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Abstract: From traditional machine learning to the latest deep learning classifiers, most models
require a large amount of labeled data to perform optimal training and obtain the best performance.
Yet, when limited training samples are available or when accompanied by noisy labels, severe degra-
dation in accuracy can arise. The proposed work mainly focusses on these practical issues. Herein,
standard datasets, i.e., Mini-ImageNet, CIFAR-FS, and CUB 200, are considered, which also have
similar issues. The main goal is to utilize a few labeled data in the training stage, extracting image
features and then performing feature similarity analysis across all samples. The highlighted aspects
of the proposed method are as follows. (1) The main self-supervised learning strategies and augmen-
tation techniques are exploited to obtain the best pretrained model. (2) An improved dual-model
mechanism is proposed to train the support and query datasets with multiple training configurations.
As examined in the experiments, the dual-model approach obtains superior performance of few-shot
classification compared with all of the state-of-the-art methods.

Keywords: dual-model; few-shot learning; few-shot classification; feature matching;
self-supervised learning

1. Introduction

In the deep learning domain, whether it is image classification [1], object detection [2],
or segmentation [3], the quantity and quality of the dataset itself are critical for the training
of the model. Specifically, in the case of general image classification, the quantity and
quality of the datasets are critical in determining the performance of the model. However,
the generation of large and complex image datasets through manual labelling results
in huge labor costs and also involves significant labelling and curation time. Recently,
the alternate approach for labelled dataset generation is performed using web crawling
techniques to collect numerous images from the Internet along with the associated text
descriptions. This can save tremendous labor costs in image generation, yet the collected
images may suffer from massive mislabeling, leading to quality degradation of the overall
dataset. Moreover, though many open datasets are available, their application scope is
limited, and even in a dataset, there exist multiple issues such as out-of-distribution data
and data versatility. For example, in the case of industrial defect detection, the open datasets
cannot be used directly. Sometimes, techniques such as transfer learning are not applicable
as the source and test datasets have different distributions and impose a strong domain
shifting problem. Hence, dataset generation is tricky and tedious as the labelling team
has to be incorporated with the production team and decide the product label based on
multiple factors. Hence, it is indeed challenging to obtain sufficient annotated data, and if
the dataset is small in quantity, many general supervised learning approaches cannot be
trained properly, resulting in poor classifiers.
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Therefore, the main objective of the proposed work focuses on the development of a
few-shot-based classification algorithm, which is suited for practical applications, including
small or incorrect data involvement. As in Figure 1, the few-shot training involves fewer
images than that of the standard classifiers and still can achieve the classification of new
classes in the testing stage [4]. The first challenge is to figure out how to learn effectively
with a small amount of training data, and the key is to enable the model to extract effective
information from the small dataset and, accordingly, improvised classification performance.
The second direction is to maximize the image information, and thus, the model can learn
efficiently and be trained with a few labelled data. Considering the objectives, in this work,
a multi-backbone model is proposed to yield good feature extraction and obtain superior
performance compared to the state-of-the-art methods.
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Figure 1. Example of few-shot training and classification.

This manuscript is organized as follows: Section 2 covers the literature review on the
existing works and limitations and main contributions of the proposed work. Section 3
briefly describes the datasets used for the model training and evaluation. The detailed
description of the proposed model is provided in Section 3. The comprehensive exper-
imental analysis on three standard datasets and the overall summary are provided in
Sections 5 and 6, respectively.

2. Related Work

Some state-of-the-art works in the few-shot framework are introduced as follows.

2.1. Conventional Approaches

The primary approach to few-shot learning uses the matching nets (MNs) [5], which
are based on the metric learning approach to extract feature embedding and use machine
learning (ML) classifiers such as weighted nearest neighbors. The approach comprises
multiple gradient update computations, limiting its utility to small datasets. Subsequent
research works predominantly focused on the meta-learning-based approach [6,7], in
which the model is trained on multiple learning tasks with an assumption that it can be
easily extended to solve scenarios with limited data. The algorithm is inspired by how
humans are trained in multiple skill sets, which is applicable to solving decision-making
problems. Hence, the key objective is to obtain a more generalized model, which can be
easily fine-tuned even with limited labelled data.

2.2. Meta Learning Models

In contrast to the conventional deep learning techniques, which require huge data,
the meta learning models are trained using the randomly sampled subset from the large
dataset. The training process is defined as N-way K-shot learning, where N-way usually
refers to the number of categories of training and testing data and K-shot indicates how
many pieces of data are included in each category [8].
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For example, a 5-way 1-shot task is performed as shown in Figure 2. In the meta
training stage, the model distinguishes the test images, which are in the same category as
the randomly selected images by N-way K-shot. Thereafter, multiple random samplings
and pairings are performed to train the model to learn and predict unknown labels with a
small amount of data. In the meta testing stage, the trained few-shot training model can be
applied to the few-shot prediction tasks of different categories from the training stage using
the prior knowledge previously learned during the meta training stage. As the models are
trained on limited data, there is a serious possibility of overfitting.
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To solve the overfitting issue, the prototypical network (PN) [9] is introduced as
shown in Figure 3. The central premise of the PN is that there exists an embedding in
which points cluster around a single prototype representation for each class. To achieve
that, the deep neural networks are used for the non-linear mapping of the input into
an embedding space with the class’s prototype to be its mean of the support set in the
embedding space. Specifically, the feature embedding of the support set is used to find the
most representative features of each category. It can be noticed in Figure 3 that there are
three different types of feature cluster points in the support set, and they correspond to the
features representing three different categories. The feature embedding of the query set is
used for similarity calculation and for category prediction. Each feature point of the whole
query set is sequentially compared with all the support set feature points based on the
distance metrics. The closer the feature points of the query set are, the higher the probability
that it belongs to that specific category. By designing a stable similarity calculation system,
the PN not only makes full use of each selected image feature information in the training
phase, but also introduces training stability, maintaining a good feature space projection
relationship. Moreover, as in previous meta learning, the method also utilizes the concept
of random sample training, which involves taking up a small subset, and then, it subdivides
the selected samples into a support set and a query set. In handling new category labels
in the testing phase, the model can perform more effectively since it has learned how to
distinguish different categories of data from a few randomly selected samples.

2.3. Self-Supervised Learning Models

Recent methods mainly focus on self-supervised-learning (SSL)-based [10–14] tech-
niques. In the latest, based on the combination of SSL and meta learning, a new approach
is proposed, termed AmdimNet [15], as shown in Figure 4. As the SSL techniques are
formulated based on contrastive learning, there is no requirement for labelled data to obtain
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the pretrained model, and it is ideally suited to handle the few-shot learning problems.
The model architecture is divided into upper and lower parts, in which the upper part
comprises the pretraining process using self-supervised learning (SSL) [12] and the lower
part is the fine-tuning process using the few-shot training architecture. In the pretraining
process, unlabeled images are fed as the input and each image under different augmen-
tations to guide the network to learn unique features for that particular category, i.e., the
model learns the class-consistent features. In the subsequent stage, the pretrained model,
which has deep prior knowledge, can be easily fine-tuned with just a few image samples.
Hence, the resultant model can produce promising feature embedding, which is a good
representation of pretraining, as well as few-shot data. This combined approach using SSL
and meta learning results in a better model than a single-stage training with small data.
However, many self-supervised learning methods and the augmentation schemes are not
fully exploited. Hence, in this work, a detailed work was carried out to understand the
various SSL networks and its usage in few-shot learning.
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Considering the overall limitations, the proposed work emphasizes the development
of an improved few-shot classification model with an optimal pretrained model and dual-
architecture for better learning. The main contributions are as follows.
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(1) As the few-shot classification relies on learning from a few ground-truth data, the
proposed work focusses on the development of optimal pretrained models, which can
be generalized and fine-tuned to any datasets with limited training. In this work, four
prominent SSL techniques such as SimCLR, SimSiam, BYOL, and BTs were trained
and analyzed to obtain best pretrained backbone.

(2) For further improvisation, more augmentation techniques such as random jigsaw and
random patch swap were added to obtain more diversity and robustness, during the
pretraining stages.

(3) From the model perspective, the proposed work is based on the latest ConvNeXt
backbone, and a new dual-model configuration is proposed with different depths,
complementing the few-shot training. The new training strategies practiced in the
latest vision transformer and convolution models were also integrated.

(4) Finally, a new training approach is proposed, in which the distance between the feature
embedding of the query set and the most representative feature vector of each category
is used to determine the query set category. In addition, the progressive model training
was performed using multiple few-shot extraction and feature similarity assessment.

3. Few-Shot Learning Datasets

The proposed work was tested on three public standard few-shot learning image
datasets, as shown in Figure 5. The Mini-ImageNet dataset [16], which contains 60,000 images,
was collected from ImageNet. It has a total of 100 categories, including 64 categories of
training sets, 16 categories of validation sets, and 20 categories of testing sets, and each
category contains 600 images. To verify the ability of the model to classify a new category
with a small number of samples, the training set and the test set in the Mini-ImageNet
dataset were divided into distinct categories without any overlapping.
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The second few-shot learning dataset was CIFAR-FS [17], containing 60,000 images
collected from CIFAR100. The dataset comprises 100 categories, which are divided into
64 categories in the training sets, 16 categories in the validation sets, and 20 categories in
the test sets. Each category contains 600 images, and the image size is set at 84× 84. Similar
to the previous dataset, the training set and the testing set were divided in a specific way to
avoid any overlapping. The third dataset used in this work was the Caltech-UCSD Birds-
200-2011 (CUB 200) [18], containing 11,788 bird images with 200 categories. This dataset
is the most popular in fine-grained visual classification tasks. As opposed to the category
settings of the other two few-shot training datasets, the categories of the training and test
sets in CUB 200 still overlap, but the amount of data is far less than the other datasets.
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4. Proposed Method

The present work comprises three main elements involving self-supervised learning,
a dual-mode backbone network, and feature assessment. In this section, the detailed
description of all are provided in the following three subsections.

4.1. Self-Supervised Learning

The main strategy of the proposed work is to exploit the advantage of the SSL methods
in obtaining the best pretrained model and then improve the performance using more
effective backbone networks with better training strategies. The detailed elaboration of the
SSL methods is provided below.

The self-supervised learning models work under the common objective of learning the
representations that are invariant under various distortions. In general, different distorted
input images are fed through the variant of the Siamese network and a specific loss function
is minimized. The most challenging factor is to avoid the model collapse, leading the
encoder network to generate constant or non-informative vectors. To begin with, the
well-known framework based on the contrastive learning of visual representations, termed
SimCLR [18], was utilized. Given any training image x, the module produces two correlated
views of the same image, which are denoted as x̃i and x̃j, and this forms a positive pair.
Among many data augmentation approaches, crop and resize, crop and flipping, rotation,
cutout, Gaussian noise, and color jitter were adopted in this study for training. The model
optimization involves minimizing and maximizing the distances amongst features in the
intra- and inter-classes, respectively, and the distance metrics was based on the contrastive
loss function.

For a given image set {x̃k}, the positive pairs are generated as x̃i and x̃j. The main
objective of the contrastive prediction loss is to obtain a similar x̃j in {x̃k}k 6=i for the given x̃i.
For each mini-batch of N examples, as two augmentations are carried out for each example
at a time, 2N data points are generated. Herein, the normalized temperature-scaled cross-
entropy loss (NT-Xent) was adopted as the loss function, defined as follows.

li,j = −log

 exp
(

sim(xi ,xj)
τ

)
∑2N

k=1 1[k 6=i] exp
(

sim(xi ,xk)
τ

)
, (1)

where 1[k 6=i] ∈ {0, 1}; the output is 1 if k 6= i, and τ and sim(zi, zk) denote the temperature
parameter and cosine similarity, respectively. The temperature parameter is useful to widen
the range of cosine similarity [−1, 1] according to the user preference. Herein, τ1 was
set at 0.1, which expands the cosine similarity with the range from exp(0.1) to exp(10),
and it helps to better separate the positive and negative examples. The consolidated loss
is computed across all the positive pairs of both (i, j) and (j, i) for the mini-batch. The
SimCLR model has two main limitations: First, it requires a large amount of contrastive
learning pairs, which is not feasible for small/medium datasets. Second, to obtain the
optimal performance, it requires training with large batch sizes (up to 4096 or 8192), which
requires multiple graphical processing units (GPUs) or tensor processing units (TPUs), and
these are highly expensive and hard to realize in many real-time applications. Another
important problem is the model collapse, which results in a poor encoder model. To tackle
this issue, the subsequent models were based on the distillation methods such as simple
Siamese representation learning (SimSiam) [19] and bootstrap your own latent (BYOL) [20].
The architecture and parameter updates were modified to bring asymmetry in the network.
The model parameters were only updated using the distorted version of the input, and
the other distorted version was used as a fixed target. Though the model avoids collapse,
it is not certain how it will avoid collapse. More recently, another approach based on H.
Barlow’s redundancy reduction principle was proposed, as demonstrated in Figure 4b,
which was applied to the pair of identical networks as in SSL models. The method is
termed Barlow twins (BTs) [21] and can perform well with reduced batch sizes, a deeper
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projector head, a large embedding, etc. The main contribution is the introduction of a new
loss function, termed the Barlow twins (BTs) loss.

LBT , ∑
i
(1− Cii)

2 + λ ∑
i

∑
j 6=i

Cij
2, (2)

where λ is a positive constant to balance the tradeoff between the invariance and re-
dundancy reduction loss; the notation C refers to the cross-correlation matrix, which is
the output of the two identical networks for each batch; the notation , signifies equal
by definition.

Cij ,
∑b zA

b,iz
B
b,j√

∑b

(
zA

b,i

)2
√

∑b

(
zB

b,j

)2
, (3)

where b refers to the batch samples and i, j are the indices of the vector dimension of the
network output. The C is the square matrix and is of a size of the dimensionality of the
network output. The BTs loss function is very effective in eliminating model collapse and
can provide the best feature learning. Though BTs aims to reduce the redundancy at the
embedding vector level, there is still a possibility that the input images may have correlated
patterns. In this work, the pretraining was carried out using SimCLR, SimSiam, BYOL, and
BTs with the additional augmentation used in the fine-grained classification problems. An
improved pretrained model was obtained through this study, and the detailed comparative
results are presented in the Results Section.

4.2. Dual-Model Architecture

Herein, the detailed description of the proposed model using the dual-model archi-
tecture is provided. As shown in Figure 6, the overall training structure and process can
be divided into two parts, i.e., few-shot data extraction and feature similarity assessment.
At the beginning of each few-shot training, a small subset of data is randomly selected
from each category and is divided as the support set and the query set. For this randomly
selected data, the categories in the support set and the query set are the same. Subsequently,
the data of the support set and the query set are passed through different feature extraction
networks to obtain the feature embedding for each image.
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In the subsequent stage of model similarity learning and calculation, the feature
embedding of the support set is used to build the most representative features for each
category. On the other hand, the feature embedding of the query set is used for similarity
calculation, which is similar to the classifier function of general supervised learning. In
this way, the model can learn to understand the similarity in the feature embedding of
each category from the few samples. The solid circles of different colors in the feature
space represent the feature embedding of different categories in the support set. The
black solid circles represent the most representative feature embedding of each category,
and the white solid circles represent the feature embedding of the query set, respectively.
Through the distance estimation between the feature embedding of the query set (white
solid circles) and the most representative feature embedding of each category (black solid
circles), the model can determine all of the data in the query set. The overall training
achieves the improved few-shot classification through multiple few-shot extraction training
and similarity judgment.

Figure 7 shows a schematic diagram of the selection method of few-shot training.
For instance, let us assume the tasks as a 3-way 5-shot with 5-query task, in which 3-way
refers to the number of categories selected each time before training and testing and 5-shot
refers to number of data samples in the support set. The 5-query refers to the amount of
data in each category of the query set. Hence, at the beginning of each few-shot training,
different types of data are randomly selected as the new support and query set. This helps
to increase the generalization ability of the model to various types of data, which is the key
objective of few-shot learning.
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4.3. Feature Extraction and Similarity Assessment

Figures 8 and 9 show the backbone network of our feature extraction model for
the support set and query set. The main architecture of the models was inspired by the
design of the ConvNeXt [22] block, as shown in Figure 10. Compared with the standard
ResNet [23] as a baseline, the ConvNeXt block combines the advantages of many models to
optimize the performance of its own feature extraction. For example, it draws depthwise
convolution to improve the learnable features of each channel and adapt the design concept
of various vision transformers (ViT) [24] such as Swin-transformer (Swin-T) [25] to improve
the learning performance of the CNN. Because of the different task orientations of the
support set and the query set, the support set data are more influential than the query set
in few-shot learning. From Figure 8, it can be seen that the number of convolutional filters
used in the third convolutional block for the support set feature is three-times bigger than
that of the query set backbone. As the network learns the query set through limited images,
the backbone can be relatively small. However, in comparison with the single-model
backbone in existing networks, this dedicated backbone for the support and query set is
with more advantages.
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The feature extraction process of the support set and query set is shown in Figures 11 and 12.
The feature embedding of each datum in the support set is extracted through the support set
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feature extraction model, and the most representative feature of each category is computed
using Equation (1). The term Cn refers to the center point within each category cluster.

Cn =
1
S ∑

xd∈S
Backbone(xd) (4)

d(x, y) =
√
(x1 − y1)

2 + . . . + (xn − yn)
2 (5)

L(x) = p(y = n|x) = − log
exp(−d(backbone(x), Cn))

∑n′ exp(−d(backbone(x), Cn′))
(6)
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An illustrative example is provided in Figure 13; it can be seen that, since the feature
embedding of the query set is closer to the depth feature of C2, the category of the data is
predicted as C2.
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5. Results and Analysis

To perform the comprehensive model evaluation, the three standard datasets, i.e.,
Mini-ImageNet, CIFAR-FS, and CUB 200, were used and compared with many state-of-
the-art models. The final model predicts each image in the test dataset, and the class
with the highest score is selected. The final evaluation was carried out by comparing the
predicted class with the ground-truth label. If the two labels are consistent, it is a correct
case; otherwise, it is an incorrect case. The accuracy rate (Acc.) was used as the evaluation
criterion, which is defined as follows.

Acc =
Ncorrect

Nall
, (7)

where Ncorrect refers to the number of correctly classified images and Nall represents the
total number of images in the test set.

5.1. Pretrained Model Optimization

As the few-shot learning method was trained on minimal images, the pretrained model
can significantly affect the classification performance. In this work, four prominent SSL
methods such as SimCLR, BYOL, SimSiam, and BTs were considered. The objective was
to identify the SSL method that can produce the optimal pretrained model. The backbone
model was ConvNeXt, and each model was trained for 50 epochs with a batch of size 256.
For the experiments, the Mini-ImageNet dataset was used, in which 40% of the images were
used to conduct training without labels, 10% of the labelled images were considered for
fine-tuning, and 1000 images were used for testing. The general classification performance
of these methods was tested, and the best approach was selected to obtain the pretrained
model for the few-shot classification. In addition to the standard augmentation such as
crop, resize, flipping, rotation, cutout, gaussian, and color jitter, we also exploited some
additional augmentation that are popular in fine-grained classifiers such as random patch
swap (RPS) and random jigsaw (RJ) [26]. In fine-grained learning, these augmentations
are very useful in learning features of different granularities and also help the network
localize in fine-grained regions. It can be also seen from Table 1 that the new augmentations
also improvise the general classification accuracy, which corresponds to an improved
pretrained model.

Overall, the BTs with additional augmentation attained the best classification per-
formance. Hence, instead of considering the pretrained model trained on Image-Net
directly, it was further fine-tuned using BTs with an additional augmentation technique
on 30% of the training images (un-labelled) for all datasets. This process can provide a
good generalized pretrained model to each of the datasets and also boost the few-shot
classification performance.
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Table 1. Comparisons of SSL methods.

Method Augmentations Accuracy

SimCLR

Set 1: crop, resize, flipping, rotation, cutout,
gaussian and color jitter

63.5%

SimSiam 64.21%

BYOL 66.72%

BTs 67.85%

BTs Set 1 + RPS + RJ 68.9%

5.2. Model Ablation Studies

In this study, a detailed ablation study was carried out to determine the number of
convolutional blocks used in the support and query feature extractors. It can be seen from
Figures 8 and 9 that the numbers of convolutional blocks used for the support and query
set were different, and the accuracies for different combination are presented below. All
this testing was performed on the Mini-ImageNet dataset.

To begin with, as in Cases 1 and 2, the backbone models of the support and query
set were provided with more convolutional layers from the existing setup [23]. It can be
seen that the accuracy was significantly less for both cases, and it was also inferred that,
when the convolutional blocks kept for the query set were fewer, the model delivered better
accuracy. This reduction in accuracy was due to the overfitting issue with respect to very
deep configurations and limited training data. This is evident from the fact that, in Cases 1
and 2, the model provided high accuracy on the training sets and low accuracy on the test
sets, whereas in Cases 4 and 5, the training and test accuracy were nearly equal. Overall,
Case 4 was considered for our final training due it having the best accuracy, and the query
set backbone model is maintained to have less depth than the support set. We observed
this type of configuration to be also effective in avoiding the overfitting or underfitting
issues. Moreover, k-fold cross-validation was performed considering different model
configurations and image categories. For the experimentation, five-fold cross-validation
was considered using the training set images with different numbers of class labels, as
in Figure 14. It can be seen that, in agreement with Table 2, the Case 4 model had the
best average accuracy and least variance, whereas Case 3 showed significant degradation
in performance with respect to the number of class labels. The comprehensive results of
the Case 4 model on the standard few-learning datasets and its comparison analysis are
provided in the next subsection.
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Table 2. Convolutional blocks for support and query set.

Case Support Set Query Set Accuracy
(Training)

Accuracy
(Test)

1 6,6,27,6 6,6,27,6 96.28 91.63

2 6,6,27,6 6,6,9,6 96.53 92.63

3 3,3,27,3 3,3,27,3 95.78 93.05

4 3,3,27,3 3,3,9,3 96.10 95.50

5 3,3,9,3 3,3,27,3 94.35 93.15

5.3. Few-Shot Classification Results

Few-shot classification and few-shot learning are technically the same process. At the
beginning of each small-sample test, several pieces of data are randomly selected from
each category of the overall test dataset as a support set and a query set for prediction,
and then, the query set is used for prediction. The feature embedding of each image is
obtained from the data of the support and query set through the dual-backbone network.
Subsequently, the distance is evaluated between the feature embedding of the query set and
the most representative deep feature of each category (calculated from the depth feature of
the support set). Based on the least distance, the class labels are estimated, and the results
for various datasets are shown below.

Table 3 shows the few-shot classification results of Mini-ImageNet (5-way 5-shot). In
this experiment, five categories of test images were randomly selected from the 20 categories
of the Mini-ImageNet dataset as the test dataset, and 5 images in each category were ran-
domly selected as the support set and 15 images as the query set for the prediction. The
number of few-shot classifications in the testing phase was performed 10,000 times, and
the average accuracy is listed. From the results, it can be seen that the proposed model per-
formed the best among the existing works, and the overall classification accuracy was 3.11%
higher than the current state-of-the-art method. Table 3 also shows the few-shot classifica-
tion results of Mini-ImageNet (5-way 1-shot). In each few-shot classification, five categories
of test images were randomly selected from the 20 categories in the Mini-ImageNet dataset
as the test dataset, and each category would randomly select 1 image as the support set
and 15 images as the query set for the prediction. The number of few-shot classifications in
the testing phase was performed 10,000 times, and its average was estimated. As the data
usage was with only 1-shot, thus the model accuracy was slightly lower than that of the
5-shot classification. However, the proposed method still outperformed the state-of-the-art
methods by 2.31%.

Similar experiments for the CIFAR-FS dataset are presented in Table 4, and it can be
seen that the proposed model performed 1.96% and 1.46% higher than the existing models
for 5-way 5-shot and 5-way 1-shot, respectively.

The classification accuracy for the CUB 200 dataset is shown in Table 5, in which the
proposed model performed 1.23% and 1.06% higher than the existing models for 5-way
5-shot and 5-way 1-shot, respectively.

Finally, the classification results of the single-model and dual-model on each small
dataset are provided in Table 6. It can be seen from the results that the dual-model proposed
in this work showed significant improvement in the classification results on the three few-
shot datasets compared to the single-model. It can also be observed that the classification
results of the dual-model in the three few-shot datasets were at least 1% higher than the
accuracy of the single-model methods. The results of the ablation study also verified that
the dual mode feature extraction architecture achieved superior classification results in the
few-shot classification tasks.
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Table 3. Classification accuracy on Mini-ImageNet.

Method Accuracy
(5-Way 5-Shot)

Accuracy
(5-Way 1-Shot)

Matching Nets [5] 60 46.6

MAML [4] 63.1 48.7

Relation Network [6] 65.32 49.42

Prototypical Networks [9] 68.2 50.44

PT + MAP [8] 88.82 76.82

Sill-Net [7] 89.14 79.9

EASY 3xResNet12 [13] 89.14 82.99

AmdimNet [15] 90.98 84.04

SOT [12] 91.34 84.81

CNAPS + FETI [14] 91.5 85.54

PEMnE-BMS * [11] 91.53 85.59

BAVARDAGE [27] 91.65 84.80

TRIDENT [28] 95.95 86.11

Dual-Model (Proposed) 94.64 88.3

Dual-Model (Proposed) + BTs-Pretrained
Model + Set 1 95.83 88.91

Dual-Model (Proposed-Final) +
BTs-Pretrained Model + Set 1 + RPS + RJ 95.98 88.96

Table 4. Classification accuracy on CIFAR-FS (5-way 5-shot).

Method Accuracy
(5-Way 5-Shot)

Accuracy
(5-Way 1-Shot)

EASY 3xResNet12 [13] 90.47 87.16

PT + MAP [8] 90.68 87.69

LST + MAP [10] 90.73 87.73

Sill-Net [7] 91.09 87.79

PEMnE-BMS * [11] 91.86 88.44

SOT [12] 92.83 89.94

Dual-Model (Proposed) 94.74 91.4

Dual-Model (Proposed-Final) +
BTs-Pretrained Model + Set 1 + RPS + RJ 95.16 92.35

5.4. Case Studies

To understand the robustness of the model with respect to various image attacks or
variants, such as cropping, scaling, illumination, color, background, etc., detailed case
studies considering images from all three datasets were conducted, as in Table 7. It can be
seen that, though the Sample 1 and Sample 2 images were taken from the same category, it is
visually challenging to classify them because of the huge variations or diversity. However,
the proposed model was very successful in correctly classifying such images, and this
clearly demonstrated the model’s capability in handling large intra-class variations and
that it is ideal for many real-time applications.
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Table 5. Classification accuracy on CUB-200 (5-way 5-shot).

Method Accuracy
(5-Way 5-Shot)

Accuracy
(5-Way 1-Shot)

Relation Network [6] 65.32 50.44

AmdimNet [15] 89.18 77.09

EASY 3xResNet12 [13] 91.93 90.56

PT + MAP [8] 93.99 91.68

LST + MAP [10] 94.09 94.73

Sill-Net [7] 96.28 94.78

PEMnE-BMS * [11] 96.43 95.48

SOT [12] 97.12 95.8

Dual-Model (Proposed) 98.35 96.82

Dual-Model (Proposed-Final) + BTs-Pretrain
Model + Set 1 + RPS + RJ 98.56 97.23

Table 6. Classification accuracy comparison of single-model and dual-model.

Framework Datasets
Accuracy

5-Way 1-Shot 5-Way 5-Shot

Single-Model
(Query

Backbone)

Mini-ImageNet 82.81 89.89

CIFAR-FS 85.68 90.44

CUB 200 92.56 93.99

Single-Model
(Support Backbone)

Mini-ImageNet 86.31 93.83

CIFAR-FS 89.68 93.72

CUB 200 95.1 97.43

Dual-Model
(Proposed

Method-Final)

Mini-ImageNet 88.96 95.98

CIFAR-FS 92.35 95.16

CUB 200 97.23 98.56

Table 7. Case studies on model robustness.

Dataset Sample 1 Sample 2 Variations

Mini-ImageNet
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evaluated, and the BTs trained with additional fine-grain augmentation was found to ob-
tain the best generalized pretrained model. A new hybrid architecture involving a dual-
CNN model with the vision-transformer-based augmentation technique was developed. 
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obtain the best feature embeddings for the query and sample set. Extensive experiments 
were conducted on the three standard few-shot datasets, Mini-ImageNet, CIFAR-FS, and 
CUB 200. Moreover, a detailed evaluation was carried out to validate the diversity and 
robustness of our method. As examined from the results, the proposed method outper-
formed the existing state-of-the-art methods on all datasets and set a new benchmark ac-
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6. Conclusions

A new few-shot classification approach was proposed by integrating self-supervised
learning, a hybrid convolutional neural network, and progressive training with multiple
subsets. Four prominent SSL frameworks, i.e., SimCLR, SimSiam, BYOL, and BTs, were
evaluated, and the BTs trained with additional fine-grain augmentation was found to obtain
the best generalized pretrained model. A new hybrid architecture involving a dual-CNN
model with the vision-transformer-based augmentation technique was developed. The
few-shot training was conducted using multiple subsets and similarity estimation to obtain
the best feature embeddings for the query and sample set. Extensive experiments were
conducted on the three standard few-shot datasets, Mini-ImageNet, CIFAR-FS, and CUB
200. Moreover, a detailed evaluation was carried out to validate the diversity and robustness
of our method. As examined from the results, the proposed method outperformed the
existing state-of-the-art methods on all datasets and set a new benchmark accuracy in
few-shot classification.
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