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Abstract: As a new non-destructive testing technology, near-infrared spectroscopy has broad ap-
plication prospects in agriculture, food, and other fields. In this paper, an intelligent near-infrared
diffuse reflectance spectroscopy scheme (INIS) for the non-destructive testing of the sugar contents
in vegetables and fruits was proposed. The cherry tomato were taken as the research object. The
applicable objects and features of the three main methods of near-infrared detection were compared.
According to the advantages and disadvantages of the three near infrared (NIR) detection methods,
the experiment was carried out. This experiment involved the near-infrared diffuse reflection detec-
tion method, and the back propagation (BP) network model was established to research the sugar
content of the cherry tomatoes. We used smoothing and a principal component analysis (PCA) to
extract the final spectrum from the experimental spectrum. Taking the preprocessed spectral data as
the input of the network and the measured sugar content of the cherry tomatoes as the output, the
80-12-1 network model structure was established. The cross-validation coefficient of determination
was 0.8328 and the mean absolute deviation was 0.5711. The results indicate that the BP neural
network can quickly and effectively detect the sugar content in cherry tomatoes. This intelligent
near-infrared diffuse reflectance spectroscopy (INIS) scheme can be extended and optimized for
almost all sugar-containing fruits and vegetables in the future.

Keywords: near-infrared; diffuse reflectance spectroscopy; intelligent neural network; internal sugar
content; non-destructive testing

1. Introduction

The fruit industry is an important part of agriculture [1]. Fruits are rich in more than a
dozen trace elements and a lot of dietary fiber, which are very beneficial nutrients to our
health [2]. The vitamins and dietary fiber in fruits not only provide nutrients, but also
promote an increase in beneficial bacteria in the gut [3].

Wireless sensor networks, as a new kind of modem network, have been widely applied
in the agricultural field. Farmers can place combination temperature and soil sensors in
their fields so that the wireless sensors can calculate accurate irrigation and fertilization
rates. Moreover, the sensor data required for this application are relatively small, and it is
sufficient to equip an area of nearly tens of thousands of square meters with one sensor.
Therefore, wireless sensor networks are playing an important role in the development
of the fruit industry. However, there are many problems in sensor networks, such as
those involving dynamic energy management and privacy protection. Many researchers

Electronics 2022, 11, 3504. https://doi.org/10.3390/electronics11213504 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11213504
https://doi.org/10.3390/electronics11213504
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4730-5007
https://orcid.org/0000-0002-0394-4635
https://doi.org/10.3390/electronics11213504
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11213504?type=check_update&version=1


Electronics 2022, 11, 3504 2 of 20

have studied these issues. Ref. [4] proposed respective dynamic energy management
methods. Other researchers have proposed methods to protect the privacy and safety of
the transmitters. Ref. [5] proposed an index-based trust and reputation assessment system
(ETRES). Ref. [6] proposed a malicious node detection trust management scheme based
on Dempster–Shafer evidence theory. Ref. [7] proposed a malicious node detection trust
management scheme based on Dempster–Shafer evidence theory. Ref. [8] proposed a
privacy and security framework (PPSF) for IoT-driven smart cities. Refs. [9,10] proposed
a new scheme for handling MAX/MIN queries in a two-layer sensor network to protect
privacy. These all have had positive effects on the fruit industry.

The fruit yield and planting area data for the calendar year in China are shown in
Table 1. As can be seen from the chart, the total output of fruit has been continuously
increasing from 2008 to 2016, with the yield increasing from 17.9 tons/ha in 2008 to 21.84
tons/ha in 2016. Although the sown area has not changed much, it is also growing steadily.
Fruit quality testing is one of the decisive factors in the development of the fruit trade, so
the requirements for fruit quality testing are important. The annual import and export
volumes and amounts of data for China are shown in Table 2.

Table 1. The annual fruit yield and planting area data for the calendar year in China.

Year Total (10,000 Tons) Sown Area (1000 ha) Yield (t/ha)

2008 19,220.19 10,734.26 17.9
2009 20,395.51 11,139.51 18.3
2010 21,401.41 11,543.85 18.53
2011 22,768.18 11,830.55 19.24
2012 24,056.84 12,139.93 19.82
2013 25,093.04 12,371.35 20.28
2014 26,142.24 13,127.24 19.91
2015 27,375.03 12,816.67 21.36
2016 28,351.10 12,981.55 21.84

Table 2. The annual import and export volumes and data amounts in China.

Year
Import Export

(10,000 Tons) ($10,000) (10,000 Tons) ($10,000)

2012 342.50 376,178.69 486.42 618,340.18
2013 328.98 415,736.45 483.75 632,370.65
2014 400.87 511,800.95 436.05 617,866.15
2015 448.46 587,233.53 450.28 688,861.78
2016 417.90 581,336.83 512.36 713,922.16

Based on Tables 1 and 2, we can see that the export volume of fruits in China only
accounted for 1.5% of the total output of fruits in 2016. Why did the export volume of
fruits not increase significantly? One of the important reasons was that the quality testing
of the fruits was not perfect enough to guarantee the high quality of the exported fruits.
Therefore, if the quality of the fruits could be guaranteed, the export volume of the fruits
would definitely be improved.

The rapid non-destructive testing of the intrinsic quality of fruits not only meets the
increasingly diversified needs of Chinese consumers, but also meets the needs of China’s
fruit exports. With the continuous improvements in living standards, consumers have
not only put forward higher requirements for the shape, color, size, and other appearance
factors of fruits, but have also paid greater attention to the taste, smell, quality, and other
intrinsic qualities [11]. This also determines the need for the non-destructive and rapid
testing of fruits [12].

The cherry tomato is one of the most important crops in the world, with a global
production rate of 181 million tons of cherry tomatoes in 2019 [13]. The fruit has an
excellent flavor, attractive color, and high lycopene content. It represents to the consumer



Electronics 2022, 11, 3504 3 of 20

advantages from nutritional and sensorial points of view [14]. According to the statistics
from the FAO, the world’s total output of tomatoes in 2012 was 1.6179 × 108 t. The yield
of tomatoes in China reached 5 × 107 t in 2012, accounting for 31% of the world’s total
production [15]. With this important position in the agricultural field, the quality testing of
the cherry tomato has also attracted great attention. The sugar content of cherry tomatoes
determines the quality of their growth. However, the conventional detection methods
destroy the samples in order to complete the detection. Non-destructively determining the
sugar content of cherry tomatoes is always a difficult problem [16]. As cherry tomatoes are
rich in nutrition, this fruit is very popular. Therefore, this paper took cherry tomatoes as
the samples to study the related sections.

As a new non-destructive testing technology, near-infrared spectroscopy has broad ap-
plication prospects in agriculture, food, and other fields [17–20]. As a fast, non-destructive,
and efficient detection method, near-infrared spectroscopy can be used to analyze the
physicochemical properties of all samples related to hydrogen radicals. NIR spectroscopy
also enables rapid qualitative or quantitative analyses of specific components. Therefore,
near-infrared technology can be considered for the non-destructive testing and detection
analyses of fruits [11,12].

The NIR spectrum is mainly caused by the non-resonance of molecular vibrations.
This leads to the oscillation of molecular vibrations from the ground state to a higher
energy level. When molecules change from one excited state to another, they produce
frequency-multiplying absorptions and combined frequency absorptions because of the
absorptions at different fundamental frequencies [21]. Near-infrared spectroscopy mainly
reflects the frequency-doubled and total-frequency absorption information for hydrogen-
containing groups (O-H, C-H, N-H, S-H, P-H) [22]. When a molecule is exposed to infrared
radiation, it is excited into resonance and the light’s energy is partially absorbed. We can
measure the absorption of light and obtain an extremely complex spectrum that represents
the properties of the substance [23]. Examples of stretching vibrations and deformation
vibrations of the measured material molecules are shown in Figure 1. With the appropriate
stoichiometry, the near-infrared absorption spectrum may be related to the substance’s
composition or properties, and a corresponding model can be established.
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Figure 1. Examples of stretching vibrations and deformation vibrations of the measured material
molecules (+ is vertical motion with paper facing inward, and − is vertical motion with paper
facing outward).

An intelligent near-infrared diffuse reflectance spectroscopy (INIS) method for the non-
destructive testing of the sugar content in vegetables and fruits was designed on the basis of
a near-infrared spectrum analysis technique. In the experimental part, cherry tomatoes were
selected as the representative samples and a BP network model was established to study
the sugar content. Spectral features were extracted from experimental the spectral data
using smoothing and a principal component analysis (PCA). An intelligent near-infrared
diffuse reflectance spectroscopy scheme (INIS) was the proposed for the non-destructive
detection and prediction of the sugar content in the representative fruit.

The BP neural network technology has broad application prospects in near-infrared
non-destructive testing, and the prediction results are more accurate. In fruit detection,
qualitative and quantitative analyses can be carried out on the fruits, including to assess
the fruit types, regional classifications, fruit sugar contents, and so on. However, there is
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room for improvement in the accuracy of the results, and many fruits remain to be studied.
Therefore, this paper combines near-infrared spectroscopy and a BP neural network to
study the sugar content of cherry tomatoes and to improve the accuracy of the results.

The remainder of this paper is organized as follows. Section 2 gives a brief introduc-
tion to the present situation regarding the domestic and foreign research. In Section 3,
we introduce the near-infrared spectroscopy technology, BP neural network, and model
evaluation criteria. In Section 4, the experimental materials and methods are presented. In
Section 5, we analyze and discuss the data collected from the experiments. In Section 6, we
draw conclusions and describe the future outlook.

2. The Related Work

As a new non-destructive testing technology, near-infrared spectroscopy has broad
application prospects in agriculture, food, and other fields.

Ref. [24] used visible near-infrared spectroscopy to predict soluble solids in Fuji apples.
Ref. [25] used near-infrared spectroscopy to calibrate models of soluble solids and moisture
content in Cucurbitaceae. Ref. [26] determined the chemical and sensory properties of
tomatoes based on near-infrared spectroscopy. Ref. [27] used near-infrared spectroscopy
for the non-destructive prediction of the total soluble solids in strawberries. Ref. [28] used
near-infrared spectroscopy to improve the prediction of pear fruit moisture and soluble
solid contents. Ref. [29] conducted a non-contact assessment of intact mangoes using NIR
spectroscopy. According to the existing research on non-destructive testing and detection
testing, near-infrared spectroscopy technology could be used for the non-destructive testing
of the sugar content of cherry tomatoes [30,31].

An artificial neural network (ANN) is a mathematical model that simulates animal
neural networks and performs distributed parallel information processing. Such networks
depend on the complexity of the system. The purpose of processing information is achieved
by adjusting the mutual relationship between a large number of internal nodes. ANNs
have the self-learning ability to adapt and have been connected with machine learning [32],
big data [33], automatic processing [34], analytics [35], and algorithms [36].

Ref. [37] proposed a new method involving NIR-HSI combined with PLS. Ref. [38]
examined the FOS content in sun-dried banana syrup using NIR measurements. The PLS
results indicated that the optimized wavelength range is better than the full wavelength.
Ref. [39] showed that VIS/NIR spectroscopy could be used to classify three varieties of
tomatoes, as well as to determine their quality parameters, such as their SSC, TA, taste
(SSC/TA), and firmness. Ref. [40] used a PLS regression and wavenumber selections to
perform non-destructive FT-NIR measurements and prediction models of texture. The
results were that the R2 values ranged from 0.70 to 0.97 and the RPD values from 1.8 to
6.1. Ref. [41] used tropical papaya fruit as a raw material to produce pulp products. Based
on a BP neural network, he predicted and verified the processing conditions for papaya
pulp and meat products. The results showed that the products produced under certain
conditions meet health and safety standards. Ref. [42] established a model through a BP
neural network and then combined this with near-infrared spectroscopy technology to
predict the sugar content of cherry tomatoes. The results showed that this method can
reasonably predict the sugar content.

In order to achieve the fast and non-destructive detection of the internal quality of
cherry tomatoes, Refs. [43,44] established a cherry tomato transmission detection system.
The correlation analysis and normalization treatment were used to correct the diameter
of the cherry tomatoes. A rapid and non-destructive study was carried out on the soluble
solid content (SSC) of cherry tomatoes based on this system. The results showed that the
visible/near-infrared transmission spectrum combined with the normalization of the fruit
diameter can be used to effectively predict the internal quality of cherry tomatoes and
eliminate the errors caused by different fruit diameters. According to the existing research
on the non-destructive testing [30] of cherry tomatoes, artificial neural networks maybe
good tools to resolve the problem.
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Based on the previous research, we finished a literature review [30], basic theory
study, near-infrared diffuse reflection experiment, integrated environment experiment [12],
typical fruit selection experiment, typical fruit spectrum data collection study [45], and a
spectral data analysis of typical fruits. Based on the neural network design, we designed
an intelligent near-infrared diffuse reflectance spectroscopy (INIS) scheme for the non-
destructive testing of the sugar contents in fruits [12].

Ref. [46] proposed a weighting mechanism to connect samples with dictionary atoms.
At the same time, traditional dictionary learning methods are prone to overfitting for
patient classification with limited training datasets. Ref. [45] introduced artificial neural
networks based on a 1-D CNN (one-dimensional convolutional neural network) and Bi-
LSTM (bidirectional long and short-term memory). Abstract features of different properties
are obtained through preprocessed sensory data. Ref. [47] proposed a new deep learning
architecture called the recurrent 3D convolutional neural network (R3D). It is used to extract
valid and discriminative spatiotemporal features for action recognition. This enables the
capture of long-range time information by aggregating 3D convolutional network entries
as inputs to LSTM (long short-term memory) architectures.

There are many known neural network algorithms, and each algorithm has its own
characteristics. After reviewing the research status at home and abroad, it was found that
BP algorithms can be used in the detection of many kinds of fruit, but the use of a BP neural
network to predict the content of virgin fructose has great advantages. Therefore, in the
next experiments, we choose the BP algorithm.

3. INIS Scheme

In this paper, we propose an intelligent near-infrared diffuse reflectance spectroscopy
(INIS) scheme for the non-destructive testing of the sugar contents in vegetables and fruits.
In the experimental part, we select the cherry tomato as the representative fruit. However,
this method can be extended and optimized to be used in almost all fruits and vegetables.

3.1. Basic Principles and Characteristics of Near-Infrared Spectroscopy Technology

Near-infrared light refers to the electromagnetic waves in the wavelength range of
780–2526 nm, which are generally divided into two regions: near-infrared short waves and
long waves. The wavelengths corresponding to various electromagnetic waves are shown
in Figure 2.
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Figure 2. Near-infrared spectral region diagram.

The near-infrared detection methods for fruit sugar content include near-infrared re-
flection detection, near-infrared transmission detection and near-infrared diffuse reflection
detection. A schematic diagram of the near-infrared reflection detection, near-infrared
transmission detection, and near-infrared diffuse reflection detection methods is shown in
Figure 3.
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A comparison of the applicable objects and characteristics of the three main methods
of near-infrared detection is shown in Table 3.

Table 3. Three main infrared detection technologies.

Near-Infrared Spectrometric
Method The Applicable Objects The Characteristics

transmission detection Transparent and semitransparent
sample

It can fully reflect the internal structure
information of the sample, but needs high energy

specific light source.

reflection detection Opaque, solid, and semisolid sample

According to the regular reflected light, reflected
light mainly carries the spectral information of

the surface of the fruit, while the internal
information of the fruit is less.

diffuse reflection detection Opaque, solid, and semisolid sample
It can fully reflect the internal structure

information of the sample, but does not need
high energy specific light source.

As shown in Table 3, the near-infrared reflectance detection method is more suitable for
experimental research on the detection of fruit peel surface information. The near-infrared
transmission method basically reflects the internal quality information of the fruit, but it
requires a specific light source with high energy. In the near-infrared diffuse reflection
detection method, the light information received by the detector not only reflects the
characteristics of the internal tissue of the fruit, but it also has relatively low requirements
for the light source. No specific high-energy light source is required for detection. Therefore,
this experiment is based on the advantages and disadvantages of the three NIR detection
methods and various factors in the test design. In the end, it was decided to use the
near-infrared diffuse reflection detection method.

3.2. The BP Neural Network Establishment
3.2.1. BP Neural Network

The term backpropagation and its general use in neural networks was announced
by Rumelhart, Hinton, and Williams in 1986. It is a one-way propagation multi-layer
forward network, which is trained using the error back propagation method [37]. BP neural
networks have many application scenarios [48].

The BP network is composed of an input layer, hidden layer, and output layer. Each
layer is composed of a number of simple neurons that operate in parallel. The neurons in
the network layer are completely interconnected, and the neurons of the same level are
not interconnected. Although the structure of each neuron is relatively simple and has
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only limited functions, the network system composed of a large number of neurons can
achieve extremely rich and colorful functions. In the topology of the BP network, the input
layer and output layer can be obtained from the problem itself. The number of nodes in the
hidden layer is the key.

The topological structure of the BP neural network is shown in Figure 4. Its learning
rule adopts a gradient descent algorithm. At first, the input vector is passed positively to
the hidden layer. Then, the transfer function is calculated, and finally the result is passed to
the output layer and the output result is obtained [49]. The BP network changes the weights
and thresholds through forward feedback errors. When the network output and actual
expected output for the mean square error are below a certain threshold or the number of
learning points meets certain conditions, the BP neural network training is completed.
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Figure 4. Topological structure of the BP neural network.

Each hidden layer contains multiple neurons. The neuron format is shown in Figure 5.
The numbers of input X and output Y are set as required, but X0 is the specified value of
−1. Each input corresponds to a weight, and X0 corresponds to w0θ. In the calculation
process, the sum is calculated first and then the mapping is performed.
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Here, X is the input,X = [X0, X1, . . . , Xn], W is the weight,W =


wi0
wi1

...
win

, and Y is the

output. The output can be represented as Equation (2):

neti =
n

∑
j=1

WijXj − θ = XW (1)

yi = f (neti) = f(XW) (2)
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In this way, the calculation of one neuron is completed. The reference for the con-
struction of the entire BP neural network model is shown in Figure 6. The result for each
layer of neurons is the sum of the products of the previous layer and the weights. We
continue in turn until the predicted value Y is output, and then compare it with the actual
value. An error ε6 is generated. F6(e) pushes the error backwards. The errors ε4 and ε5
are formed in F4(e) and F5(e) in turn. The backward calculation of the error is shown in
Equations (3) and (4). Here, Z is the measured value and Y is the predicted value:

ε4 = W46ε6 (3)

ε1 = W14ε4 + W15ε5 (4)
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In this way, the errors for all levels are calculated backward in turn. Then, we start
from the first layer to adjust the weights of all levels to reduce the errors. Then, we calculate
forward and repeat the operation until the error for the actual value is between the set
value. At this point, the constructed model is the established BP neural network model.
The number of neurons in the model and the setting of the training function are the keys to
ensuring the accuracy of the model.

3.2.2. The Establishment of BP Neural Network Model

The structure of the network includes an input layer, hidden layer, and output layer.
In this paper, the preprocessed principal component data are used as the inputs for the
BP neural network, and the measured sugar content of the cherry tomatoes is the target
output of the network. The number of neurons in the hidden layer is determined by the
following empirical formula. The structure of the BP neural network is constructed by
using the neural toolbox from MATLAB software. The system structure diagram is shown
in Figure 7.
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The empirical formula is:
n1 =

√
n + m + k (5)

Among them, n1 is the number of neurons in the hidden layer, n is the number of
input layer nodes, m is the dimension of the output layer, and k is a positive integer of 1~10.
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The number of neurons in the hidden layer can be calculated by the empirical formula
for four randomly selected values. Since the value of k is a positive integer from 1 to 10,
the resulting number of neurons in the hidden layer is a range. The calculation results are
shown in Table 4.

Table 4. BP neural network calculation of the number of neurons in the hidden layer.

a 16 23 31 81

number of neurons
√

7 + k
√

24 + k
√

32 + k 9 + k
range of neurons 5~14 5~15 5~16 10~19

The training function, adaptive learning function, performance parameters, and hid-
den layer transfer function settings in the BP network function are shown in Table 5. The
training functions of the network include Trainlm, Traindgm, and Trainscg. The most
suitable training function is selected through the results of the later model building process.

Table 5. BP neural network calculation of the number of neurons in the hidden layer.

Network Parameters Parameter Setting

Training function
Trainlm

Traindgm
Trainscg

Adapting learning function Learngdm
Performance function MSE

Transfer function Tansig

The specific parameter settings in the BP network training process are shown in Table 6.
Among them, the number of iterations can be set to a small number first, and then one can
observe the convergence result. If the convergence curve of the results window decays
faster, the previous parameters are more effective. Therefore, a larger number can be
filled-in to make the network converge, otherwise the previous parameters are modified.

Table 6. BP neural network model parameter settings.

Network Parameters Parameter Settings

Epochs 1000
Goal 0
Show 25

Max fail 6
Min grad 1 × 10−7

3.2.3. The Evaluation Criteria of the Model

In this paper, the cross-validation determination coefficient (R2) and average absolute
deviation (MAE) are used as the evaluation criteria for the model [50]. The specific formulas
are shown as follows:

R2 =
∑n

i=1 (yiP − ym)
2

∑n
i=1 (yim − ym)

2 (6)

MAE =
1
n

n

∑
i=1

(
∣∣yip − yim

∣∣) (7)

Regarding Equations (6) and (7), yip is the predicted value of sugar, yim is the measured
value, and ym is the average value of the measured value. The cross-validation determina-
tion coefficient is close to 1, and the smaller the MAE, the better the model predictability.
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3.3. INIS Architecture

The INIS model mainly includes the following two processes: (1) finding the relation-
ship between the near-infrared spectrum and the properties of the measured substance
through the sample and establishing a model; (2) predicting the properties of the substance
under testing through the established model. These two processes are the correction model
and the predictive model. In Figure 8, the process of the modeling is shown on the left and
the process of predicting the model is shown on the right. It can be seen that the INIS model
mainly includes three parts: near-infrared spectroscopy acquisition, model application, and
stoichiometry. Only through the combination of these three parts can a rapid and accurate
analysis effect be achieved.
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Figure 8. INIS architecture diagram.

An optimal model cannot be established overnight, but an optimal model can be
obtained through a continuous cycle of test–trial and build–test–comparison phases. After
ensuring the stability of the model, we can get a more accurate prediction result.

4. Materials and Methods
4.1. Materials

Near-infrared spectroscopy is usually divided into three acquisition methods: trans-
mission, diffuse reflection, and diffuse transmission. Among them, diffuse reflection
spectroscopy is more suitable for solids [51].

We carefully selected 80 cherry tomatoes (each of uniform color, a similar size, and
surface-damage-free) in supermarkets as research samples. We first washed the 80 cherry
tomatoes to remove surface stains and impurities. Then, dried the surfaces of the cherry
tomatoes. Finally, we placed groups of 10 cherry tomatoes into 8 bags and stored them at
room temperature. The samples of cherry tomatoes are shown in Figure 9.
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Figure 9. The cherry tomato samples.

The three points along the equator (approximately 120◦ apart) of the cherry tomato
were taken as data collection points, as shown in Figure 10.
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Figure 10. The three data collection points of the cherry tomato ( 1, 2, 3 are the data collection points).

In the experimental part, although we selected the cherry tomatoes as the represen-
tative only, this method can be extended and optimized to be used in almost all fruits
and vegetables.

4.2. Laboratory Apparatus

The experimental instruments included a halogen lamp, near-infrared spectrometer,
MPM-2000 optical multiplexer, stand, horizontal ball, copper plate, black box, and computer.
The parameters of the experimental instruments are shown in Table 7.

Table 7. The parameters of the experimental instruments.

Experimental Instruments Parameter

Halogen lamp (HL-2000-HP)
Wavelength range 360–2400 nm

Output power 8.8 mW
Integration time 1–400 ms

Near-Infrared Spectrometer (NIR 256-2.5) Wavelength range 900–2500 nm
Slit length 25 µm

MPM-2000 optical multiplexers Wavelength range 250–800 nm
Materials Copper

Sugar Meter Range 0–80%Brix
Materials Brass H62

Copper plate Diameter 200 mm
Thickness 15 mm

The spectral acquisition software is developed by Ocean Optics of the United States,
which has spectral acquisition mode settings, spectral parameter settings, and spectral
acquisition and spectral viewing functions.
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4.3. Measurement Methods

The experimental system uses a tungsten halogen lamp as the light source. The
probe is closely attached to the surface of the cherry tomato, and the near-infrared light
is transmitted to the surface of the cherry tomato through the optical multiplexer. After
the interaction between the near-infrared light and the fruit, the internal structure and
information relating to the fruit are transmitted to the spectrometer through the diffuse
reflection. Finally, the collected spectral data are stored in the computer. The structure of
the experimental system and the field demonstration are shown in Figure 11.
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5. Performance Analysis and Discussion
5.1. Spectral Pretreatment
5.1.1. Smoothing

Due to human operation and the external environment, the spectral data will not
only contain the internal structural information for the sample, but will also contain some
redundant information and noise. These factors will affect the accuracy of the results.
Therefore, it is very important to achieve spectral noise reduction. Signal smoothing is a
relatively common method for eliminating noise. The noise in the spectrum is assumed to
be zero random white noise. The use of multiple measurements to create an average may
reduce the noise and increase the signal-to-noise ratio.

The Savitzky–Golay convolutional smoothing algorithm is an improvement on the
movement smoothing algorithm. Let the width of the filter window be n = 2m + 1 and each
measurement point be x = (−m, m + 1, 0...0, 1....m − 1, m). The k−1 polynomial is used to fit
the data points within the window. The polynomial is y = a0 + a1x + a2x2 + . . . + ak−1xk−1.

Thus, there are n such equations, forming a system of k-element linear equations.
To ensure the system of equations has a solution, n should be greater than or equal to
k, so generally n > k is selected. The fitting parameter A is determined by the least-
squares method. This results in a system of k-element linear equations. This is shown in
Equation (8):

y−m
y−m−1

...
ym

 =


1 −m · · · (−m)k−1

1 −m + 1 · · · (−m + 1)k−1

...
...

...
...

1 m · · · mk−1




a0
a1
...

ak−1

+


e−m

e−m+1
...

em

 (8)

The above equation can be expressed as Y(2m+1)×1 = X(2m+1)×k · AK×1 + E(2m+1)×1

in the matrix form. The least-squares solution A is
.
A =

(
XT · X

)−1 · XT · Y. The model-

predicted value or filter value Y is Ŷ = X · A = X ·
(
XT · X

)−1 · XT ·Y = B ·Y.
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The Savitzky–Golay algorithm is a smoothing filtering algorithm that is not restricted
by the sample data and is suitable for the smooth de-noising of all kinds of signals. Com-
pared with other traditional algorithms, the smoother denoising effect of the Savitzky–
Golay algorithm has more stability and less error [52]. Therefore, the Savitzky–Golay
algorithm is used in this paper for smooth denoising. As shown in Figure 12, the noise
is basically removed after the smoothing process, and the peaks in the spectrum are not
significantly distorted or lost.
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5.1.2. Principal Component Analysis

In the prediction of sugar content, there are many factors that affect the results and
have certain correlations. Moreover, too many inputs can also influence the precision of the
forecast model. So the PCA is adopted to solve the problem.

The principal component analysis method recombines many original indicators with
a certain correlation into a set of new linearly independent comprehensive indicators. It
is a multivariate mathematical statistics method that converts multiple indicators into a
few comprehensive indicators. The comprehensive index not only simplifies the complex
issues, but also retains most of the information for the original indicators [53–55].

The principal component analysis not only eliminates the redundancy between data,
but also preserves the main information for the original variable, and the two variables are
independent of each other. At the same time, the purpose of simplifying the dimensions
of the input variable is achieved. In other words, all of the original variables are replaced
with a small number of variables and most of the original data are overwritten.

The magnitude of the eigenvalue represents the contribution degree of the correspond-
ing eigenvector to the whole matrix after orthogonalization. The principal component
contribution rate refers to the proportion of the variance that a principal component can
explain to the total variance, and the larger the value, the stronger the ability of the principal
component to synthesize the information of the original variable. When the cumulative
contribution rate is close to 1, the first p indicator variables y1, y2, · · · , yp are p principal
components, instead of the original m indicator variables, so that the p principal com-
ponents can be comprehensively analyzed. As shown in Table 8, the spectral data are
the principal component characteristic roots, principal component contribution rates, and
cumulative contribution rates after the principal component analysis.
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Table 8. The principal component analysis results.

Principal Component
Information Contribution Rate/% Cumulative Contribution

Rate/%

0.9407468 97.267704 97.267704
0.0209914 2.1703883 99.4381
0.003511 0.3630201 99.8011

0.0008316 0.0859785 99.8871
0.000231 0.0238872 99.911

0.0002125 0.0219725 99.933
0.0001433 0.0148213 99.9478
0.0001204 0.0124535 99.9602

8.06 × 10−5 0.0083345 99.9686
5.78 × 10−5 0.0059718 99.9745
5.01 × 10−5 0.0051796 99.9797
3.83 × 10−5 0.0039625 99.9837
3.24 × 10−5 0.003353 99.987
2.59 × 10−5 0.0026766 99.9897
1.97 × 10−5 0.0020354 99.9917
1.81 × 10−5 0.0018685 99.9936
1.57 × 10−5 0.0016231 99.9952
1.37 × 10−5 0.0014145 99.9966
8.82 × 10−6 0.0009118 99.9976
6.52 × 10−6 0.0006744 99.9982
5.01 × 10−6 0.0005178 99.9987
3.71 × 10−6 0.0003836 99.9991
2.53 × 10−6 0.0002615 99.9994
1.55 × 10−6 0.0001601 99.9996
1.26 × 10−6 0.0001301 99.9997
6.05 × 10−7 6.26 × 10−5 99.9997
3.70 × 10−7 3.82 × 10−5 99.9998
3.16 × 10−7 3.26 × 10−5 99.9998
2.48 × 10−7 2.56 × 10−5 99.9998
2.33 × 10−7 2.41 × 10−5 99.9999
1.84 × 10−7 1.91 × 10−5 99.9999
1.36 × 10−7 1.40 × 10−5 99.9999
1.17 × 10−7 1.21 × 10−5 99.9999
9.03 × 10−8 9.34 × 10−6 99.9999
8.97 × 10−8 9.27 × 10−6 99.9999
7.63 × 10−8 7.89 × 10−6 99.9999
7.31 × 10−8 7.56 × 10−6 99.9999
6.00 × 10−8 6.20 × 10−6 100
5.01 × 10−8 5.18 × 10−6 100
4.65 × 10−8 4.81 × 10−6 100
3.82 × 10−8 3.95 × 10−6 100
3.20 × 10−8 3.30 × 10−6 100
3.09 × 10−8 3.19 × 10−6 100
2.59 × 10−8 2.68 × 10−6 100
2.17 × 10−8 2.24 × 10−6 100
2.07 × 10−8 2.14 × 10−6 100
1.81 × 10−8 1.87 × 10−6 100
1.76 × 10−8 1.82 × 10−6 100
1.61 × 10−8 1.67 × 10−6 100
1.46 × 10−8 1.50 × 10−6 100
1.34 × 10−8 1.38 × 10−6 100
9.74 × 10−9 1.01 × 10−6 100
9.48 × 10−9 9.81 × 10−7 100
8.92 × 10−9 9.23 × 10−7 100
7.92 × 10−9 8.19 × 10−7 100
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Table 8. Cont.

Principal Component
Information Contribution Rate/% Cumulative Contribution

Rate/%

7.14 × 10−9 7.38 × 10−7 100
6.36 × 10−9 6.58 × 10−7 100
6.19 × 10−9 6.40 × 10−7 100
5.86 × 10−9 6.06 × 10−7 100
4.75 × 10−9 4.91 × 10−7 100
4.57 × 10−9 4.72 × 10−7 100
4.14 × 10−9 4.28 × 10−7 100
3.52 × 10−9 3.64 × 10−7 100
3.21 × 10−9 3.32 × 10−7 100
2.80 × 10−9 2.89 × 10−7 100
2.60 × 10−9 2.68 × 10−7 100
2.50 × 10−9 2.58 × 10−7 100
2.33 × 10−9 2.41 × 10−7 100
2.12 × 10−9 2.19 × 10−7 100
2.02 × 10−9 2.09 × 10−7 100
1.86 × 10−9 1.93 × 10−7 100
1.52 × 10−9 1.57 × 10−7 100
1.47 × 10−9 1.52 × 10−7 100
1.41 × 10−9 1.46 × 10−7 100
1.17 × 10−9 1.21 × 10−7 100
9.93 × 10−10 1.03 × 10−7 100
9.25 × 10−10 9.56 × 10−8 100
8.79 × 10−10 9.09 × 10−8 100
7.05 × 10−10 7.29 × 10−8 100
5.79 × 10−10 5.99 × 10−8 100

By performing a principal component analysis on the preprocessed spectral data,
removing redundant information, and screening out the characteristic factors, the smoothed
absorption data matrix (25,80) is reduced to (80,80). In the end, the 256 absorption data for
a single cherry tomato were reduced to 80 characteristic factors.

According to the cumulative contribution rate of the principal component analysis
in Table 9, four datapoints with a cumulative contribution rate higher than 99.99% were
randomly selected, including one with a cumulative contribution rate of 100 (see Table 9).
In the table, there is a reference to the principal component; that is, the number of rows of
the matrix input of the selected network.

Table 9. Some of the principal component analysis results.

a Principal Component
Information Contribution Rate/%

16 0.000018071150535 99.9936
23 0.000002528971721 99.9994
31 0.000000844258438 99.9999
80 0.000000000579484 100

The input layer dimension n = a (16/23/31/80), and the number of neurons in the
hidden layer can be calculated by Equation (5). Since the k value is a positive integer in
the range of 1 to 10, the number of neurons in the hidden layer is a range. The calculation
results are shown in Table 10.
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Table 10. Calculation of the layer neurons.

a n1 r Range

16
√

7 + k 5–14
23

√
24 + k 5–15

31
√

32 + k 5–16
80 9 + k 10–19

The input layer dimension n = a (16/23/31/80). The number of hidden layer neurons
n1 can be obtained from Table 8. The dimension of the output layer is m = 1. The network
training function is trainlm/traindgm/trainscg. Therefore, we get 12 prediction figures.

According to the results for the above training function Trainlm, when a = 80 and
the number of neurons is 12, the average absolute deviation is the smallest, and the cross-
validation determination coefficient is not the largest but it is similar to the cross-validation
determination coefficient of the average absolute deviation of the second hour (a = 31), so
for the training function Trainlm, when a = 80 and the number of neurons is 12, the model
has the best prediction effect. The cross-validation coefficient of determination is 0.8328
and the mean absolute deviation is 0.5711.

According to the result, when the training function is selected as Traindgm, when
a = 80 and the number of neurons is 11, the average absolute deviation is the smallest, and
the cross-validation coefficient of decision is small but it is close to 1, so for the training
function Traindgm, when a = 80 and the number of neurons is 11, the model has the best
prediction effect. The coefficient of decision for cross-validation is 0.8096, and the mean
absolute deviation is 0.8751.

According to the results for the above training function Trainscg, when a = 80, the
number of neurons is 11, the average absolute deviation is the smallest, and the cross-
validation coefficient of determination is the second person, which is close to 1, so for the
training function selection Trainscg, when a = 80 and the number of neurons is 11, the
model has the best prediction effect, the cross-validation determination coefficient is 0.7417,
and the average absolute deviation is 0.6403.

5.2. BP Network Model Analysis

The learning process for the BP neural network consists of two parts: forward propa-
gation and error backpropagation. Input sampling signals are sent in sequence by input,
hidden, and output layers [56]. The input of the network is the spectral data after the
principal component analysis. The output is the sugar content of the cherry tomatoes.

According to Table 11 and Figure 13, when a = 80, the network training function is
Trainlm, and the number of hidden layer neurons is 12, the cross-validation determination
coefficient R2 is 0.8328 and the average absolute deviation is 0.5711. Therefore, the model
described above is the best and the prediction result is shown in Figure 13 (80-Trainlm).

Table 11. Model prediction results.

a Network Training
Function n1 R2 MAE

16 Trainlm 10 0.8787 0.8946
Traingdm 13 0.9249 0.9749
Trainscg 12 0.5172 0.8672

23 Trainlm 11 0.9901 0.9716
Traingdm 11 0.9211 0.9539
Trainscg 13 0.8103 0.7310

31 Trainlm 6 0.8299 0.6371
Traingdm 10 0.9044 0.9697
Trainscg 11 0.4348 0.8079

80 Trainlm 12 0.8328 0.5711
Traingdm 11 0.8096 0.8751
Trainscg 11 0.7417 0.6403
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6. Conclusions and Future Work

In this study, a near-infrared non-destructive testing method for the sugar content of
cherry tomatoes was designed based on a BP neural network. An experimental system
for near-infrared non-destructive testing was set up. The spectral data were preprocessed
using the Savitzky–Golay algorithm and the principal component analysis method. The
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present study aimed to analyze the model prediction effects of the different parameters
and to find the best model. The results show that when the network model structure of
80-12-1 is established and the network is trained using the training function Trainlm, the
cross-validation determination coefficient of the model is 0.8328 and the average absolute
deviation is 0.5711. Therefore, the model prediction effect is the best at this time.

The near-infrared non-destructive testing method based on the BP neural network
proposed in this paper not only achieves the detection of the sugar content of cherry
tomatoes, but also provides a foundation for the quality detection of cherry tomatoes, as
well as for the quality detection of various other fruits and for fruit grading. However, the
experimental process and the measurement of the sugar content will produce a certain error,
and these errors will directly affect the accuracy of the results. Therefore, the challenge
of reducing errors needs further research. In addition, due to the important role of fruit
quality testing and grading in the agricultural field, a stable detection method that applies
to all fruits is also a direction that needs to be studied.

In this paper, we selected the cherry tomato as the representative fruit. However, this
method can be extended and optimized to be used in almost all fruits and vegetables. The
optimal prediction model obtained in this paper is for cherry tomatoes. In order to improve
the applicability of the model, other fruits can also be studied, so as to find the optimal
prediction models for the sugar contents of a variety of fruits and to apply them in real life.

In this paper, the sugar content of cherry tomatoes was taken as the indicator to study
the quality of the fruit. In addition, the indicators of fruit quality also included the acidity,
PH value, and hardness, which can be combined to extract comprehensive indicators. Here,
we have proposed a prediction model comprising comprehensive indicators and achieved
comprehensive prediction results for fruit quality.
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