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Abstract: Electronic word-of-mouth data on social media influences stock trading and the confidence
of stock markets. Thus, sentiment analysis of comments related to stock markets becomes crucial
in forecasting stock markets. However, current sentiment analysis is mainly in English. Therefore,
this study performs multilingual sentiment analysis by translating non-native English-speaking
countries’ texts into English. This study used unstructured data from social media and structured
data, including trading data and technical indicators, to forecast stock markets. Deep learning
techniques and machine learning models have emerged as powerful ways of coping with forecasting
problems, and parameter determination greatly influences forecasting models’ performance. This
study used Long Short-Term Memory (LSTM) models employing the genetic algorithm (GA) to
select parameters for predicting stock market indices and prices of company stocks by hybrid data
in non-native English-speaking regions. Numerical results revealed that the developed LSTMGA
model with hybrid multilingual sentiment data generates more accurate forecasting than the other
machine learning models with various data types. Thus, the proposed LSTMGA model with hybrid
multilingual sentiment analysis is a feasible and promising way of forecasting the stock market.

Keywords: deep learning; multilingual social media; sentiment analysis; predictions; stock markets;
the genetic algorithm

1. Introduction

Many studies have pointed out that when investigating social issues, data on social
media behaviors are more reflective of people’s real thinking than questionnaire data. In
addition, the time to collect data from social media is very close to real-time [1]. Numerous
studies showed that considering fundamental analysis data, such as financial web news
or posts on social media platforms, could effectively improve the performance of the
forecasting stock price. Furthermore, roughly one-third to two-thirds of investors used
social media in their investment decisions for collecting and learning information about
concerned companies. Therefore, social media comments have a certain degree of impact
on stock prices [2]. Wu et al. [3] used historical stock data, technical indicators, and non-
traditional data, such as stock posts and financial news, to predict the stock price with long
short-term memory. The non-traditional data was employed in the convolutional neural
network to calculate investors’ sentiment index. The experimental results showed that the
proposed method could provide more accurate values than the single data source. Ko and
Chang [4] applied the natural language processing tool to recognize the sentiment of the
text of news and PTT bulletin board system (BBS) forum discussion. The long short-term
memory approach was used to forecast the stock prices. Numerical results illustrated that
using news and PPT attributes did improve forecasting accuracy. Ren et al. [5] employed
support vector machines with financial market data and sentiment indexes extracted from
news to forecast stock market movements. The day-of-week effect was considered in this
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study. Thus, the exponential time function was used to increase the influence of recent
news. Empirical results showed that the proposed method could raise forecasting accuracy
after considering the sentiment features. Gupta et al. [6] integrated the Indian Stock Market
historical data and sentiment data from Twitter to predict stock prices by long short-term
memory. Textblob, a Python library for processing textual data, measured the sentiment
data. This study reported that movements in stock prices and news publications had
a strong correlation. Jing et al. [7] developed a hybrid model integrating deep learning
techniques and sentiment analysis to predict stock prices. The convolutional neural network
model was first employed to classify investors’ sentiments. Then, long short-term memory
networks were used to conduct forecasts by technical indicators and sentiment features.
Numerical results indicated that the presented method could generate more accurate results
than the models without data. Wang et al. [8] used the stock comments from Easy Money to
develop a sentiment classifier for analyzing stock markets by the long short-term memory
model. Numerical results revealed that t the online sentiments of investors had significant
impacts on both trading volumes and stock returns. To collect sentiment features, Shi
et al. [9] designed a sentiment analysis system with three classification models, including
convolutional neural networks, recurrent neural networks, and logistic regression. Then,
support vector machines were used to forecast the movements of stock markets. The
empirical results indicated that the hybrid data of stock trading and sentiment information
could generate satisfactory forecasting results.

In addition, technical indicators play an essential role in analyzing stock markets.
Chung and Shin [10] employed five technical indicators, including a simple 10-day moving
average, weighted 10-day moving average, relative strength index, stochastic K%, and
stochastic D%, and five historical values, including high price, low price, opening price,
closing price, and trading volume, as input variables to perform forecasting tasks in
stock markets. The forecasting method used is a deep learning approach with the genetic
algorithm. Numerical results showed that the designed model could obtain smaller error
measurement values than previous studies. Fischer and Krauss [11] utilized long short-
term memory network stocks to predict the movement directions of S&P 500 stock markets.
This study indicated that the proposed model outperformed the other three memory-
free classification methods. Kamara et al. [12] designed a boosted hybrid model of deep
learning and technical analysis for forecasting stock prices. Two networks were employed
to do the feature extraction task: the attention-based convolutional neural network and
the contextual bidirectional long short-term memory. A multilayer perceptron neural
network then used extracted features to forecast stock prices. This study claimed that the
proposed hybrid model was superior to the other seven approaches regarding forecasting
accuracy. Lu et al. [13] developed a deep-learning forecasting method with eight features
to predict one-day-ahead closing prices. The convolutional neural network was employed
to extract features of the previous 10 days. Then, the collected feature data and stock
trading data were used to train the long short-term memory model. This study revealed
that the designed deep learning model was superior to the other five neural network
models in forecasting accuracy. Jin et al. [14] proposed a revised long short-term memory
model with an attention mechanism that enables the model to focus on the more critical
information to predict closing prices. The input variables considered trading data and
sentiment tendency. This study concluded that the emotional tendency of investors is a
critical factor in improving forecasting performance.

Moreover, the selection of multilingual sentiment analysis tools is crucial for evaluat-
ing non-native English-speaking investors’ attitudes. Some transformer-based methods
for multilingual tasks have been commonly used, such as XLM (cross-lingual language
models) [15], XLM-R (XLM-RoBERTa) [16], mBART (multilingual BART) [17]. Palomino
and Ochoa-Luna [18] proposed a transformer-based method for multilingual sentiment
analysis. BERT and ULMFiT were combined to forecast the polarity of multilingual tweets.
Pei et al. [19] developed an Uyghur sentiment analysis tool by integrating the BiLSTM
layer in the language-agnostic BERT Sentence Embedding (LaBSE). LaBSE was employed
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to encode the input data, and then BiLSTM can learn more information from the input
context. The empirical results pointed out that the developed model can yield wonder-
ful performance. Araújo et al. [20] investigated the performance of the language-specific
sentiment analysis compared to the existing sentiment analysis methods for English con-
tent. This study pointed out that translating the text expressed in different languages into
English. Then, using existing English sentiment analysis tools can generate better results
than employing the language-specific technique directly in evaluating the sentiment of
multilingual text.

Deep learning techniques demonstrated promising capabilities in capturing non-linear
characteristics and thus can result in accurate predictions for stock market forecasting.
Luo et al. [21] presented a long short-term memory model to forecast stock market profits.
The adaptive shuffled frog-leaping algorithm was developed to search for appropriate
hyper-parameters. This study illustrated the superiority of the proposed model by perform-
ing comparisons with artificial neural networks, support vector machines, gray models,
and basic long short-term memory. Kanwal et al. [22] designed a hybrid deep learning
model, namely BiCuDNNLSTM-1dCNN, integrating a Bidirectional Cuda Deep Neural
Network Long Short-Term Memory and a one-dimensional Convolutional Neural Network
to conduct stock price predictions. Two datasets were employed to examine forecasting
performances, including individual stock items and the stock market’s performance indices.
This investigation pointed out that the presented models can generate accurate forecasting
results helpful in decision-making in stock market investments. Wang et al. [23] utilized
the Transformer model to forecast the stock market indices of the CSI 300, S&P 500, Hang
Seng Index, and Nikkei 225. More underlying rules can be described by encoder-decoder
architecture and multi-head attention mechanism. This study indicated that the Trans-
former outperformed other classic techniques and was useful to investors. Gao et al. [24]
employed the evidential rule and the genetic algorithm on recurrent neural networks to
predict daily movement directions of the S&P 500 index, Dow Jones Industrial Average
index, and NASDAQ 100 index. The numerical results indicated that the designed model
effectively improved classification performances. Kumar et al. [25] presented a long short-
term memory network and adaptive particle swarm optimization (PSO)-based hybrid deep
learning model to forecast the stock prices in Sensex, S&P 500, and Nifty 50. PSO was used
to provide initial weights of the long short-term memory and the fully connected layer.
This investigation revealed that the proposed model could generate accurate forecasting
results. Aldhyani and Alzahrani [26] developed a hybrid convolutional neural network
with long short-term memory (CNN-LSTM) to predict the closing prices of stock markets.
Stock close prices of two corporations, namely Tesla, Inc. and Apple, Inc., were utilized to
measure the forecasting performances of the proposed model. This study indicated that the
CNN-LSTM model is superior to the basic LSTM model in forecasting accuracy. Ratchagit
and Xu [27] presented a two-delay way for three deep learning techniques, including
MLP, CNN, and LSTM. Stock data of three companies, namely Microsoft Corporation,
Johnson & Johnson, and Pfizer Inc., were used to investigate forecasting performances.
Numerical results illustrated that the proposed two-delay model outperformed other linear
combination forecasting techniques.

Table 1 lists the recent related literature in 2022 regarding data types, problem types,
and stock markets. Most previous studies employed unique structured data or unstructured
data individually in analyzing stock markets. Therefore, this study attempted to exploit
the unique strength of the structured and unstructured data in enhancing the capabilities
of LSTMGA models for predicting corporations’ stock prices and stock market indices
in a regression way. Additionally, in this study, multilingual social media posts were
translated into English by Google Translation, and then the SentiStrength was used to
evaluate the sentiment of the posts in English. Google Translation was used to translate
multilingual social media posts. The other four forecasting methods, backpropagation
neural networks (BPNN), least square support vector regression (LSSVR), random forest
(RF), and extreme gradient boosting (XGBoost), were employed to conduct forecasting
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tasks with the same data; and the genetic algorithm was used to determine parameters of
models. The forecasting performances were measured by the mean absolute percentage
error (MAPE), and the root mean square error (RMSE).

Table 1. The summary of recent literature in 2022 and the proposed LSTMGA model in data types,
problem types, and stock markets.

Ref. The Proposed Deep Learning
Method

Data Types Problem Types Stock Markets

Structured

U
nstructured

R
egression

C
lassification

C
orporations’Stock

Price

Stock
M

arketIndex

Wu et al. [3] LSTM v v v v
Gupta et al. [6] LSTM v v v v

Kamara et al. [12] EHTS (AB-CNN and CB-LSTM) v v v
Luo et al. [21] LSTM+ SFLA v v v

Kanwal et al. [22] BiCuDNNLSTM-1dCNN v v v v
Wang et al. [23] Transformer v v v
Gao et al. [24] RNN-ER-GA v v v v

Kumar et al. [25] PSO-LSTM v v v
Aldhyani & Alzahrani [26] CNN-LSTM v v v

Ratchagit and Xu [27] LSTM-DE v v v
This study LSTMGA v v v v v

Note: EHTS = An Ensemble of a Boosted Hybrid of Deep Learning Models and Technical Analysis for Forecasting
Stock Prices; AB-CNN = Attention-Based CNN; CB-LSTM = Contextual Bidirectional LSTM; SFLA = shuffled
frog leaping algorithm; BiCuDNNLSTM-1dCNN = Bidirectional Cuda Deep Neural Network Long Short-Term
Memory—one-dimensional Convolutional Neural Network; RNN-ER-GA = recurrent neural network—evidential
reasoning—genetic algorithm; PSO = particle swarm optimization; DE = differential evolution.

The rest of this study is organized as follows. Section 2 introduces the long short-term
memory networks. Section 3 illustrates the architecture of this study for forecasting stock
prices with sentiment analysis. Section 4 depicts the experimental results of the proposed
models. Conclusions are provided in Section 5.

2. Long Short-Term Memory Networks

Long short-term memory networks (LSTM), proposed by Hochreiter and Schmidhu-
ber [28], recently had been successfully applied in various forecasting fields, such as stock
price movements [11], pandemic [29], rainfall [30], sea levels [31], energy consumptions [32],
and sales [33]. LSTM coped with the problem of gradient vanishing and hard-to-capture
long-term dependencies in recurrent neural networks when processing long sequences.
The cell states are added into the long short-term memory to store the long-term memory.
Hence, the essential information can be stored for a long time, and the earlier information
can be connected with current tasks. Figure 1 illustrates the memory cell of long short-term
memory networks [34–36].
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The long short-term memory network is composed of the forget gate (xft), the input
gate (including xit and c̃t), the output gate (xot), and the cell state (Ct). The forget gate
controls what information will be discarded and how much information will be added to
the next cell’s memory. The input gate determines whether the new information enters
the memory. Instead, the output gate defines whether the updated information should be
transferred to the next layer of networks. The long short-term memory network calculation
is expressed in a way from the input sequence {x} to the output sequence {y}, represented
by Equations (1) and (2), respectively:

{x} = (xt−1, xt, xt+1, . . . , xt+n), (1)

{y} =
(
yt−1, yt, yt+1, . . . , yt+n

)
, (2)

In the first step, the long short-term memory regulates whether the information should
be discarded or stored from the previous cell state ct−1. Thus, the forget gate (xft) is
constructed by Equation (3), calculated based on the current input and the hidden state at
time t − 1:

xft = σ (Wxf·xt + Uxf·ht−1 + bxf) (3)

where σ represents the activation function and maps the variable to values between 1 and 0;
xt is the input vector to the LSTM unit, W is the weight matrix of the input process, U is the
weight matrix of the state transitions, and b is the bias vector. Then, the input gate, which
includes xit and c̃t, controls information added to the network, represented by Equations (4)
and (5), respectively.

xit = σ (Wxi·xt + Uxi·ht−1 + bxi) (4)

c̃t = tan h (W c̃·xt + U c̃·ht−1 + b c̃) (5)

where the tan h (·) represents the activation function and maps the variable to values
between 1 to −1; c̃t and xft are employed to produce the new state of the memory cell Ct,
which can be expressed by Equation (6):

Ct = xft·ct−1 + xit·c̃t (6)

the cell state vector Ct is utilized to calculate the output gate xot, which is demonstrated in
Equation (7).

xot = σ (Wxo·xt + Uxo·ht−1 + bxo) (7)

Finally, the output vector ht of long short-term memory networks is expressed by
Equation (8).

ht = xot·tan h(Ct) (8)
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The cell state and activation vector are used to generate the output in the output gate,
and the weights and bias terms are adjusted to minimize the loss of objective function in
the training phase. The vanishing gradient problems have been successfully solved by the
long short-term memory network architecture [11,28,37].

3. The Proposed Architecture for Predicting Stock Markets

Influences of social media on stock market prices have been investigated in English
contexts, but studies in non-native English-speaking countries were not explored widely.
This study intended to forecast closing values of stock market indices and stock prices in five
non-native English-speaking countries. It has been pointed out that fundamental analysis,
including sentiment in social media and technical analysis containing technical indices, is
essential in forecasting stock prices [38,39]. Figure 2 depicts the architecture of this study.
The fundamental analysis has influences on stock prices. Thus, tweets and posts related
to the stock market information collected from social media platforms, including Twitter
and PTT, were employed as the fundamental data in this study. In addition, technical
indicators and trading data served as the technical analysis impacting stock prices. In
the data collection phase, fundamental data and technical data were gathered. Thus, two
parts comprise the architecture: data collection and preprocessing; models training and
testing. In the data collection and preprocessing phase, the multilingual posts collected
from Twitter and PTT were transformed into sentiment scores, the stock trading data from
Yahoo Finance were gathered, and technical indicators were generated. In this study, three
datasets, dataset A, dataset B, and dataset C, were used for forecasting stock markets
individually, and forecasting performances generated by three datasets were compared.
Dataset A was structured data, dataset B was unstructured data, and dataset C was a
hybrid dataset consisting of dataset A and dataset B. Finally, each dataset was divided
into a training dataset and a testing dataset individually with percentages of 80% and
20% roughly.
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3.1. Data Collection and Preprocessing

In this study, both unstructured data and structured data were collected for stock
market forecasting. The unstructured data included posts on Twitter and PTT. Selenium
and BeautifulSoup were utilized to crowd the users’ posts from 1 January 2019 to 31
December 2019 in five non-native English-speaking countries with one stock market and
one cooperation for each country. One keyword was used for collecting social media
data for each stock market or company. Thus, ten keywords in total were utilized to
gather multilingual posts, the number of original posts and the number of posts after data
processing are illustrated in Table 2. Table 3 illustrates the example of the four main steps
of data cleaning. The data of the posting contains the posting UTC time (Coordinated
Universal Time) and the content of the post. Firstly, adjusting the time of each post to
be interrelated with the stock trading data for each country. Secondly, remove the posts
with the same content, the day without any tweet, and the paragraph notations for each
tweet. Thirdly, Araújo et al. [20] revealed that translating the input text into English
and then performing the existing sentiment analysis tool can yield more encouraging
results. Thus, the GOOGLETRANSLATE function [40–42] for multilingual text translation
in Google Sheets was used to translate all posts into English. Finally, the refined posts
were calculated by SentiStrength [43–45] to generate sentiment scores. Studies pointed
out that SentiStrength is a promising tool for sentiment analysis [43,46,47]. In addition,
SentiStrength is a lexicon-based technique and outperforms conventional machine learning
techniques in sentiment analysis [48]. Thus, in this study, SentiStrength was employed to
evaluate the sentiment of posts. The SentiStrength divides posts into positive and negative
sentiment polarities with five levels. The positive polarity is from 1 to 5, and the negative
polarity is from −1 to −5. The level of 0 does not exist. Each post has one positive level
and one negative level. In this study, daily scores were the accumulations of each post’s
levels on that day. Table 2 lists countries, languages, codes, keywords, number of posts,
and names of stock markets and corporations for five countries collected from Yahoo
Finance from 1 January 2019 to 31 December 2019. Trading data and technical indicators
served as the other 12 independent variables lustrated in Table 4. Trading data consisted of
open, high, low, close, adjusted close, and volume. Technical indicators included K%, D%,
William R%, RSI, MACD, PSY, MA, and BIAS; and were computed by the historical stock
market data gathered from Yahoo Finance. Trading data and the technical indicators were
integrated into dataset B. The trading data and technical indicators were denoted from x11
to x14 and from x15 to x22, respectively. Finally, two datasets were combined into dataset C.
Tables 4 and 5 show all independent variables and three datasets, respectively.

Table 2. The codes, keywords, and names of stock markets and corporations.

Countries Language Codes Names Keywords Number of Posts

Japan Japanese ˆN225 Nikkei 225 “日
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^TWII TSEC weighted index “台股” 13,686 

2330.TW Taiwan Semiconductor Manufacturing 
Company Limited 

“台積電 股票” 21,649 

Turkey Turkish XU100.IS BIST 100 “xu100” 18,143 
THYAO.IS Türk Hava Yollari Anonim Ortakligi “THYAO” 21,398 

Brazil Portuguese 
^BVSP IBOVESPA “Ibovespa” 34,949 

PETR4.SA Petróleo Brasileiro S.A.—Petrobras “PETR4” 9611 
  

6468
6501.T Hitachi, Ltd. “日立株” 1360

France French
ˆFCHI CAC 40 “CAC” 2563

SAN.PA Sanofi “Sanofi action” 304

Taiwan Traditional
Chinese

ˆTWII TSEC weighted index “台股” 13,686

2330.TW Taiwan Semiconductor
Manufacturing Company Limited “台積電股票” 21,649

Turkey Turkish
XU100.IS BIST 100 “xu100” 18,143

THYAO.IS Türk Hava Yollari Anonim
Ortakligi “THYAO” 21,398

Brazil Portuguese ˆBVSP IBOVESPA “Ibovespa” 34,949

PETR4.SA Petróleo Brasileiro
S.A.—Petrobras “PETR4” 9611
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Table 3. The example steps of data cleaning.

Created at
(UTC) T Diff. TR-Date Time Text Translation Positive Negative

16 January 2019
20:57

3:00
16 January 2019

11:57 p.m.

herkes biliyor ANCAK;
Neden yeni kişiler

gelmek istemiyor veya
çekiniyor bu DERSE?

Bilgi var . . .
Heyecan var . . .

Para var . . .
Bilgiyi paylaşan lider var.

everyone knows but; Why
do new people don’t want or
hesitate to come?<br>There
is information. <br>There is

excitement. <br>There is
money.<br>There is a leader

who shares the
information.<br>Have

fear.<br> Our timid nation is
a hundred were given a

hundred.<br>#bist#
bist100#usdtry# Xu100#

3 −4KORKU var. çekingen
milletimiz, yüz verildi
mi de başa çıkılmaz.

#bist
#bist100
#usdtry
#XU100
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Table 4. Independent variables used in this study. 

Independent  
Variables 

Sentiment Scores  
of Posts 

Independent  
Variables 

Trading Data and 
Technical Indicators xଵ Score −5 xଵଵ Open xଶ Score −4 xଵଶ High 

17 January 2019
05:00 3:00 17 January 2019

8:00 a.m.

#XU100 mb kararina cok
fazla anlam yuklenmis
gibi bi his var icimde

#XU100 MB DECINE COK
COK IN I COULD BI FISH

LIKE MEANING
2 −1

Note: T diff. = time difference; TR-date time = Turkey local time (=UTC+3:00); Text = local posts from twitter;
Translation = translated into English via GOOGLE TRANSLATE function; Positive = the score of positive polarity;
Negative = the score of negative polarity.

Table 4. Independent variables used in this study.

Independent
Variables

Sentiment Scores
of Posts

Independent
Variables

Trading Data and
Technical Indicators

x1 Score −5 x11 Open
x2 Score −4 x12 High
x3 Score −3 x13 Low
x4 Score −2 x14 Volume
x5 Score −1 x15 K%
x6 Score +1 x16 D%
x7 Score +2 x17 William R%
x8 Score +3 x18 RSI
x9 Score +4 x19 MACD
x10 Score +5 x20 PSY

x21 MA
x22 BIAS

Table 5. Three datasets used in this study.

Datasets Content of Data Variables

Data A Sentiment scores of posts x1–x10
Data B Trading data and technical indicators x11–x22
Data C Sentiment scores of posts, trading data, and technical indicators x1–x22

3.2. The Training and Testing of Models

Three datasets were divided into training data and testing data. In addition, the
portions of the training and testing data were approximately 80% and 20%. Table 6 lists
training and testing data periods for stock markets and corporation stocks. The training
data were used to train forecasting models, and the testing data were employed to evaluate
the performances of forecasting models.
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Table 6. Periods of training data and testing data for stock market indices and corporation stock prices.

Stock Market
Indices/Corporation Stocks

Periods of Training Data
(Date/Month/Year)

Periods of Testing Data
(Date/Month/Year)

N225 from 7 January 2019 to
23 October 2019

from 24 October 2019 to
30 December 2019

FCHI from 3 January 2019 to
17 October 2019

from 18 October 2019 to
31 December 2019

TWII from 3 January 2019 to
25 October 2019

from 28 October 2019 to
31 December 2019

XU100.IS from 3 January 2019 to
18 October 2019

from 21 October 2019 to
30 December 2019

BVSP from 3 January 2019 to
16 October 2019

from 17 October 2019 to
30 December 2019

6501.T from 7 January 2019 to
25 October 2019

from 29 October 2019 to
30 December 2019

SAN.PA from 9 January 2019 to
14 October 2019

from 16 October 2019 to
31 December 2019

2330.TW from 3 January 2019 to
25 October 2019

from 28 October 2019 to
31 December 2019

THYAO.IS from 3 January 2019 to
21 October 2019

from 22 October 2019 to
30 December 2019

PETR4.SA from 3 January 2019 to
16 October 2019

from 17 October 2019 to
30 December 2019

Trial and error methods [49,50] and meta-heuristics [51–53] are two major ways of
determining the parameters of machine learning models. The trial and error methods rely
heavily on users’ experiences. As the number of parameters increases, the difficulty of
parameter determination arises. Thus, the metaheuristic has been an effective and useful
way of determining parameters with a relatively mitigated computational burden. In this
study, the genetic algorithm was used to select the parameters of forecasting models. Devel-
oped by John H. Holland [54,55], the genetic algorithm was used to cope with optimization
problems in a directed search way to find a near-optimal or optimal solution. The details of
the genetic algorithm are presented in Figure 3. The first step is to generate the initial popu-
lation randomly. The population includes chromosomes, and each chromosome consists
of genes. Then, the fitness is calculated to measure the quality of the chromosome. The
chromosomes with higher values of fitness are selected and left. Sequentially, operations
of crossover and mutation are conducted to reproduce the next generation with updated
generated chromosomes. For the long short-term memory model, the genetic algorithm
tuned three hyper-parameters, including the dropout rate, the learning rate, and the batch
size. The genetic algorithm was used with a population size of 20 while the maximum
generation was set at 100, and the crossover and mutation ratios used were 0.8 and 0.2.
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Thus, multilingual fundamental data collected from social media platforms and tech-
nical data, including historical trading data and technical indicators, were employed to
train the five forecasting models with the genetic algorithm to predict stock indices and
corporations’ stock prices.

4. Numerical Results

This study used the LSTMGA model to forecast stock indices and corporations’ stock
closing prices in the stock market. Forecasting results were compared with four other
methods, including BPNNGA, LSSVRGA, RFGA, and XGBoostGA. The long short-term
memory network model used in this study concluded 50 neurons. The time stamp, epoch,
and optimizer were set as 1, 100, and Nadam, respectively. Tables 7 and 8 list the parameters
of the forecasting models for dataset A, dataset B, and dataset C of five stock market
indices and corporations’ stock prices. Two measurements, MAPE and RMSE, were used
to demonstrate the performances of forecasting models and illustrated in Equations (9)
and (10).

MAPE (%) = ∑N
t=1

∣∣∣∣At − Ft

At

∣∣∣∣× 100
N

(9)

RMSE =

√√√√ 1
N

N

∑
t=1

(At − Ft)
2 (10)

where N is the number of the forecasting periods. At and Ft are the actual value at time t
and the forecasting value at time t, respectively. The MAPE value is independent of the
data scale and is used to compare the performances of forecasting models with various
data scales. The RMSE is one of the commonly used measurements to evaluate forecasting
accuracy. However, the RMSE values are influenced by data scales theoretically [56].
Figures 4 and 5 illustrate the MAPE and RMSE of three datasets in forecasting models for
stock indices. Figures 6 and 7 present the MAPE and RMSE of three datasets according to
forecasting models for corporations’ stock prices. LSTMGA models with hybrid dataset C
can generate the smallest values of MAPE and RMSE in all individual cases and average
values. For dataset A and dataset B, LSTMGA models were more accurate than the other
forecasting models according to the average values of MAP. They were superior to the other
forecasting models in most individual cases. Table 9 illustrates MAPE and RMSE values of
forecasting models with three datasets, and the best results for each dataset in individual
cases and on average were in bold. Numerical results indicated that LSTMGA models were
superior to the other four machine learning models in forecasting accuracy using hybrid
data. MAPE is expressed in a percentage way, and not difficult to compare forecasting
performance between datasets while scales vary. RMSE values are easily influenced by data
scales. Furthermore, according to Lewis’s MAPE forecasting accuracy levels [57], LSTMGA
models provided excellent prediction results with MAPE values less than 5% by using
dataset C for all forecasting cases in this study.
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Table 7. Parameters of forecasting models for datasets A, B, and C of stock market indices.

Stock Market Indices N225 FCHI TWII XU100.IS BVSP

Models Parameters
Datasets

A B C A B C A B C A B C A B C

BPNNGA
learning rate 0.82 0.34 0.47 0.48 0.90 0.83 0.59 0.54 0.62 0.69 0.53 0.17 0.46 0.81 0.59

momentum 0.56 0.89 0.74 0.22 0.63 0.79 0.47 0.85 0.78 0.89 0.89 0.63 0.64 0.50 0.53

LSSVRGA
gamma 430.52 340.01 379.89 139.26 400.66 462.75 439.74 450.04 486.97 254.08 498.83 327.74 360.79 252.90 475.74
sigma 1.23 1.61 2.11 1.07 1.17 2.31 1.27 1.53 1.52 1.90 1.23 2.21 1.01 3.36 1.01

RFGA

ntree * 225 336 454 113 418 170 178 102 217 156 188 213 125 236 361
mtry * 9 11 20 10 9 20 10 10 10 10 11 18 10 10 14

nodesize * 3 7 4 3 5 5 3 3 3 3 3 3 3 3 3
samplesize * 6 11 19 2 9 19 3 12 18 8 7 19 7 11 11
maxnodes * 88 56 90 94 83 60 87 75 98 91 81 81 97 61 93

XGBoostGA

colsample_bytree * 0.97 0.96 0.87 0.95 0.81 0.77 0.96 0.92 0.96 0.98 0.94 0.81 0.93 0.77 0.75
subsample * 0.87 0.93 0.82 0.89 0.93 0.87 0.97 0.91 0.82 0.89 0.97 0.97 0.89 0.98 0.90
max_depth * 10 8 6 10 10 9 10 10 7 8 9 10 9 8 6

eta * 0.09 0.09 0.09 0.10 0.09 0.08 0.09 0.09 0.10 0.10 0.08 0.09 0.09 0.10 0.10
gamma 0.17 0.02 0.00 0.25 0.27 0.02 0.20 0.11 0.14 0.97 0.05 0.37 0.25 0.07 0.18

min_child_weight * 3.68 5.86 3.53 3.64 3.14 3.62 3.11 3.45 3.58 3.91 3.61 3.05 3.18 3.99 3.86
lambda * 0.62 0.51 0.70 0.79 0.88 1.04 1.00 1.31 0.86 0.58 0.99 0.80 0.68 0.59 1.37

LSTMGA
dropout rate 0.00 0.14 0.08 0.02 0.00 0.05 0.31 0.13 0.11 0.37 0.07 0.00 0.58 0.00 0.08
learning rate 0.00 0.01 0.01 0.01 0.08 0.05 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.09 0.06

batch size 95 31 43 77 64 56 89 11 14 64 57 81 71 67 57

*: ntree = the number of trees to grow; mtry = the number of variables used at each split; nodesize = the minimum
size of terminal nodes; samplesize = the sample sizes to draw; maxnodes = the maximum number of terminal
nodes trees in the forest can have; colsample_bytree = subsample percentage of columns while generating
new trees; subsample = the subsample ration of training cases; max_depth = the maximum depth of the tree;
eta = the learning rate; min_child_weight = the minimum sum of weights related to child nodes; lambda = the L2
regularization term of weights.

Table 8. Parameters of forecasting models for datasets A, B, and C of corporations’ stock prices.

Datasets of Country Stocks 6501.T SAN.PA 2330.TW THYAO PETR4

Model Parameters
Datasets

A B C A B C A B C A B C A B C

BPNNGA
learning rate 0.66 0.02 0.44 0.16 0.32 0.15 0.29 0.40 0.17 0.34 0.38 0.15 0.83 0.64 0.38
momentum 0.75 0.61 0.69 0.78 0.60 0.89 0.75 0.04 0.80 0.19 0.69 0.90 0.55 0.73 0.84

LSSVRGA
gamma 488.82 491.46 388.61 375.15 344.13 490.07 315.27 460.89 467.67 469.70 386.07 465.42 243.43 362.72 477.66
sigma 1.25 1.54 2.11 1.68 1.28 3.10 1.08 1.50 3.82 1.12 1.06 2.78 1.16 1.05 1.77

RFGA

ntree * 102 115 266 315 131 303 185 241 171 154 376 392 396 258 133
mtry * 8 8 16 7 12 21 8 10 17 10 11 13 10 11 19

nodesize * 3 5 3 3 3 3 4 3 10 3 3 4 3 4 4
samplesize * 6 9 2 6 4 20 8 5 12 8 5 10 10 2 14
maxnodes * 99 63 75 95 51 61 90 57 51 92 89 98 97 87 82

XGBoostGA

colsample_bytree * 0.99 0.96 0.83 0.98 0.88 0.92 0.90 0.75 0.82 0.96 0.93 0.71 0.93 0.95 0.98
subsample * 0.97 0.74 0.95 0.84 0.96 0.79 0.97 0.72 0.90 0.89 0.88 0.87 0.82 0.79 0.75
max_depth * 10 9 9 8 10 6 7 10 8 10 8 10 10 9 9

eta * 0.10 0.09 0.09 0.10 0.07 0.10 0.10 0.07 0.10 0.10 0.10 0.10 0.09 0.08 0.09
gamma 0.14 0.27 0.02 0.37 0.00 0.03 0.36 0.00 0.07 0.00 0.00 0.01 0.13 0.00 0.01

min_child_weight * 3.94 3.26 3.73 3.82 3.66 4.76 3.91 3.85 3.10 3.40 4.76 4.61 3.54 3.54 3.44
lambda * 0.52 0.58 0.67 0.67 0.93 0.98 0.68 0.61 0.52 1.35 0.70 0.70 0.51 0.54 0.59

LSTMGA
dropout rate 0.00 0.05 0.11 0.79 0.01 0.00 0.53 0.00 0.00 0.00 0.24 0.26 0.00 0.12 0.00
learning rate 0.01 0.05 0.01 0.00 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.09 0.07

batch size 81 75 77 48 101 80 73 82 81 38 91 23 76 55 12

*: ntree = the number of trees to grow; mtry = the number of variables used at each split; nodesize = the minimum
size of terminal nodes; samplesize = the sample sizes to draw; maxnodes = the maximum number of terminal
nodes trees in the forest can have; colsample_bytree = subsample percentage of columns while generating
new trees; subsample = the subsample ration of training cases; max_depth = the maximum depth of the tree;
eta = the learning rate; min_child_weight = the minimum sum of weights related to child nodes; lambda = the L2
regularization term of weights.
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Table 9. MAPE and RMSE values for forecasting models with three datasets. 

Result Dataset A Dataset B Dataset C 

Model BPNN LSSVR RF XGBoost LSTM BPNN LSSVR RF 
XGBoos

t 
LSTM BPNN LSSVR RF 

XGBoos
t 

LSTM 
 With GA With GA With GA 

MAPE                

N225 8.75% 8.65% 8.79% 8.58% 8.45% 3.04% 8.76% 4.35% 4.62% 3.45% 3.13% 9.13% 4.29% 4.56% 0.90% 
FCHI 8.51% 7.64% 7.89% 7.32% 6.16% 2.39% 7.97% 4.31% 4.15% 3.08% 2.15% 7.82% 3.95% 4.11% 1.37% 
TWII 9.48% 9.86% 8.87% 8.80% 8.34% 3.23% 8.96% 3.69% 3.53% 2.84% 3.14% 9.42% 3.99% 3.83% 2.37% 

XU100.IS 7.21% 7.30% 7.22% 6.99% 7.85% 3.01% 6.59% 3.57% 3.70% 2.82% 2.91% 6.58% 3.59% 3.69% 2.59% 
BVSP 10.01% 9.99% 10.15% 10.17% 10.01% 4.10% 8.49% 4.97% 5.11% 6.42% 2.88% 9.90% 4.96% 5.21% 2.26% 
6501.T 14.01% 13.01% 12.62% 12.66% 8.45% 3.24% 8.72% 3.63% 3.75% 2.38% 2.63% 9.70% 3.69% 3.78% 1.52% 

SAN.PA 9.55% 9.60% 9.28% 8.98% 8.05% 2.47% 7.61% 3.22% 3.67% 3.21% 1.82% 7.23% 3.30% 3.14% 1.77% 
2330.TW 23.85% 23.08% 21.59% 22.48% 21.90% 4.28% 19.47% 8.42% 7.77% 2.92% 3.00% 18.07% 8.62% 7.66% 1.40% 
THYAO 6.11% 12.52% 7.48% 8.27% 9.41% 3.24% 4.26% 1.44% 1.49% 2.27% 2.50% 3.80% 1.36% 1.61% 1.34% 
PETR4 10.05% 9.80% 10.19% 10.08% 10.59% 7.23% 10.14% 5.64% 5.67% 4.60% 5.16% 10.17% 5.65% 6.16% 3.67% 
AVG 10.75% 11.15% 10.41% 10.43% 9.92% 3.62% 9.10% 4.32% 4.34% 3.40% 2.93% 9.18% 4.34% 4.37% 1.92% 

RMSE                

N225 2080.83 2218.85 2109.20 2090.46 2029.31 762.59 2112.66 1069.20 1138.02 827.54 777.42 2172.70 1055.81 1117.88 257.77 
FCHI 513.78 514.42 498.57 498.82 386.41 155.94 498.54 276.65 268.09 201.42 146.00 489.88 256.68 263.94 93.59 
TWII 1151.80 1256.76 1102.66 1120.83 1009.56 420.71 1138.81 495.34 477.41 355.72 436.83 1145.30 525.35 509.01 306.86 

XU100.IS 9278.79 9993.83 9339.83 9335.92 9727.60 3977.33 8816.53 4967.54 5089.79 3927.51 3843.38 8959.34 4986.33 5049.84 3636.73 
BVSP 11,476.13 12,223.49 11,792.59 11,890.42 11,631.26 5518.08 10,345.52 6177.33 6366.20 7545.21 4296.98 11,449.87 6183.92 6464.43 3368.77 
6501.T 679.32 625.10 611.66 642.74 474.37 187.02 468.72 225.58 232.39 123.53 147.92 499.02 227.59 233.55 92.86 

SAN.PA 8.84 8.81 8.60 8.71 7.76 2.56 7.57 3.81 4.06 3.09 2.13 7.35 3.85 3.67 1.84 
2330.TW 83.50 76.86 71.46 75.66 71.59 17.79 67.27 31.27 28.98 10.57 12.22 62.46 31.72 28.81 5.84 
THYAO 0.94 2.15 1.13 1.36 1.44 0.53 0.64 0.25 0.26 0.38 0.44 0.59 0.24 0.28 0.24 
PETR4 3.13 3.18 3.20 3.21 3.32 2.39 3.21 1.85 1.84 1.50 1.67 3.21 1.85 2.00 1.27 
AVG 2527.71 2692.34 2553.89 2566.81 2534.26 1104.49 2345.95 1324.88 1360.70 1299.65 966.50 2478.97 1327.33 1367.34 776.58 

Note: AVG = average; GA = the genetic algorithm. 

Table 10. The Wilcoxon signed–rank test of LSTMGA models in terms of dataset C to dataset A and 
dataset C to dataset B. 
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FCHI 8.51% 7.64% 7.89% 7.32% 6.16% 2.39% 7.97% 4.31% 4.15% 3.08% 2.15% 7.82% 3.95% 4.11% 1.37%
TWII 9.48% 9.86% 8.87% 8.80% 8.34% 3.23% 8.96% 3.69% 3.53% 2.84% 3.14% 9.42% 3.99% 3.83% 2.37%

XU100.IS 7.21% 7.30% 7.22% 6.99% 7.85% 3.01% 6.59% 3.57% 3.70% 2.82% 2.91% 6.58% 3.59% 3.69% 2.59%
BVSP 10.01% 9.99% 10.15% 10.17% 10.01% 4.10% 8.49% 4.97% 5.11% 6.42% 2.88% 9.90% 4.96% 5.21% 2.26%
6501.T 14.01% 13.01% 12.62% 12.66% 8.45% 3.24% 8.72% 3.63% 3.75% 2.38% 2.63% 9.70% 3.69% 3.78% 1.52%

SAN.PA 9.55% 9.60% 9.28% 8.98% 8.05% 2.47% 7.61% 3.22% 3.67% 3.21% 1.82% 7.23% 3.30% 3.14% 1.77%
2330.TW 23.85% 23.08% 21.59% 22.48% 21.90% 4.28% 19.47% 8.42% 7.77% 2.92% 3.00% 18.07% 8.62% 7.66% 1.40%
THYAO 6.11% 12.52% 7.48% 8.27% 9.41% 3.24% 4.26% 1.44% 1.49% 2.27% 2.50% 3.80% 1.36% 1.61% 1.34%
PETR4 10.05% 9.80% 10.19% 10.08% 10.59% 7.23% 10.14% 5.64% 5.67% 4.60% 5.16% 10.17% 5.65% 6.16% 3.67%

AVG 10.75% 11.15% 10.41% 10.43% 9.92% 3.62% 9.10% 4.32% 4.34% 3.40% 2.93% 9.18% 4.34% 4.37% 1.92%

RMSE

N225 2080.83 2218.85 2109.20 2090.46 2029.31 762.59 2112.66 1069.20 1138.02 827.54 777.42 2172.70 1055.81 1117.88 257.77
FCHI 513.78 514.42 498.57 498.82 386.41 155.94 498.54 276.65 268.09 201.42 146.00 489.88 256.68 263.94 93.59
TWII 1151.80 1256.76 1102.66 1120.83 1009.56 420.71 1138.81 495.34 477.41 355.72 436.83 1145.30 525.35 509.01 306.86

XU100.IS 9278.79 9993.83 9339.83 9335.92 9727.60 3977.33 8816.53 4967.54 5089.79 3927.51 3843.38 8959.34 4986.33 5049.84 3636.73
BVSP 11,476.13 12,223.49 11,792.59 11,890.42 11,631.26 5518.08 10,345.52 6177.33 6366.20 7545.21 4296.98 11,449.87 6183.92 6464.43 3368.77
6501.T 679.32 625.10 611.66 642.74 474.37 187.02 468.72 225.58 232.39 123.53 147.92 499.02 227.59 233.55 92.86

SAN.PA 8.84 8.81 8.60 8.71 7.76 2.56 7.57 3.81 4.06 3.09 2.13 7.35 3.85 3.67 1.84
2330.TW 83.50 76.86 71.46 75.66 71.59 17.79 67.27 31.27 28.98 10.57 12.22 62.46 31.72 28.81 5.84
THYAO 0.94 2.15 1.13 1.36 1.44 0.53 0.64 0.25 0.26 0.38 0.44 0.59 0.24 0.28 0.24
PETR4 3.13 3.18 3.20 3.21 3.32 2.39 3.21 1.85 1.84 1.50 1.67 3.21 1.85 2.00 1.27

AVG 2527.71 2692.34 2553.89 2566.81 2534.26 1104.49 2345.95 1324.88 1360.70 1299.65 966.50 2478.97 1327.33 1367.34 776.58

Note: AVG = average; GA = the genetic algorithm.

The nonparametric statistical Wilcoxon signed–rank test [58] was used to measure
the performances of LSTMGA models with three different datasets. Based on the null
hypothesis that the median of differences between dataset C and dataset A or dataset B
equals 0, Table 10 illustrates the Wilcoxon signed–rank test results in dataset C to dataset A
and dataset C to dataset B. The Wilcoxon signed–rank test of LSTMGA models is used to
verify the statistical significance between the hybrid data, dataset C, and each single-type
dataset, dataset A and dataset B. Testing results show that z values are greater than critical
values and p values indicate significance levels of 0.025. This shows that employing dataset
C by LSTMGA models can generate more statistically and significantly accurate results
than using dataset A or dataset B.
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Table 10. The Wilcoxon signed–rank test of LSTMGA models in terms of dataset C to dataset A and
dataset C to dataset B.

Pairwise
Comparison

Negative
Numbers

Positive
Numbers Z Value Sig.

= 0.025
Negative
Numbers

Positive
Numbers Z Value Sig.

= 0.025

Dataset C vs. Dataset A Dataset C vs. Dataset B

N225 47 0 −5.968 Yes 47 0 −5.968 Yes
FCHI 50 0 −6.154 Yes 44 6 −5.565 Yes
TWII 36 0 −5.232 Yes 31 5 −4.540 Yes

XU100.IS 42 7 −5.695 Yes 36 13 −3.019 Yes
BVSP 49 0 −6.093 Yes 49 0 −6.093 Yes

6501.T 39 4 −5.530 Yes 30 13 −2.826 Yes
SAN.PA 23 0 −4.197 Yes 21 2 −3.711 Yes
2330.TW 36 0 −5.232 Yes 28 8 −3.692 Yes

THYAO.IS 47 2 −5.993 Yes 40 9 −5.078 Yes
PETR4.SA 48 1 −6.083 Yes 37 12 −3.606 Yes

Boxplots can reveal unusual data, data distributions, and likelihoods of data disper-
sions [59–61]. Figures 8 and 9 show boxplots of absolute errors for forecasting models of
stock market indices and corporations’ stock prices correspondingly. It can be observed that
LSTMGA models resulted in smaller and more dense absolute errors for various datasets.
Figures 10 and 11 plot point-to-point graphs and make comparisons of actual values and
predicted values of various forecasting models with three datasets. The plots indicated that
the hybrid data could capture trends of stock markets and corporations’ stock prices more
than individual data in most forecasting models. In addition, the LSTMGA model with
hybrid dataset C performed the best in all cases.
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5. Conclusions

Sentiment data and analysis have been applied to many fields and obtained promising
results when integrated with classical structured data. For stock market analysis and
prediction, numerous studies indicated that investors’ sentiments significantly influence
stock markets. This study used three types of data, namely social media data, trading data,
and hybrid data, to forecast stock market indices and corporations’ stock prices. The posts
of investors in non-native English-speaking countries were translated into English, and
then sentiment analysis was performed. Five forecasting models were employed to forecast
stock market indices and corporations’ stock prices in a one-step-ahead policy. The genetic
algorithm was utilized to determine the appropriate parameters of all forecasting models.
The findings of this study can be illustrated as follows. First, more accurate results can be
obtained by using hybrid data rather than single social media data or single trading data
individually. In addition, the LSTMGA models outperformed the other four forecasting
models in terms of forecasting accuracy with hybrid data. The numerical results also
indicated that all 10 cases could generate outstanding forecasting results with MAPE values
less than 5%, illustrated in Table 9, using the proposed LSTMGA model. Thus, the proposed
LSTMGA model can provide feasible, effective, and promising results in forecasting stock
market indices and corporations’ stock prices with multilingual sentiment analysis.

For future works, data collected from other countries or regions can be included
to examine the robustness and feasibility of the developed LSTMGA model. Secondly,
the other transformer-based machine learning natural language processing tools, such
as bidirectional encoder representations from transformers (BERT), can be implemented
to compare the forecasting accuracy. In addition, more deep learning techniques and
simple neural network methods can be used to perform forecasting tasks and compare
performances. Thirdly, real-time forecasting can be performed by embedding well-trained
models into a system. The system can collect real-time data for forecasting stock markets.
Therefore, high-frequency data can be used to reexamine the performance of the proposed
models in intraday trading. Finally, using sentiment analysis tools directly to forecast
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stock markets in English contexts and comparing results with non-native English data is a
possible direction for future study.
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