

FFN2 X4 = X3WF2 + bF2

Residual Addition and Layer Normalization B

LN-B X5 = LayerNorm(X2 + X4)

2.2. Model Pruning

Pruning technologies were introduced in previous neural network compression [5–9],
consisting of irregular pruning and regular pruning. The irregular pruning method sets a
threshold value for a specific pruning ratio and prunes the elements below the threshold
value. Irregular pruning can achieve a high pruning rate without causing great performance
degradation. However, the highly irregular weight matrices cannot effectively utilize
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hardware resources, which is not suitable for hardware acceleration. In contrast, the layout
of nonzero elements in the regular pruning scheme has a high regularity, which is hardware-
friendly and easy to deploy on hardware. Common regular pruning schemes include
bank-balanced pruning [5–7], block circular matrix pruning [8] and block pruning [9]. In
this paper, we adopt the bank-balanced pruning scheme.

3. Accelerator Architecture
3.1. Architecture Overview

The top-level architecture of the EFA-Trans, a customized system for high-performance
and flexible transformer inference, is illustrated in Figure 2. It can be divided into two parts:
the software program on the host and the hardware accelerator. Section 2 has introduced
the entire model layers. Different from the encoder layer, initial steps such as embedding
layers usually require a large amount of memory bandwidth and negligible computation,
which are conducted outside the accelerators, and the results are then sent to the accelerator.
The input vectors and weights are stored in off-chip memory DRAM in advance and moved
to the accelerator through the AXI4 interface.
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Figure 2. Top-level architecture diagram of the proposed hardware accelerator EFA-Trans.

On the acceleration architecture side, the accelerator consists of a data transmission
solution block, an optional sparse preprocessing solution block, on-chip memories, and
computation solution blocks. The transmission block can access external memory through
the AXI4 bus, which is responsible for data movement. The optional sparse processing
block can organize the inputs beforehand to facilitate the subsequent direct calculations.
The on-chip intermediate buffers are used for storing all the intermediate data such as
weight, matrices, parameters, and so on. Computation blocks are composed of the matrix
computation array (MCA) and the optimal hardware implementation of nonlinear func-
tions, where each engine in the MCA has two data paths to support matrix computation
for both dense and sparse modes. Thus, all workloads of transformer layers can be realized
through mapping on these configurable and flexible computation blocks in EFA-Trans.
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3.2. Matrix Computation Array (MCA) and Workload Mapping

The workload of transformer contains matrix multiplication (M × M) and matrix
vector multiplication (M×V). For the sake of simplicity and unity, we decompose matrix
multiplication into matrix vector multiplication using inner product operation. The MCA,
as the main arithmetic module in EFA-Trans, is designed to achieve high performance for
all kinds of matrix multiplications and matrix vector multiplication, which could achieve
near-peak utilization.

Figure 3a shows the circuits of the MCA, which contains n engines, each of which
implements independents m multiplication lanes. Parallelism parameters m and n belong to
architecture parameters and can be configured. Each engine is composed of m-multipliers,
m-adder tree, and an accumulator with dynamically adjustable modes. After accumulation
is complete, a postprocessing unit (PPU) optionally performs operations such as ReLU and
scaling. Final results are stored in output memory. In addition, there are residual addition
layers in the transformer network structure; in order to realize element-wise addition, the
original data are prepared in the on-chip buffers in advance. By configuring the mode of
the accumulator, we can directly perform the element-wise addition operation in the MCA,
which not only reduces the additional hardware resources but also ensures the efficiency of
the operations. Since the calculation process takes more than one cycle to complete, the
circuits of the MCA are designed to be pipelined to improve the utilization of the MCA
and throughput.
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The accelerator minimizes on-chip buffer reads by employing an output-stationary
dataflow. For example, the workload of A × B = C (matrix) can be split into subtasks
through tiling and data reuse, as illustrated in Figure 3b. After meticulous scheduling and
control, the entire dataflow can be fully mapped to the MCA for execution. A-matrix inputs
are read out of the A-buffer and reused across the n engines, and B-matrix inputs are read
out of multi-B-buffer once each cycle. Partial sums are temporally accumulated in a register
before sending the completed sum to the PPU. By configuring the buffer address generators
and repeating the process of calculating the output matrix, the MCA can compute the MHA
layer, element-wise addition, and fully connected layers.

3.3. Nonlinear Modules Design and Optimization Strategies
3.3.1. Softmax Core (SMC) and Optimization

In the attention mechanism, relevances between pairs of inputs are measured by
Q× KT and then normalized by the softmax function. Normally, to perform an exponent
computation, a complicated hardware exponent calculation unit should be used. However,
exponential hardware implementation is quite expensive in terms of resource consumption,
so we use lookup tables instead. Thus, one challenge with this approach arises: handling
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data overflow. The outcome of an exponent function is sensitive to the increase in inputs,
and thus it can easily cause an overflow in a fixed-point representation. Fortunately,
softmax can keep the invariant to subtraction. Therefore, we subtract the maximum from
all the elements [6], and then the exponential results will always be limited between 0 and
1, which can be rewritten as Formula (1).

so f tmax(xi) =
exp(xi − xmax)

∑dk
j=1 exp

(
xj − xmax

) (1)

We propose a hardware implementation SMC for the softmax function to support and
accelerate corresponding operations, as is highlighted in Figure 4. The first stage of the
pipeline computes the exponential outcome after subtracting the maximum value from
the input value. This hardware consists of M subtractors and exponential function lookup
tables (EXP_LUT) followed by an m-way adder tree for a sum reduction operation. The
second stage is an accumulator, which can allow multiple cycles to complete the numerical
addition of a single row through fine control. The results of this operation are stored in the
corresponding register. At the same time, single-row data are delayed for multiple cycles
and stored in the ping-pong ROW BUFF, as shown in the red dotted box. Then, once the
sum of the exponential values of a single row is finished, these set of values stored in ROW
BUFF are passed to the m-way divider arrays for the final results of the softmax function.
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Figure 4. The detailed architecture of SMC.

When we carefully analyze Formula (1), we have to calculate the maximum value in
each row before calculating the softmax outputs, where the maximum value acquisition
needs to occupy partial latency. Thereby benefiting from the output stationary of the MCA,
we directly couple the outputs of the MCA with the maximum calculation unit to find the
maximum in advance so as to optimize the delay. Here, the maximum calculation unit
is composed of the comparator tree, and the intermediate value is temporarily stored in
the registers.

3.3.2. LayerNorm Core (LNC) and Optimization

For purpose of ensuring the stability of data feature distribution during model training,
LN is added to the transformer model to accelerate the convergence rate of the model.
Different from Batch Normalization (BN)’s idea of normalizing each batch of data, LN’s
main idea is to calculate the mean and variance on different channels of each sample and
then normalize.

As discussed in Section 2, the LN function needs to be calculated before the FFN and
next block starts. This means the LN function is always on the critical path of the system
latency when we analyze the computation process. Thus, we designed an independent LNC
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to address the computation inefficiency in LN due to the fact that the MCA is unsuitable
for LN. The LN function used in transformer is:

Output(i, j) =
G(i, j)− E(G, i)√

var(G, i) + ε
γj + β j (2)

E(G, i) =
1

dmodel

dmodel

∑
k=1

G(i, k) (3)

var(G, i) = E(G, i)2 − 1
dmodel

dmodel

∑
k=1

G(i, k)2 (4)

where E (G,i) and var (G,i) are the mean value and variance of all the elements in the i-th row
of matrix G. The constant ε is used to avoid the denominator from being zero. According to
the intuitive method, we need to calculate the mean and variance successively and then use
them to calculate the outputs of LN. If the matrix size is M * N and the parallelism of the
mean and variance operation module is n, we roughly estimate that at least 2 * M * (N/n)
cycles are added to the whole system latency.

For the sake of minimizing the delay of this module, the key is to allow the LN
module to start running ahead of schedule. We adopt two methods. First, we choose
another way to calculate the variance [9] so that the mean and variance can be operated
essentially simultaneously, as shown in Expression (4). Second, since the MCA uses an
output-stationary dataflow for the outputs, we can keep the inputs of the mean and variance
calculation module directly connected to the outputs of the MCA. At last, the matrix and
variance can be acquired concurrently during the matrix operation, and very few cycles
are required between finishing the calculation of all the elements of matrix G and starting
LN computation, significantly reducing the on-chip storage access and runtime latency of
the entire system. As is shown in Figure 5, In the optimized way, the mean and variance
calculation time can be roughly hidden in the matrix calculation time. The delay time is
further reduced compared to the straightforward way.

1 

 

 

Figure 5. Timing diagram of LNC optimization.

The architecture of the LNC is described in Figure 6. Figure 6a details the circuit of
mean and variance calculation. Among them, the red dotted box shows the mean value
calculation circuit. Every valid cycle, this module takes N values and then sends them to
the n-way adder tree for a parallel sum reduction. The accumulator follows and generates
the valid signal identifier and the corresponding resultant data after the single-row data
operation is completed. The lower part is the variance computing circuit, where each of
its vector elements is self-multiplied to complete the G(i, k)2 operation before the data are
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fed into the adder tree. In addition, the mean value is bypassed to the variance computing
module to realize the Formula (4).
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Figure 6. The detailed architecture of (a) mean value, variance computing modules, and (b) LNC.

Figure 6b makes a hardware implementation of the Expression (2) using a pipeline
approach to generate the final outcome of LN. The parallelism is designed as m, which
matches the overall hardware architecture parameters. Except matrices data, the mean and
variance need to be obtained from mem/var memory. The parameters γj, β j also need to
be stored in a parameter buffer in advance, and the final LN outputs are stored in output
data buffers.

3.4. Improvement for the on-Chip Memories
3.4.1. The Features of on-Chip Memories

In the hardware design, the design method of double buffering and collaborative
optimization with scheduling could result in remarkable inference performance for the
transformers. Double buffers are operated in a ping-pong manner to overlap data transfer
with computation.

As is described in Section 2, the transformer model contains many operations between
matrices. Thus, memory hierarchy is equipped with multiple on-chip buffers to satisfy
varying workloads. In the workload of the MHA layer, the three matrices Q, K, V cannot
be simply stored in data buffers because they involve mutual operations. Therefore, we
separately set the Q-buffer, K-buffer, and V-buffer to store the corresponding matrices, which
can reduce duplicate off-chip memory accesses. Furthermore, to meet the on-chip data
transfer bandwidth requirements, we adopt the design method of multibank memory.

3.4.2. On-the-fly Transformation of Matrix Transpose

The workload of self-attention mechanism includes Q× KT . In the original data flow,
we can obtain the K matrix after the MCA operation. Therefore, if we want to ensure that
the control logic of the next matrix multiplication operation remains unchanged, we need
to transpose the K matrix. However, a separate matrix transpose operation is not only
time-consuming but also needs additional on-chip buffer to assist data rearrangement.
In this design, we ingeniously designed the K-buffer and the corresponding write control
circuit so that the on-the-fly transformation of matrix transpose can be achieved without
taking up additional delay.

As shown in Figure 7, we use a more fine-grained way to split the K-buffer. Byte enable
byte_en can be used to control mask writing of K-buffer. Take a 4 × 4 matrix transpose as an
example: From cycle-1 to cycle-4, the same addresses are generated, and the change patterns
of byte_en are: 4′b0001, 4′b0010, 4′b0100, and 4′b1000, as described in Figure 7. After four
cycles, the computing results of the MCA are completed, and the data inside the K-buffer
are the transposed form of the result matrix.
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Figure 7. The schematic diagram of matrix transposition rearrangement.

3.5. Supporting Sparse Matrix Computation

For hardware-friendly weight pruning, bank-balanced pruning (BBP) [15] divides the
weight matrix into subrows/columns and conducts Top-k pruning in each one. Depending
on the bank partition and pruning rate, we can sort the data in each bank and find a
reasonable pruning threshold, and then the data within a bank that are less than the
threshold are selected and set to zero. Algorithm 1 describes this proposal in detail. Owing
to fine-grained pruning, BBP can maintain more important information. Thus, compared
to other hardware-friendly weight pruning techniques [13,16], BBP can achieve better
accuracy under the same sparsity ratios.

Algorithm 1: Bank-balanced weight pruning algorithm
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We jointly optimized the BBP algorithm and the parameters of hardware architecture
to cut down the logic complexity and ensure load balancing. Since in multiplication, the
result of multiplying zero by any number is zero, we can skip the multiplication operations
corresponding to zero to reduce the computational effort. Therefore, in order to ensure high
utilization of the MCA, reduce pipeline stalls, and improve compatibility, we propose a
sparse preprocessing unit to select and rearrange these data that are truly active for matrix
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multiplication results. In this way, the accelerator can be compatible with both dense and
sparse operations through different mode configurations of the MCA.

A coarse-grained, two-stage pipelined SIMD unit for sparse preprocessing was de-
signed, as described in Figure 8. At the moment of T1, the inputs are D00, D01, D02, and
D03, and the corresponding mask identification signals are M01, M02, M00, and M02. After
the multiplexer selects, D01, D02, D00, and D02 are identified as active signals, and then
they are fused and sent to the on-chip buffer for storage. In general, the first stage selects the
valid input data corresponding to the mask information temporarily. The second stage reor-
ganizes and stores the data in the sparse on-chip buffers. Finally, the selected feature map
and pruned weight are read from the buffers and fed to the MCA for subsequent operations.
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Figure 8. The schematic diagram of sparse preprocessing module.

3.6. Fine-Grained Scheduling

Encoding in transformers is a complicated dataflow. One of the key challenges for
efficient hardware inference is to hide the off-chip memory access overhead. In this design,
we carefully designed a control flow by using double buffering to match the data calculation
and transfer cycles through fine-grained, task-level scheduling.

The control flow, which is shown in Figure 9, can complete the calculation and data
handling of the transformer structure. The computation sequence is grouped into four
states, where each state is associated with a set of computations (blue blocks) along with
weight (pink blocks) to be prefetched in it. The second and fourth lines are data sizes for
the prefetch and numbers of computation operations, and those in the fifth line are buffer
names for saving. Operations in the horizontal direction have to be executed sequentially
first, followed by the those in the vertical direction successively in each state. For example,
in STATE2, we can calculate multihead attention layers Q, K, V and softmax operations of
one head because the operations are dependent in the MHA. Then the MHA operations of
the other heads are executed in turn until all the computing loads are completed and jump
to the next state.

Note that the computation and transfer cycles can be estimated given workload and
architecture parameters, as detailed in Section 4. By employing cycles analysis and by
considering the data dependency between computation workload and prefetched data, we
can balance the computation and transfer cycle well for all the states. As a result, we are
able to achieve high performance through workload mapping on EFA-Trans.
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Figure 9. The control flow of the EFA-Trans. Data fetch is colored in pink, and the computation
process is colored in blue.

4. Performance Analytical Model

Performance and resource usage of accelerators will vary under different parameter
sets. Therefore, establishing an analytical model is very helpful for the determination
of architecture parameters and model deployment. We determined several important
hardware parameters that affect accelerator performance according to our design, which
form a set S. We define an acceleration architecture as Si = 〈 pi, mi, ni〉, consisting of the
pruning rate pi, engine parallelism mi, and MCA parallelism ni. The space of all legal
values is denoted by Formula (5). Based on these hardware parameters, we model the
latency. The total runtime latency of the system is determined by the bottleneck of the
transmission and computation.{

0 < p < 1
0 < m× n < (] num o f PEs)

(5)

Transmission Latency: All the transformer’s input and part of the weights should be
prefetched to the on-chip memory, and the results need to be moved from on-chip memory
to off-chip memory. As Formula (6) shows, transmission overhead is related to the memory
access amount and bandwidth, where the variables {Mnum, DBW, TBW} represent the
data access, data bit width, and transmission bandwidth, respectively. The product of the
data amount and the data bit width determines all memory access sizes, and when divided
by the transmission bandwidth, the approximate number of cycles is obtained.

LATtrans =
Mnum × DBW

TBW
(6)

Computing Latency: As for the computing latency estimation, there are total of mi× ni
multiply units in the MCA, and the parallelism of nonlinear modules is hi . The latency
of operations is decomposed in matrix and nonlinear functions, as shown in Formulas (7)
and (8). Benefiting from the pipeline design, the matrix latency LATM

comp_i in each iteration
is determined by MCA pipeline depth MPPdepth, matrix dimension {MAi, MBi, MCi},
and architecture parameters {mi, ni}. The latency of the nonlinear layer is also related
to the parallel parameter hi and pipeline stages of nonlinear modules NLPPdepth and
preprocessing depth PREdepth. At the runtime, the computing latency and the transmission
latency may vary from iteration to iteration as the matrices have different sizes.

LATM
comp_i =

MBi ×MCi ×MAi
mi × ni

+ MPPdepth (7)

LATNL
compi

=
MBi ×MAi

hi
+ NLPPdepth + PREdepth (8)
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Matching the data computed and load cycles carefully can reduce the overall latency.
After the workloads are determined, we can explore the optimal hardware architecture
parameters accordingly through estimation, and the computation and memory access in
scheduling can be efficiently balanced. In order to achieve a “sweet spot”, the dense EFA-
Trans is configured as < 32, 32 >. In case of a dense–sparse operation pattern, architecture
parameters are set to < 12.5%, 32, 16 >.

5. Evaluation and Experiments
5.1. Experimental Setup

To evaluate the performance of EFA-Trans, IWSLT 2016 German–English corpus [17],
which is a representative benchmark data set for the transformer, was used. For the
evaluation of accuracy degradation due to pruning, the bilingual evaluation understudy
(BLEU) score [18] was used. We trained and tested the transformer (hidden layer size was
2048, head num was 8, and sentence length was set to 64) using the IWSLT 2016 German–
English corpus. After pruning, the BLEU value changed from 30.41 to 31.05. Learning
from [9], replacing FP32 with INT8 in the transformer can greatly reduce the computational
complexity with limited accuracy loss. Thus, we quantized FP32 to INT8 for hardware
deployment. After that, the BLEU score dropped to 30.65, proving that quantizing with
INT8 in this network is acceptable. Vivado 2019.2 and the Xilinx ZCU102 board were used
to evaluate the proposed hardware accelerators in the experiments.

5.2. Characteristics of Accelerators

When comparing the characteristics implemented on a reconfigurable device with
other works, to our knowledge, there is no research that has been able to realize a con-
figurable accelerator, which can complete the whole-layer network inference and have
compatible dense and sparse characteristics simultaneously. Authors of [5] and [12] show
how to deploy a complete single-layer network, but the corresponding hardware for each
operator on the dataflow is arranged, which is not configurable, and both of which are
aimed at hardware acceleration for specific sparse matrices. Designs included in [8] and [9]
have generic arrays for matrix operations. However, Ref. [9] has only made design op-
timization for the pure computation modules of two building blocks and cannot map
the entire transformer layer. Authors of [8] only implemented matrix operations without
elaborating on the design of the nonlinear layers. Compared with these works, our work
can simultaneously realize the configurable computing array and the whole inference. In
addition, it can be selectively compatible with dense and sparse patterns, as described
in Table 2.

Table 2. Comparison of Functional Implementation Circumstances.

[5] [8] [9] [12] This Work

# Configurability 8 4 4 8 4

# Complete layer 4 8 8 4 4

# Compatibility 1 8 8 8 8 4

“Compatibility 1” indicates the characteristic that supports both dense and sparse paradigms at run-time.

5.3. Resource Utilization

We used Vivado (2019.2) to synthesize and implement the accelerators and deploy
them on a Xilinx ZCU102 field programmable gate arrays (FPGA) board, which has 912
BRAM18E, 2520 DSP, and 274.08 k logic cells (LUT). Taking a single-layer workload as
an example, some more details of the network architecture containing the dimension of
the operation matrix, the number of operands, etc., are listed in Table 3. The data flow
in the network is mapped to the MCA, SMC, and LNC computing modules successively
for implementation, and the matrix dimension column illustrates the feature map matrix
dimension and the weight matrix dimension of the participating operations. Since the
accelerator proposed in this paper is recursive, the MCA can be configured to accomplish
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the relevant operations for different matrix dimensions. Moreover, the resource utilization
of each submodule in the acceleration architecture (Figure 2) is also described in Table 3.
The multiplication operations in the MCA exploit DSP hardware resources in the FPGA,
which corresponds to the architecture parameters. Apart from consuming BRAM, the
memory groups also occupy a number of LUT and FF hardware resources due to some of
the memory cells being implemented using registers.

Table 3. The Operations and Resource Utilization of Submodules in Acceleration Architecture.

Operations Resource

Matrix Dimensions OPs DSP LUT FF BRAM

MCA

X 1—[64, 512]
MHA—[512, 512]
FFN1—[512, 2048]
FFN2—[2048, 512]

0.41 G 1024 40,508 6114 /

SMC Softmax—[64, 64] 0.13 M 0 4665 5774 /
LNC LN—[64, 512] 0.46 M 0 2787 838 /

Memory Groups / / / 16,685 17,936 539
Transmission / / / 200 107 /

“X 1” indicates the input, which corresponds to the computation in Table 1.

Table 4 shows the utilization report and latency of dense and compatible dense–sparse
accelerators, which can reach frequencies of 185 MHz and 150 MHz, respectively. In
compatible dense–sparse mode, LUT resources are occupied more, which accordingly
affects the frequency. However, the latter can achieve better latency 0.87 ms with lower
BRAM and DSP consumption.

Table 4. Resource Utilization Report and Latency of Accelerators.

Resource
Latency (ms)

DSP LUT FF BRAM

Available 2520 274,080 548,160 912 -
Dense 1024 65,385 31,739 539 1.47

Dense–Sparse 512 132,433 52,332 439 0.87

5.4. Performance Comparison

We completed comparison experiments on the CPU, GPU, and FPGA, respectively. In
this experiment, the CPU was an Intel (R) Core (TM) CPU i5-4460 @ 3.20 GHz, and the GPU
was Nvidia RTX-3060, both of whose results were obtained by running the same network
structure using pytorch framework.

In comparison experiments with other works based on FPGA, Ftrans [5] was built
on VCU118 FPGA via Vivado HLS, which achieves 2.94 ms in accelerating the shallow
transformer. FQ-BERT was a fully quantized BERT proposed by [19]. Authors of [8] created
an algorithm–hardware codesign for the attention mechanism, which can reach 1.87 Tops
on the runtime throughput performance in ZCU102. Considering the size and structure of
model, metrics such as latency are difficult to compare horizontally, so we chose energy
efficiency and throughput per DSP as evaluation metrics to provide a fair comparison.
Their results are not affected by the size and structure of models.

The experimental results are shown in Tables 5 and 6. Our energy efficiency is 23.74×
that of CPU and 7.58× that of GPU. Desktop GPU wins in throughput due to its high
computing parallelism and bandwidth, but its extreme computing power cannot be ig-
nored. Due to the facts that we classify all operations of the model and we implement the
corresponding control flow and underlying module for each type of workload, our design
achieves certain customization and high performance. Our throughput is higher than that
of other related works. Further, a more fine-grained mapping way and more universal
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modules allows our DSP slices utilized to be lower than others. As can be seen from the
Table 6, our throughput per DSP is more than 3.59× that of [8] and 21.07× the FQ-BERT
in [19], much better than existing accelerators. This further illustrates the advantages
of EFA-Trans in terms of resource utilization. In a word, EFA-Trans achieves a balance
between performance and resource consumption.

Table 5. Comparison of Design against CPU and GPU.

CPU
i5-4460

GPU
RTX-3060

This Work
ZCU102

Latency (ms) 4.66 0.71 1.47
Throughput (GOPS) 88.2 579.3 279.8

Power (W) 41 86 5.48
Energy Efficiency (GOPS/W) 2.15 6.74 51.06

Table 6. Comparison of Design against related works.

Ftrans
[5]

FQ-BERT
[19]

Work
[8] This Work

Device VCU118 ZCU111 ZCU102 ZCU102
Throughput (GOPS) 101.8 22.7 190.1 279.8

DSP Slices Util. 6531 1751 2500 1024
DSP Efficiency (GOPS/DSP) 0.015 0.013 0.076 0.274

Relative Speedup 1.15× 1× (baseline) 5.84× 21.07×

6. Conclusions

This paper presents a custom hardware architecture, EFA-Trans, for accelerating the
transformer neural network with high efficiency and flexibility. In order to perform the in-
ference efficiently, computing process and workload were analyzed in detail. Furthermore,
we exploited optimization strategies in the design of the MCA, nonlinear cores, and other
key modules. Moreover, we proposed a sparse preprocessing unit and fine-grained control
flow to achieve dramatic performance improvement. Finally, a performance pre-evaluate
analytical model was utilized to guide the hardware design. The experiments showed that
the deployment of EFA-Trans on FPGA significantly outperforms CPU, GPU, and other
transformer accelerators.
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