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Abstract: The uncertainty of noise statistics in dynamic systems is one of the most important issues
in engineering applications, and significantly affects the performance of state estimation. The optimal
Bayesian Kalman filter (OBKF) is an important approach to solve this problem, as it is optimal over the
posterior distribution of unknown noise parameters. However, it is not suitable for online estimation
because the posterior distribution of unknown noise parameters at each time is derived from its
prior distribution by incorporating the whole measurement sequence, which is computationally
expensive. Additionally, when the system is subjected to large disturbances, its response is slow
and the estimation accuracy deteriorates. To solve the problem, we improve the OBKF mainly in
two aspects. The first is the calculation of the posterior distribution of unknown noise parameters.
We derive it from the posterior distribution at a previous time rather than the prior distribution
at the initial time. Instead of the whole measurement sequence, only the nearest fixed number of
measurements are used to update the posterior distribution of unknown noise parameters. Using
the sliding window technique reduces the computational complexity of the OBKF and enhances
its robustness to jump noise. The second aspect is the estimation of unknown noise parameters.
The posterior distribution of an unknown noise parameter is represented by a large number of
samples by the Markov chain Monte Carlo approach. In the OBKF, all samples are equivalent and
the noise parameter is estimated by averaging the samples. In our approach, the weights of samples,
which are proportional to their likelihood function values, are taken into account to improve the
estimation accuracy of the noise parameter. Finally, simulation results show the effectiveness of the
proposed method.

Keywords: state estimation; uncertainty noise statistics; optimal Bayesian Kalman filter; posterior
distribution; sliding window

1. Introduction

State estimation is one of the most important issues in many engineering applications,
such as energy internet, navigation, control systems, and so on [1–4]. These systems are,
in essence, dynamic systems, which are usually described by the well-known state-space
models. The state estimation problem can be briefly formulated as follows: given the
mathematical model of a dynamic system, it is desirable to estimate the time-varying
state from noise-contaminated measurements [5,6]. For linear dynamic systems, the state
estimation problem can be solved by the classical Kalman filter (KF) [7], which is an optimal
filter in minimum mean square-root error (MMSE). For nonlinear cases, several variants of
the KF have been developed, such as the extended KF, the unscented KF, and the cubature
KF, to name but a few [8]. The KF and its variants have simple forms, and have been widely
used in many real-world applications [1,9].

Electronics 2022, 11, 3548. https://doi.org/10.3390/electronics11213548 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11213548
https://doi.org/10.3390/electronics11213548
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5605-517X
https://doi.org/10.3390/electronics11213548
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11213548?type=check_update&version=2


Electronics 2022, 11, 3548 2 of 15

The KF, in general, performs well for dynamic systems with known noise statistics.
However, exact knowledge of the noise statistics of the underlying stochastic processes may
not be available in practice. For example, the dynamic system may be subjected to potential
non-stationary noise; that is, the system noise may be slowly varying [10]. Another typical
scene is that the system noise may jump as the environment changes [11]. When the exact
noise statistics are unknown, the performance of the KF may seriously deteriorate. The
main reason for this problem is that the standard KF is derived under the MMSE criterion,
which requires accurate information of the noise statistics of the dynamic system.

In order to solve the problem of uncertain noise statistics, a large number of robust KFs
have been proposed [12,13]. A typical solution is to design an adaptive KF, in which the
noise statistics and the state are jointly estimated [11,14]. However, the joint distribution of
the state and noise parameters is analytically difficult, and a variational Bayesian technique
is usually used to compute the joint distribution. This requires high computational effort,
as a fixed-point iteration is involved to compute the separable variational approximation,
which limits its practical application. Another solution is the minimax linear state estima-
tion approach, in which the minimum-error upper bound of all possible noise covariances
is considered [15]. However, the standard KF is derived under the MMSE criterion, in
which accurate noise covariances are needed. Therefore, inaccurate noise covariance may
lead to poor performance of the KF and unreliable state estimation.

Recently, an intrinsic Bayesian robust Kalman filter (IBRKF) [16] and an optimal
Bayesian Kalman filter (OBKF) [17] were developed from the perspective of minimizing
the mean square error. They are optimal with respect to the prior and the posterior distri-
butions of unknown noise statistical parameters, respectively. In the OBKF, a factor graph
approach [18] is employed to characterize the relationship between the prior distribution
and the posterior distribution of unknown noise statistical parameters, formulated as a
message-passing process [19]. However, the OBKF is not suitable for online estimation,
since the likelihood function of unknown noise statistical parameters with respected to the
whole measurement sequence needs to be calculated at each step, and the computational
effort of the likelihood function dramatically increases over time. In addition, when the
system is subjected to large disturbances such as jump noise, the response of the OBKF is
slow and its estimation accuracy deteriorates.

To solve the above problem, an improved OBKF for dynamic systems with inaccurate
noise statistics is developed in this paper. A sliding window technique [20] is used to
computing the likelihood function of noise statistical parameters, which is formulated as
a message-passing process based on a factor graph. Instead of the whole measurement
sequence, only a limited number of measurements closest to the current time are used
to update the posterior distribution of the noise statistical parameters. This significantly
reduces the computational complexity of the algorithm and particularly enhances its
robustness to jump noise. The weights of the measurements are taken into account when
computing the posterior distribution of unknown noise statistical parameters, which further
improves the state estimation accuracy and the parameters of noise statistics. The proposed
method has a simple form, which facilitates its application. Finally, the proposed approach
is verified by two scenarios of time-invariant and time-varying noise statistics, respectively.
Simulation results show that the proposed algorithm significantly improves response time
and estimation accuracy.

The rest of the paper is organized as follows. Section 2 is the problem formulation.
Section 3 provides an improved optimal Bayesian approach. In Section 4, we validate the
proposed algorithm via simulations. Finally, a conclusion is provided in Section 5.

2. Problem Formulation

State estimation problems are usually solved in the framework of the state-space
model. In general, it is necessary to extract the exact knowledge of system noise statistics
to design an optimal filter. However, in many real-world applications, it is impossible to
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obtain the accurate information of noise statistical parameters due to limited data, uncertain
disturbances, environmental changes, etc. [21,22].

Assuming that the covariance matrices Qk and Rk of process noise and measurement
noise are unknown, they are respectively represented by the parameters θ1 and θ2 as follows:

E
[

wθ1
k

(
wθ1

k

)T
]
= Qθ1

k δkl (1)

E
[

vθ2
k

(
vθ2

k

)T
]
= Rθ2

k δkl (2)

where E[·] denotes an expectation operator and (·)T is a transition operator.
Let θ = [θ1, θ2] ∈ Θ be the unknow noise statistical parameters, and its prior distribution
is π(θ). Because parameters θ1 and θ2 are, in general, independent, the linear state-space
model can be described as

xθ1
k+1 = Fkxθ1

k + Gkwθ1
k (3)

yθ
k = Hkxθ1

k + vθ2
k (4)

From (3) and (4), it can be seen that the state xθ1
k is only related to the parameter θ1,

while the measurement yθ
k is related to the parameters θ1 and θ2. Let π(θ|y0:k) denote the

posterior distribution of unknown parameter θ, where y0:k =
{

yθ
0, . . . , yθ

k
}

.
An optimal Bayesian Kalman filter (OBKF) [17] is proposed to solve the estimation

problem for the dynamic system with unknown noise statistics; it is optimal with respect to
the posterior distribution π(θ|y0:k) of unknown noise statistical parameter θ. The prediction
step of the OBKF is the same as that of the KF, and its update step is summarized as follows:

eθ
k = yθ

k − Hk x̂θ
k (5)

Kθ
k = Eθ

[
Pθ

k |y0:k−1

]
HT

k ET
θ

[
HkPθ

k HT
k |y0:k−1 + Rθ2

k |y0:k

]
(6)

x̂θ
k+1 = Fk x̂θ

k + Kθ
k eθ

k (7)

Eθ

[
Pθ

k |y0:k

]
= Fk

(
I − Kθ

k Hk

)
Eθ

[
Pθ

k |y0:k−1

]
FT

k + GkEθ

[
Qθ1

k |y0:k

]
GT

k (8)

where eθ
k is the innovation, Kθ

k is the gain matrix, I is the identity matrix with an appropriate
dimension, x̂θ

k is the estimation of the state, and Pθ
k is the corresponding covariance matrix.

The OBKF has a similar recursive structure to the standard KF, except that it uses the poste-
rior effective process noise covariance Eθ

[
Qθ1

k |y0:k

]
, the posterior effective measurement

noise covariance Eθ

[
Rθ2

k |y0:k

]
, and the effective gain matrix Kθ

k to replace the corresponding
matrices of Qk, Rk, and Kk.

The key to implementing the OBKF is to compute posterior effective noise covariance
matrices Eθ

[
Qθ1

k |y0:k

]
and ET

θ

[
Rθ2

k |y0:k

]
, which can then be used to compute the effective

gain matrix Kθ
k . According to Bayes’ theorem, the posterior distribution of the unknown

noise statistical parameters is π(θ|y0:k) ∝ f (y0:k|θ)π(θ), which usually has no analytic
solution for most prior distributions. In the OBKF, the Markov chain Monte Carlo (MCMC)
approach is firstly used to generate the particles of the posterior distribution of noise
statistics; then, the noise covariance matrix is approximated by calculating the mean value
of particles. To compute the likelihood function f (y0:k|θ), a factor graph approach is
employed to formulate the likelihood function as a message-passing process. Although
the OBKF has a closed form, it is not suitable for online estimation, since the likelihood
function of unknown noise statistical parameters with respect to the whole measurement
sequence needs to be calculated at each step. Particularly, the computational effort of the
likelihood function dramatically increases over time. In addition, when the system noise
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jumps due to environmental changes, the response of the OBKF is slow and its estimation
accuracy deteriorates.

To address the above problem, an improved OBKF is designed in the next section.
It is mainly improved from the following two aspects. The first is the calculation of the
posterior distribution of noise parameters. We derive it from the posterior distribution
at a previous time rather than its prior distribution at the initial time. Instead of the
whole measurement sequence, only the nearest fixed number of measurements are used
to update the posterior distribution of unknown noise parameters. By using the sliding
window technique, it reduces the computational complexity of the OBKF and enhances its
robustness to jump noise. The second is the estimation of unknown noise parameters. The
posterior distribution of an unknown noise parameter is represented by a large number
of samples by the MCMC approach. In the OBKF, all samples are equivalent, and the
noise parameter is estimated by averaging the samples. In our approach, the weights of
samples, which are proportional to their likelihood function values, are taken into account
to improve the estimation accuracy of the noise parameter.

3. Improved Optimal Bayesian Kalman Filter

In this section, an improved optimal Bayesian Kalman filter (IOBKF) is designed to
solve the estimation problem for dynamic systems with inaccurate noise statistics. In the
traditional OBKF, it is computationally expensive to obtain the posterior distribution of
noise statistical parameters. To solve this problem, a sliding window-based approach is
proposed to rapidly compute posterior effective noise covariance matrices Eθ

[
Qθ1

k |y0:k

]
and Eθ

[
Rθ2

k |y0:k

]
.

When calculating the posterior distribution π(θ|y0:k) of unknown noise statistical pa-
rameters at time k, the posterior information π(θ|y0:l) at any previous time l ≤ k− 1 is ob-
tained. According to Bayes’ theorem [8], the posterior distribution π(θ|y0:k) ∝ f (y0:k|θ)π(θ)
can be rewritten as

π(θ|y0:k) ∝ f (yk−n+1:k|θ)π(θ|y0:k−n) (9)

where n is the size of sliding window and is a positive integer, and f (yk−n+1:k|θ) is the
likelihood function of unknown parameter θ with respect to the measurements from time
k − n + 1 to time k. Therefore, the posterior distribution π(θ|y0:k) can be obtained by
computing f (yk−n+1:k|θ) instead of f (y0:k|θ) at each time, which is shown in Figure 1. Only
n measurements are involved for computing the new likelihood function f (yk−n+1:k|θ),
while the whole measurement sequence is used to compute the original likelihood function
f (y0:k|θ). This can significantly reduce the computational complexity of the algorithm and
enhance its robustness to jumping noise.

0   1   2

0   1   2 k-n  k-n+1 k-2  k-1 k

k-2  k-1 k

. . .

. . . . . .

( )p q

( )0: |kf y q

( )0:| kyp q

( )0:| k nyp q -

( )1: |k n kf y q- +

( )0:| kyp q

( ) ( ) ( )0: 0:| |k ky f yp q q p qµ

( ) ( ) ( )0: 1: 0:| | |k k n k k ny f y yp q q p q- + -µ

(a)

(b)

Figure 1. Schematic diagram of calculation of the posterior distribution π(θ|y0:k).
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3.1. Calculation of Likelihood Function

We mainly focus on how to calculate the likelihood function f (yk−n+1:k|θ) in this
section. Inspired by [17], the likelihood function is also formulated as a message-passing
process by using a factor graph. Instead of the whole measurement sequence involved
in f (y0:k|θ), only n measurements are used to compute f (yk−n+1:k|θ), since the posterior
distribution π(θ|y0:k) is updated by the prior distribution π(θ|y0:k−n) in this paper.

In a discrete-time state-space model, according to the properties of a Markov chain,
the measurement yk and the state xk+1 are only related to the state xk; i.e.,

f (yk|y0:k−1, x0:k, θ) = f (yk|xk, θ) = N
(

yk; Hkxk, Rθ2
k

)
(10)

f (xk+1|y0:k+1, x0:k, θ) = f (xk+1|xk, θ) = N
(

xk+1; Fkxk, Q̃θ1
i

)
(11)

where Q̃θ1
i = GkQθ1

k GT
k , and N (·; m, P) denote a Gaussian distribution with mean m and

covariance P. To compute the likelihood function f (yk−n+1:k|θ), we can formulate it as
the marginal distribution of f (yk−n+1:k, xk−n+1:k|θ) with respect to xk−n+1:k, in which the
function f (yk−n+1:k, xk−n+1:k|θ) can be computed by

f (yk−n+1:k|θ) =
∫

xk

. . .
∫

xk−n+1

f (yk−n+1:k, xk−n+1:k|θ)dxk−n+1 . . . dxk

=
∫

xk

. . .
∫

xk−n+1

f (yk|xk, θ) f (yk−n+1:k−1, xk−n+1:k|θ)dxk−n+1 . . . dxk

=
∫

xk

. . .
∫

xk−n+1

f (yk|xk, θ) f (xk|xk−1, θ) f (yk−n+1:k−1, xk−n+1:k−1|θ)dxk−n+1 . . . dxk

...

=
∫

xk

. . .
∫

xk−n+1

k

∏
i=k−n+1

f (yi|xi, θ)
k

∏
i=k−n+2

f (xi|xi−1, θ) f (xk−n+1)dxk−n+1 . . . dxk

(12)

where the second and third formulas use Markov assumptions (10) and (11), and the
distribution f (xk−n+1) can be replaced by the posterior distribution f (xk−n+1|y0:k−n+1),
which is obtained at time k− n + 1.

The likelihood function f (yk−n+1:k|θ) of the form (12) can be formulated as a message-
passing process from time k − n + 1 to time k based on a factor graph. A factor graph
can transform a global function into a product form of local functions. We abbreviate the
variable node xi and factor nodes f (xi|xi−1, θ) and f (yi|xi, θ) as αi, βi, and γi, respectively.
In a factor graph, the transmitted message contains three components: the scale, mean
vector, and covariance matrix of a scaled multivariable Gaussian function [17]. Lemma 1
shows how to transfer a message from βi to αi.

Lemma 1. Assuming that a message µβi→αi = (Si, Mi, Σi) transmitted from βi to αi is a scaled
multivariate Gaussian function SiN (xi; Mi, Σi), the message µβi+1→αi+1 = (Si+1, Mi+1, Σi+1)
transmitted from βi+1 to αi+1 is still a scaled multivariate Gaussian function with the form
Si+1N (xi+1; Mi+1, Σi+1), in which the parameters are computed by [17]

Si+1 = Si

√√√√ |Λi||Σi+1|∣∣∣Q̃θ1
i

∣∣∣|Σi|
N
(

yi; 0, Rθ1
i

)
exp

(
MT

i+1Σ−1
i+1Mi+1 + WT

i ΛiWi −MT
i Σ−1

i Mi

2

)
(13)

Mi+1 = Σi+1

(
Q̃θ1

i

)−1
FiΛi

(
HT

i

(
Rθ2

i

)−1
yi + Σ−1

i Mi

)
(14)

Σ−1
i+1 =

(
Q̃θ1

i

)−1
−
(

Q̃θ1
i

)−1
FiΛiFT

i

(
Q̃θ1

i

)−1
(15)
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where
Wi = HT

i

(
Rθ2

i

)−1
yi + Σ−1

i Mi (16)

Λi =

(
FT

i

(
Q̃θ1

i

)−1
Fi + HT

i

(
Rθ2
)−1

Hi + Σ−1
i

)−1
(17)

Using Lemma 1, the likelihood function f (yk−n+1:k|θ) can be obtained by iterative
operations from time k− n + 1 to time k; i.e.,

f (yk−n+1:k|θ) =
∫

xk

N
(

yk; Hkxk, Rθ2
k

)
N (xk; Mk, Σk)dxk

= Sk

√
|∆k|
|Σk|
N
(

yk; 0, Rθ2
k

)
exp

(
1
2

(
ΥT

k ∆kΥk −MT
k Σ−1

k Mk

)) (18)

where
∆−1

k = HT
k

(
Rθ2

k

)−1
Hk + Σ−1

k (19)

Υk = ∆k

(
HT

k

(
Rθ2

k

)−1
yk + Σ−1

k Mk

)
(20)

In summary, we can use the factor graph-based message-passing method to calculate
the likelihood function f (yk−n+1:k|θ) in the form of (18), where the parameters Sk, Mk,
and Σk are calculated from (13)–(15), and the parameters ∆k and Υk are calculated by (19)
and (20), respectively.

3.2. Calculation of Posterior Effective Noise Statistics

To compute posterior effective noise covariance matrices Eθ

[
Qθ1

k |y0:k

]
and Eθ

[
Rθ2

k |y0:k

]
,

the Metropolis Hastings MCMC method is used to generate the sample set
{(

ω(j), θ(j)
)}J

j=1
,

where θ(j) represents the jth MCMC sample, ω(j) is the associated weight, which is propor-
tional to the likelihood function f

(
yk−n+1:k|θ(j)

)
of the sample θ(j) and ∑J

j=1 ω(j) = 1, and
J is the total number of samples.

When the jth sample in the sequence is θ(j), we can obtain the (j + 1)th sample through
the following steps. Firstly, a candidate sample θc is generated according to the proposal
distribution f

(
θc|θ(j)

)
. Then, judge whether the candidate sample θc is accepted or rejected

according to the acceptance rate r defined by

r = min

1,
f
(

θ(j)|θc
)

f (yk−n+1:k|θc)π(θc|y0:k−n)

f
(
θc|θ(j)

)
f
(
yk−n+1:k|θ(j)

)
π
(
θ(j)|y0:k−n

)


= min

{
1,

f (yk−n+1:k|θc)π(θc|y0:k−n)

f
(
yk−n+1:k|θ(j)

)
π
(
θ(j)|y0:k−n

)}
(21)

When the proposal distribution is a symmetric function, i.e., f
(

θc|θ(j)
)
= f

(
θ(j)|θc

)
,

the second formula of (21) holds. Therefore, the (j + 1)th sample is

θ(j+1) =

{
θc, with probability r

θ(j), otherwise
(22)

By repeating the above process, MCMC samples and their corresponding likelihood
functions can be obtained, and the weights of the samples can be computed by normaliza-
tion. Finally, the posterior effective noise statistics can be approximated by the weighted
mean of the samples.
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To summarize, the schematic representation of the proposed approach is shown in
Figure 2. In order to perform the Kalman filter-to-output state estimation, it is necessary to
estimate the unknown noise parameters Qθ1

k and Rθ2
k . To solve this problem, the MCMC

approach is used to compute the posterior distribution π(θ|y0:k) of unknown noise param-
eters, in which the likelihood function is described as a message-passing process based on
a factor graph. The main differences between our approach and the OBKF are as follows.

State equation

Observation equation Kalman filter

Sliding 

window

Markov chain Monte 

Carlo computation

Noise parameter 

extraction

1

kx
q 1

1kx
q
+

ky
q

1:k n ky - +

( )0:| k nyp q - ( )0:| kyp q

1

2

0:

0:

E |

E |

k k

k k

Q y

R y

q
q

q
q

ì é ùï ë û
í

é ùï ë ûî

ˆ
kx
q

( )( )|
j

f q q Factor graph-based 

likelihood function

Decision 

by (22)

( )jq ( )1jq +cq ( )1: | c

k n kf y q- +

( ) ( )( ){ }
1

Return ,
J

j j

j

w q
=

Figure 2. The schematic representation of the proposed approach.

The first difference is the calculation of the posterior distribution of unknown noise
parameters. In the OBKF, it is computed by π(θ|y0:k) ∝ f (y0:k|θ)π(θ). In our approach,
the sliding window technique is used to derived the posterior distribution by π(θ|y0:k) ∝
f (yk−n+1:k|θ)π(θ|y0:k−n), where π(θ|y0:k−n) has been obtained at previous time k − n.
They are essentially the same. The reason why we adopt the latter is that it can reduce the
computational complexity of the algorithm and enhance its robustness to jump noise.

More specifically, at any time k in the OBKF, the first sample θ(1) is generated according
to the prior distribution π(θ); then, the candidate sample is generated according to the
proposal function; finally, the second sample θ(2) is determined to be the candidate sample
θc or the first sample θ(1) according to the acceptance rate r. By analogy, the MCMC sample
sequence can be obtained. However, for the jth sample θ(j), it is necessary to calculate the
likelihood functions f (y0:k|θc) and f

(
y0:k|θ(j−1)

)
with respect to the whole measurement

sequence y0:k to determine the acceptance rate r. Therefore, the computational cost of the
original OBKF will increase rapidly with the increase in the number of measurements, and
it will not respond in time when the noise jumps. In our algorithm, at any time k, the
first sample θ(1) is generated according to the posterior distribution π(θ|y0:k−n) instead of
the prior distribution π(θ); then, the next sample is determined according to the proposal
function and acceptance rate. In addition, for the jth sample θ(j), the likelihood functions
f (yk−n+1:k|θc) and f

(
yk−n+1:k|θ(j)

)
, instead of f (y0:k|θc) and f

(
y0:k|θ(j−1)

)
, are computed

to determine the acceptance rate r, in which only n measurements are involved. This not
only significantly reduces the computational cost of the algorithm, but also responds in
time when noise jumps.

The second difference is the extraction of noise parameters. The posterior distribution

π(θ|y0:k) is represented by a large number of samples
{(

ω(j), θ(j)
)}J

j=1
by the MCMC
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approach. In the OBKF, all samples are equivalent, i.e., ω(j) = 1/J, and the noise parameter
is estimated by averaging the samples. In our approach, the weights of samples are
proportional to their likelihood function values, which further improves the estimation
accuracy of the algorithm.

4. Numerical Simulations

In this section, target tracking examples are considered to verify the effectiveness of
the proposed algorithm. For a linear state-space model

xk+1 = Fkxk + wk (23)

yk = Hkxk + vk (24)

the state vector is xk =
[
px, ṗx, py, ṗy

]T, where
(

px, py
)

and
(

ṗx, ṗy
)

represent the position
and velocity in Cartesian coordinates, respectively. Model parameters are set as follows:

Fk =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, Hk =

[
1 0 0 0
0 0 1 0

]

where T is the sampling period. The covariance matrices of process and measurement
noises are

Qθ1
k = q×


T3/3 T2/2 0 0
T2/2 T 0 0

0 0 T3/3 T2/2
0 0 T2/2 T

, Rθ2
k = r×

[
1 0
0 1

]

where q and r are the unknown parameters. The initial state is E[x0] = [100, 10, 30,−10]T

and cov[x0] = diag([25, 2, 25, 2]), where diag(ν) represents a diagonal matrix with diagonal
elements ν.

For comparison the OBKF, the proposed IOBKF, and the unweighted IOBKF (UIOBKF)
are tested. The UIOBKF is the IOBKF without considering the weights of MCMC samples.
In order to analyze the estimation performances of different algorithms, we use the average
mean square-root error (MSE) as the performance metric, which is defined by

MSEk(s) =

√√√√ 1
M

M

∑
i=1

((
si

x,k − ŝi
x,k

)2
+
(

si
y,k − ŝi

y,k

)2
)

(25)

where s denotes a position or a velocity variable, si
k and ŝi

k denote the true and estimated
values in the ith Monte Carlo trial, respectively, and M denotes the total number of Monte
Carlo trials.

4.1. Time-Invariant Noise Statistics

In this case, the true noise parameters are set as q = 1.5 and r = 0.5, which are
unknown in practice. The prior distributions of the noise statistical parameters q and r are
set to be uniformly distributed in the ranges of q ∈ [1, 5]and r ∈ [0.25, 4], respectively.

The true and estimated trajectories in a single trial are shown in Figure 3, in which n
is the size of the sliding window. The average position MSEs of different algorithms over
M = 200 Monte Carlo trials are shown in Figure 4 and their mean values are provided
in Table 1. It can be seen that the OBKF outperforms other algorithms, since the whole
measurement sequence is used to estimate noise parameters. The estimation accuracy
of the proposed IOBKF is related to the size of the sliding window. With the increase of
the size of the sliding window, the estimation accuracy of the IOBKF gradually improves.
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When the size of sliding window is greater than 10, the estimation accuracy of the IOBKF
for the state is close to that of the OBKF. In addition, when the size of the sliding window is
fixed, i.e., n = 15, our IOBKF is superior to the UIOBKF, in which the weights of MCMC
samples are not considered.
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Figure 3. True and estimated trajectories.
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Figure 4. Average MSEs of different algorithms.

Table 1. Mean value of MSE and the average time for a single-step operation in different algorithms.

Algorithms OBKF IOBKF IOBKF IOBKF IOBKF IOBKF UIOBKF
(n = 1) (n = 5) (n = 10) (n = 15) (n = 20) (n = 15)

MSE (m) 2.3369 2.4555 2.3852 2.3470 2.3373 2.3370 2.3423
Time (s) 0.0722 0.0248 0.0361 0.0439 0.0506 0.0562 0.0505

The average time of single-step running of different algorithms is also shown in Table 1.
It should be noted that the time consumption is closely related to the number of MCMC
samples. In this paper, it is set to 600. The OBKF takes more time because it uses the whole
measurement sequence to estimate noise parameters. Instead of the whole measurement
sequence in the original OBKF, only n measurements are used in our algorithm, resulting
in less computational cost.

The estimation results of noise parameters q and r are shown in Figures 5 and 6,
respectively. It can be seen that for all OBKFs, the estimation accuracy of the measurement
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noise parameter r is much better than that of the process noise parameter q. The main reason
may be that parameter r is directly related to the observable measurements, while parameter
q is a variable describing the disturbance of the hidden state. Although parameter q has a
large deviation, it has little impact on the estimation accuracy of the state, since the Kalman
filter can correct the one-step state prediction through the gain matrix and innovation.

In addition, from Figures 5 and 6, we can see that our proposed IOBKF has a faster
convergence speed than the OBKF and UIOBKF, since the weights of MCMC samples are
taken into account in the former. When the size of the sliding window is greater than 15,
the estimation accuracy of the IOBKF for noise parameters is close to that of the OBKF.

To summary, noise parameters are more sensitive to the size of the sliding window
than the state. When considering the estimation accuracy of both the state and noise
parameters, we choose 15 as the size of window. When only the estimation accuracy of the
state is considered, we choose 10 as the size of window.
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Figure 5. Estimation of noise parameter q.
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Figure 6. Estimation of noise parameter r.

4.2. Time-Varying Noise Statistics

In this case, three scenarios are considered to verify the effectiveness of the proposed
approach. The first is that both parameters q and r jump. The second is that only a single
noise parameter r jumps. The last one is that the noise parameter r changes slowly.
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4.2.1. Both Noise Parameters q and r Jump

The true noise parameters are set as

q =

{
1.5, k ≤ 40
4, k > 40

, r =
{

0.5, k ≤ 40
3.5, k > 40

(26)

Their prior distributions are assumed to be uniformly distributed in the ranges of
q ∈ [1, 5] and r ∈ [0.25, 4], respectively.

The true and estimated trajectories in a single trail are shown in Figure 7. The average
position MSEs of different algorithms over M = 200 Monte Carlo trials are shown in
Figure 8 and their mean values over 40 < n ≤ 100 are provided in Table 2. It can be seen
that the IOBKF performs better than the OBKF when noise parameters jump. The main
reason is that the estimation accuracy of the OBKF for noise parameters q and r is very
poor, as seen in Figures 9 and 10, since it takes into account all previous measurements to
update the posterior distribution of noise parameters. When the size of the sliding window
is 1, the IOBKF has the fastest response, but its estimation results for parameters q and r are
close to their mean values of the prior distributions. Considering the estimation accuracy
of both the state and noise parameters, the size of the sliding window in the IOBKF can
be chosen as 15. The average time of single-step running of different algorithms is also
shown in Table 2, which is consistent with the result of the time-invariant noise, as shown
in Table 1.

Table 2. Mean value of MSE (40 < k ≤ 100) and the average time for a single-step operation of
different algorithms.

Algorithms OBKF IOBKF IOBKF IOBKF IOBKF IOBKF UIOBKF
(n = 1) (n = 5) (n = 10) (n = 15) (n = 20) (n = 15)

MSE (m) 4.7037 4.7034 4.7302 4.7211 4.7180 4.7163 4.7206
Time (s) 0.1259 0.0235 0.0345 0.0429 0.0507 0.0580 0.0508
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Figure 7. True and estimated trajectories.
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Figure 9. Estimation of noise parameter q.
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4.2.2. Noise Parameter q Is Time-Invariant and r Jumps

The true noise parameters are set as

q = 1.5, r =
{

0.5, k ≤ 40
3.5, k > 40

(27)

Their prior distributions are assumed to be uniformly distributed in the ranges of
q ∈ [1, 5]and r ∈ [0.25, 4], respectively.

The results of the state estimation are not presented here because thay are similar to
the results in Section 4.2.1. The estimation results of noise parameters q and r are shown in
Figures 11 and 12, respectively. It can be seen that for all OBKFs, the estimation accuracy
of the measurement noise parameter r is still much better than that of the process noise
parameter q. The main reason for this has been discussed in Section 4.1. Moreover, the
process noise parameter q has less influence on the state estimation than the measurement
noise parameter r. From Figure 12, the proposed IOBKF with n ≥ 15 outperforms the
OBKF. It should be emphasized that when the measurement noise parameter r jumps, the
estimation of process noise parameter q also jumps, but the true value of q is a constant.
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Figure 11. Estimation of noise parameter q.
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Figure 12. Estimation of noise parameter r.
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4.2.3. Noise Parameter q Is Time-Invariant and r Changes Slowly

The process noise parameter is a known constant, i.e., q = 1.5, and the measurement
noise parameter is set as

r = 0.5 + 0.03(k− 1) (28)

where k is the time index. Its prior distribution is assumed to be uniformly distributed in
the ranges of r ∈ [0.25, 4].

The estimation result of noise parameter r is shown in Figure 13. It can be seen that
the proposed IOBKF with n ≥ 5 performs better than the OBKF. However, when the
noise parameter r changes slowly, a larger size of sliding window does not improve the
estimation accuracy of the noise parameter. That is, the IOBKF with n = 20 performs worse
than the IOBKF with n = 15.
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Figure 13. Estimation of noise parameter r.

5. Conclusions

In this paper, an improved OBKF is proposed to address the filtering problem for dy-
namic systems in the presence of inaccurate noise statistics. The sliding window technique
is employed to computer the posterior distribution of noise parameters, which reduces
the time consumption and improves the robustness to time-varying noise. The weights of
samples generated by the MCMC approach are taken into account when calculating the
posterior effective noise statistics, which simultaneously improves the estimation accuracy
of noise parameters and the state. Several tracking scenarios are used to verify the effec-
tiveness of the proposed algorithm. Especially in the case of time-varying noise statistics,
the proposed algorithm performs better than the original OBKF in both running time and
estimation accuracy.

The sliding window size plays an important role in the behavior of the IOBKF. It can
be selected according to practical application by balancing the estimation accuracy and
time consumption. In addition, it should be emphasized that for all OBKFs, the estimation
accuracy of the measurement noise parameter r is much better than that of the process
noise parameter q. The main reason may be that parameter r is directly related to the
observable measurements, while parameter q is a variable describing the disturbance of
the hidden state. Although parameter q has a large deviation, it has little impact on the
estimation accuracy of the state, since the Kalman filter can correct the one-step state
prediction through the gain matrix and innovation.

Finally, the limitation of the IOBKF is that each time, it still requires multiple measure-
ments to estimate the posterior distribution of the noise parameters. Therefore, although
the sliding window is used, the time consumption is still a non-negligible problem. Since
these measurements originate from different times, the estimation accuracy of noise param-
eters at a certain time may be influenced. Future research work will be to study how to
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further improve the estimation accuracy of noise parameters, especially how to identify
noise parameters at the current time by only using the measurement at the current time.
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