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Abstract: The reaction wheel is able to help improve the balancing ability of a bicycle robot on
curved pavement. However, preserving good control performances for such a robot that is driving
on unstructured surfaces under matched and mismatched disturbances is challenging due to the
underactuated characteristic and the nonlinearity of the robot. In this paper, a controller combin-
ing proximal policy optimization algorithms with terminal sliding mode controls is developed for
controlling the balance of the robot. Online reinforcement-learning-based adaptive terminal sliding
mode control is proposed to attenuate the influence of the matched and mismatched disturbance
by adjusting parameters of the controller online. Different from several existing adaptive sliding
mode approaches that only tune parameters of the reaching controller, the proposed method also
considers the online adjustment of the sliding surface to provide adequate robustness against mis-
matched disturbances. The co-simulation experimental results in MSC Adams illustrate that the
proposed controller can achieve better control performances than four existing methods for a reaction
wheel bicycle robot moving on curved pavement, which verifies the robustness and applicability of
the method.

Keywords: reaction wheel bicycle robot; reinforcement learning; sliding model control; robustness

1. Introduction

Compared with four-wheeled vehicles and other multi-wheeled vehicles, the long and
narrow shape of bicycle robots (BRs) with only two ground contact points can provide
greater flexibility and higher energy efficiency, which has the great potential application
value in rugged and narrow terrain [1]. However, most existing studies focus on the balance
control of BR on flat roads. To realize the unmanned driving of BR on rough roads, it is
necessary to study the balance control of BR on curved pavements.

As for developed mechanisms for the balance control of BR, they can be divided into
two categories. The first category is based on steering control. For instance, Zhang [2]
presented BR dynamics with an accurate steering mechanism model and analyzed its
balance control. Zhao [3] designed a steering controller to balance BR at a low speed (e.g.,
0.58 m/s). Sun [4] proposed a polynomial controller to achieve the balance of BR with time-
varying forward velocities. However, steering control cannot provide sufficient resistance
to disturbances for BR with low forward speeds. The second category is controlling
the auxiliary balancing mechanism, such as control moment gyroscopes (CMGs), mass
balancers (MBs) and reaction wheels (RWs). Chen [5] designed a stabilizing assistant
system for BR by using CMG. Zheng [6] combined steering and CMG to improve the
performance of balance control. BR with MB, such as a mass pendulum, can shift its center
of gravity corresponding to its attitude [7]. Reaction wheel bicycle robots (RWBRs) have
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also drawn considerable attention [8,9]. Compared with MB and RW, CMG has more
complex structures and more weight, which is not suitable for BR on curved pavement.
MB usually needs to be able to provide both large torque and high instantaneous speed, so
it is only suitable for lightweight BR or BR under small perturbations. Therefore, in order
to ensure the practicability of BR on a curved pavement, RWBR is selected as the research
object in this paper.

The existing control methods for BR with auxiliary balancing mechanisms mainly
include linear control, nonlinear control, and intelligent control. The linear control, such as
proportional-integral-differential (PID) [10] and linear quadratic regulator (LQR) [11,12],
can achieve balance control in the range of small roll angles by approximating the lin-
earization around the equilibrium point. However, for the balance control of RWBR on
a curved pavement, external disturbances and unmodeled characteristics can lead to the
degradation of the control performance of linear controllers and even the instability of the
system. In this regard, some scholars studied the nonlinear control for BR. In [13], a sliding
mode control and low-pass filtering were used to realize balance control on a flat road on a
real motorcycle, which showed better anti-interference abilities than the linear controller.
In [14], a fuzzy sliding mode controller was designed to deal with impulse disturbance
and system uncertainty, but the determination of fuzzy rules was rather complicated. An
adaptive law was designed for the reaching control part of the sliding mode controller,
and its coefficients were tuned monotonically in [9]. With respect to intelligent control,
taking reinforcement learning (RL) as an example, the neural network is used to fit the
system’s model or control strategy, and the control strategy is tuned via the continuous
interactions between the system and the environment to maximize the expected return. As
RL achieved remarkable results in a series of tasks [15,16], some scholars have also explored
the application of RL in BR tasks [17–19]. However, due to the difficulty of RL in sampling
efficiency, interpretability, and stability proof, RL is limited in robot motion control.

To solve the aforementioned problems of the intelligent control method, combining
the stability guarantee of traditional feedback controls (FC) with the optimization ability
of RL is attractive. Intuitively, this combination can be divided into parallel and serial
strategies. The parallel one (Figure 1a) superimposes the outputs of RL and conventional
feedback control. Taking [20] as an example, the residual reinforcement learning (RRL)
method is adopted to weaken the influence of unmodeled characteristics on system stability,
and the complex control problem is decomposed into two parts, one of which can be
effectively solved by the traditional feedback control method and the other can be solved
by RL. The method is successfully applied to a complex operation task of a physical
manipulator without modeling contact and collision. The serial one (Figure 1b) uses the
optimization capabilities of RL to tune the parameters or structures of FC. The serial
strategy may have the following advantages: (1) From the view of FC, the adaptive change
in FC parameters based on RL is beneficial for attenuating the influence of unmodeled
characteristics and periodic disturbances on the performance of FC. (2) From the perspective
of RL, the introduction of FC as a prior controller framework can greatly improve the
learning speed of RL. Thus, the series of FC and RL for the balance control of RWBR is
necessary and meaningful.

FC

RL

s u+ RL FC us

(a) (b)

Figure 1. Combination of FC and RL: (a) the parallel model. (b) The serial model.

In this paper, the serial controller of the terminal sliding mode control (TSMC) [21] and
proximal policy optimization algorithms (PPO) [22] is proposed to solve the balance control
task of RWBR while driving on curved pavements. The control problem considers matched
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disturbances (the dry friction of inertial wheel, etc.) and composite unmatched disturbances
(including unmodeled wheel–ground contact, gust disturbances, and periodic disturbances
induced by terrain, etc.). TSMC is a nonlinear FC method with strong robustness relative
to system uncertainties and disturbances. PPO is a type of policy gradient training that
alternates between sampling data via environmental interaction and optimizing a clipped
surrogate objective function using stochastic gradient descent. With its excellent versatility
and stability, it is used as a benchmark algorithm for RL at present. The proposed controller,
called PPO-TSMC, explores the environment via output sampling with Gaussian distribu-
tions. The scalar value of the BR state quantity in disturbed environments is estimated by
using a multi-layer neural network. The parameters of TSMC are tuned online by gradient
descent under reasonable optimization objectives, and an adaptive terminal sliding mode
controller based on RL is finally formed, which is used for the balance control of RWBR.

The contribution of this paper is to implement a PPO-TSMC controller that adaptively
adjusts the parameters of TSMC online based on the RL method of PPO and to apply it to
the balance control problem of RWBR while driving on a curved pavement. Specifically, a
simplified numerical model of RWBR is derived, and a feedback transformation is designed
for the simplified RWBR model. Then, a test scenario with multiple disturbances was con-
structed in MSC Adams, and the controller’s performances of RWBR using TSMC, adaptive
integral terminal sliding mode (AITSM) [9], PPO, RRL, and PPO-TSMC were compared
under different rear-wheel velocities and transverse periodic disturbance amplitudes of BR.
The effectiveness and robustness of the proposed PPO-TSMC in task scenarios are verified.
In addition, to the best knowledge of the authors, few studies considered the balance
control of BR under both matched and unmatched disturbances on curved pavements.

This paper is organized as follows: The RWBR is described in Section 2, and a dynami-
cal model referring to the inertial wheel pendulum is established using some assumptions
and simplifications. In Section 3, the simplified dynamical model is transformed into chain
form via feedback transformation. On this basis, the PPO-TSMC adaptive controller is
designed. The TSMC Net., Critic Net., and the calculation flow of the adaptive adjustment
of controller parameters are described in detail. In Section 4, the simulation environment
in MSC Adams is built, and four test cases were designed; then, the performance of five
different controllers are compared. Finally, in the Section 5, a conclusion is reached.

The video of the experiment is available at the following website: https://github.com/
ZhuXianjinGitHub/PPO-TSMC, accessed on 25 October 2022.

2. Dynamics

In order to illustrate the motion of RWBR on a curved pavement, the reference frames
are defined in Figure 2. The inertia frame is defined as ogxgygzg, and the body-fixed
reference frame is defined as ocxcyczc, where the center oC is located at the center of gravity
of the BR. The BR consists of four rigid bodies, namely, a rear wheel, body frame, reaction
wheel, and front wheel (simplified as R, B, W, and F, respectively), as shown in Figure 2. In
addition, the assumptions in the dynamical model are made as follows: (1) The thickness
of the rear and front wheels is negligible, and the contacts between wheels and the ground
are regarded as point contacts. (2) These four rigid bodies are symmetrical with respect
to the plane of the rear and front wheels, so the center of mass of these bodies are in the
same plane.

Consider the body frame and rear and front wheels as one unit P, and the reaction
wheel as another W in Figure 3. The BR can be converted to an inertia wheel pendulum
system [23]. The body fixed reference frames o1x1y1z1 and o2x2y2z2 are defined on P and
W. The mass and inertia matrix of the two parts with respect to the body-fixed reference
frame are m1, I1, m2, and I2. L1 and L2 represent the distance between the centroids of P
and W and the connection between front- and rear-wheel ground points on a flat road:

Jq̈1 + I2q̈2 −Mg cos(q3) sin(q1) = d1
I2(q̈1 + q̈2) = τ + d2

(1)

https://github.com/ZhuXianjinGitHub/PPO-TSMC
https://github.com/ZhuXianjinGitHub/PPO-TSMC
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where J = m1L2
1 + m2L2

2 + I1 + I2, M = m1L1 + m2L2, q1 is the roll angle, q2 is the reaction
wheel angel, q3 is the pitch angle of the robot, τ is the input torque of the reaction wheel’s
motor, and d1 and d2 are mismatched/matched disturbances.

Figure 2. RWBR on a curved pavement.

Figure 3. Equivalent inertia wheel pendulum.

3. Design of Controller

First, the feedback transformation of an equivalent inertia wheel pendulum is intro-
duced in this section. Upon this transformation, a terminal sliding mode controller is
constructed. Then, the actor-critic framework, TSMC Net., and the key components of the
PPO-TSMC are presented. The process and convergence of the PPO-TSMC are described.
An analysis of the PPO optimization process for TSMC is performed.

3.1. Feedback Transformation and Terminal Sliding Mode Control

Feedback transformation is a common approach in the control of the nonlinear systems.
Based on the Olfati-Saber transformation mentioned in [24,25], the following state variables
and feedback transformation are defined (1).

x1 = Jq̇1 + I2q̇2

x2 = Mg cos(q3) sin(q1)

x3 = Mg cos(q3) cos(q1)q̇1

(2)

u =− 1
J − I2

Mg cos(q3) cos(q1)τ −Mg cos(q3) sin(q1)q̇2
1+

(Mg cos(q3))
2 I2

J I2 − I2
2

cos(q1) sin(q1)
(3)
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The system can be expressed as follows:

ẋ1 = x2 + d1

ẋ2 = x3

ẋ3 = u +
1

J − I2
Mg cos(q3) cos(q1)d2

(4)

where
∣∣∣ 1

J−I2
Mg cos(q3) cos(q1)

∣∣∣ ≤ 1
J−I2

Mg is bounded.
The TSMC is designed according to the method in [26]. First, define the recursive

sliding surfaces as follows:

s0 = x1

s1 = ṡ0 + α0s0 + β0|s0|p0sign(s0)

s2 = ṡ1 + α1s1 + β1|s1|p1sign(s1)

(5)

where α0, α1, β0, β1 > 0, 0 < p0 < 1, 0 < p1 < 1 and the sign function [27] is defined as
follows:

sign(s) =

{
1, s > 0
−1, s < 0

(6)

and sign(0) ∈ [−1, 1]. Next, based on the sliding surfaces (5), the following output of the
mean part of the TSMC Net. is defined as follows:

usmc = −
(
ueq + ur

)
(7)

where ueq and ur are the equivalent and reaching controllers with the following expressions:

ueq = α0s(2)0 + α1s(1)1 + β0
d2

dt2 (|s0|p0sign(s0)) + β1
d
dt
(|s1|p1sign(s1))

ur = ϕs2 + ϑ(|s2|p2sign(s2))

(8)

where ϕ, ϑ > 0 and θ1 := [α0, α1, β0, β1]
T , θ2 := [ϕ, ϑ]T .

3.2. PPO-TSMC

In order to adopt reinforcement learning to optimize the TSMC, the above system
needs to be discretized and meets the following assumptions.

Assumption 1. The above system satisfies the Markov property, which means that the state at time
t only depends on the state at the time t− 1 and the corresponding action, independent of other
historical states and inputs.

The actor-critic framework for the optimization of a Markov decision process includes
two time-scale algorithms in which the critic uses temporal difference learning with a linear
approximation architecture, and the actor is updated in an approximate gradient direction
based on information provided by the critic. The actor-critic framework combined the
advantages of actor-only and critic-only methods. PPO with the actor-critic style is one of
the most popular on-policy RL algorithms. It simultaneously optimizes a stochastic policy
as well as an approximator for the neural network value function. The main reason for
choosing PPO in PPO-TSMC is that PPO uses conservative policy iterations based on an
estimator of the advantage function to guarantee the monotonic improvement for general
stochastic policies. The monotonic improvement guarantee for general stochastic policies
can be found in [28].
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PPO-TSMC aims at combing the interference rejection ability of TSMC and the mono-
tonic improvement ablity of PPO. Specifically, in order to adaptively adjust the coefficients
of TSMC using automatic differential software, the TSMC controller is represented as a
neural network. The weights of the neural networks represent the coefficients of the TSMC.
Then, the TSMC controller represented by a neural network is used to replace the mean
part of the PPO’s actor network. Finally, the optimization framework based on PPO with
an actor-critic is explored to adaptively adjust the coefficients of TSMC.

Remark 1. In this paper, the reinforcement learning method is introduced to tune parameters
α0, β0, α1, β1, ϕ, and θ of the TSMC controller (7)–(8). The main motivation of the PPO-TSMC
control scheme is to improve the robustness with respect to matched and mismatched disturbances. In-
deed, the online adaptation of ϕ, θ can attenuate the matched disturbance 1

J−I2
Mg cos(q3) cos(q1)d2,

and well-adjusted parameters such as α0, β0, α1, and β1 can lead to a more robust sliding surfaces
against mismatched disturbance d1. The adaptive terminal sliding mode was also designed for
RWBR in [9], but the existing method only considered the online regulation of ϕ, θ, so this method
cannot actively compensate mismatched disturbances. Moreover, the adaptive gains of [9] are
monotonic, which may cause more serious chattering in practice.

TSMC Net. (Figure 4) is used to map states xt = (x1, x2, x3)t ∈ R3 to actions ut ∈ R,
ut ∼ πθ(xt) in which θ represents the parameters of the policy π. In this paper, strategy π
is a normal distribution comprising the mean part of TSMC and the standard deviation
part of a non-negative output from a neural network.

TSMC

Tanh
Fully

Connected(1)
softplus

mean

std

Figure 4. TSMC Net.

The mean part: From the literature [24,29], state x1 in (4) is the generalized momentum
conjugate relative to q1 in (1). Therefore, the control objective of RWBR can be equivalently
considered as the stabilization of the transformed system (4).

The standard deviation part: The value of the standard deviation is output by the
neural network, as shown in Figure 4. The structure of the neural network is set up by a
hyperbolic tangent function y = tanh(x), a fully connected layer, and a softplus activation
function y = log(1 + ex). The fully connected (i) in Figure 4 represents the fully connected
layer and i represents the number of neurons in the neural network. The weights of the
neural network are independent of the states, such as the methods in [22].

σ2(xt) = log
(

1 + eWT
1 tanh(xt)+a

)
(9)

The output of the TSMC Net. is as follows:

u ∼ N
(

usmc(θ1, θ2), σ2(θ3)
)

(10)

where θ3 := [W1, a]T denotes the weights of the neural network in the standard deviation
part. θ = [θ1, θ2, θ3]

T represents adjustable parameters.

Remark 2. The normal distribution can be seen as a diagonal Gaussian policy with one dimension.
The Gaussian policy is one of the most common type of stochastic policies in deep RL and a type of
policy used in continuous action space. The standard deviation in Gaussian policies controls the
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exploratory behavior during policy training. Different implementations of the standard deviation
are discussed in [30].

The critic Net. implements a value function approximator that is used to map state xt
to scalar value Vµ(xt), in which µ means the parameter in the critic Net. The scalar value
represents the predicted discounted cumulative long-term reward when the agent starts
from the given state and takes the best possible action. The critic Net. of this paper is shown
in Figure 5, which is composed of a deep neural network and an ReLU [31] nonlinear
activation function. The gradient descent calculation of the critic Net. is shown in the
next section.

Fully

Connected

(3)

Relu

Fully

Connected

(3)

Relu

Fully

Connected

(3)

Relu

Fully

Connected

(1)

Figure 5. Critic Net.

To facilitate the description of the composition and calculation process of PPO-TMSC,
the framework of PPO-TSMC is shown in Figure 6. The process can be divided into three
steps. In the first step, Gaussian noise is added on the output of the TSMC so that the
RWBR can conduct some interactive exploration with the environment. The second step is
to randomly sample the stored state and action sequence. The state value and advantage
function under the finite-horizon estimators are calculated, and the parameters in critic
Net. are updated. The third step is to update TSMC coefficients based on the information
provided by critic Net.

R
W

B
R

(F
T

)

Memory

T
S

M
C

 N
et

.

Compensation of matched disturbance with

Attenuation of mismatched disturbances with

C
ri

ti
c
 N

et
.

Update      with the gradient                    by SGD

Sample

Update      with the gradient                 by SGD

Figure 6. The framework of the PPO-TSMC.

Step 1: qt can be obtained from the interaction of RWBR and the environment, xt can
be calculated by transformation (2), ut is based on strategy πθ (10), and the actual output
of the controller can be obtained by the transformation (3). Then, qt+1 and xt+1 can be
obtained by interactions with the environment. Reward rt+1 can be calculated by (11).
Then, {xt, ut, rt+1, xt+1} is stored as tuples:

rt =


0 rt < 0,
1− φX̄(t)2 0 < rt < 1
1 rt > 1

(11)

where φ = [a1, a2, a3, a4], ai > 0 and X̄ = [x1, x2, x3, u]T .
Step 2: Sample from the stored tuples and update the parameters µ of the critic Net.

Sample a sequence of N tuples Ω = {xt, ut, rt+1, xt+1, . . . , xt+N−1, ut+N−1, rt+N , xt+N}. The
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generalized advantage estimator (GAE) Ât shown by (13) is estimated based on temporal
difference errors δt:

δt = rt + γVµ(xt+1)−Vµ(xt) (12)

Ât = δt + (γλ)δt+1 + (γλ)2δt+2 + · · ·+ (γλ)U−t+1δU−1; γ, λ ∈ [0, 1], (13)

where γ is the discounted factor for future rewards and λ is the smoothing factor for GAE.
GAE (13) is beneficial for obtaining a better balance between bias and variance [32]. Update
critic parameters µ by minimizing loss LV across all sampled mini-batch data:

LV(µ) =
1
M

M

∑
i=1

Ai
2 (14)

µ = µ− ηµ∇LV(µ) (15)

where ηµ is the learning rate of critic Net.
Step 3: Update TSMC Net. by minimizing the loss function LCLIP:

LCLIP(θ) =
1
M

M

∑
i=1

[
−min

(
πθ(ui|xi)

πθold(ui|xi)
Âi, clip

(
πθ(ui|xi)

πθold(ui|xi)
, 1− ε, 1 + ε

)
Âi

)
+ ωH(θ, xi)

]
(16)

H(θ, xi) =
1
2

ln
(

2π · e · σi
2
)

(17)

θ = θ − ηθ∇LCLIP(θ) (18)

where πθ(ui|xi) represents the probability of taking action ui for a given state x, πθold(ui|xi)
represents the corresponding probability of policy parameter θ before updates, and the ε
clip ensures that each update will not fluctuate too much. H(θ, xi) is the entropy loss that
is used to encourage the agent’s exploration, ω is the entropy loss weight factor, and ηθ

represents the learning rate of TSMC Net.

Remark 3. The global convergence proof for PPO is challenging since it uses deep neural networks,
policies that become greedy, and previous policies for the trust region method. The authors of [33]
provided an overview of a convergence proof. In [34], the two-time-scale stochastic approximation
theory was employed to prove that PPO guarantees local convergence.

In TSMC-PPO, θ1 > 0 and θ2 > 0 can be ensured in the TSMC Net. The local conver-
gence of PPO can ensure that the number of θ3 approaches 0. Therefore, the asymptotically
stable TSMC-PPO can be guaranteed in practice.

4. Simulation Experiment
4.1. Simulation Platform

In order to verify the performance of the controller proposed in this paper, the simula-
tion environment is built in MSC Adams, as shown in Figure 7.

Figure 7. RWBR on the curved pavement in MSC Adams.

In the simulation environment, an RWBR is placed on a curved pavement. According
to the physical parameters of the BR, the parameters in Formula (1) are calculated as follows:
M1 = 0.5376 kg, I1 = 8.4614× 10−6 kg ·m2, M2 = 1.0137 kg, I2 = 8.2354× 10−6 kg ·m2,
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and L1 = L2 = 0.05 m. The maximum length of the robot is 0.3 m. The function relationship
between the height of the curved pavement and the direction of the xg of the inertia frame
is y = 1.5× (sin(π/12× x)− 1), and the total length of the pavement is 60 m.

In MSC Adams, the contact force model includes the normal positive pressure based
on collision [35] and the tangential friction force model based on velocity [36]. The function
expression of collision positive pressure is listed as follows:

Fc = max(0, k · xd
e − step(xd, 0, 0, d, cmax) · ẋd) (19)

where xd is the penetration depth, k is the contact stiffness coefficient, e is force exponent,
and d is the penetration depth when damping reaches the maximum. cmax is the maximum
damping coefficient. As shown in the Figure 8, the collision force has two parameters, the
stiffness coefficient and the damping coefficient. Thus, the collision model can be used
when assuming that the tire and the ground are made of rubber.

Figure 8. Normal contact force model in MSC Adams.

As shown in Figure 9, the frictional force model based on velocity defined in (20) is an
effective method for calculating tangential contact forces:

µ(ντ) =


−sign(vτ)µd

sign(vτ)step(|vτ |, vs,−µs, vd,−µd)
−step(vτ ,−vs,−µs, vs, µs)

|vτ | > vd
vs < |vτ | 6 vd
−vs 6 vτ 6 vs

(20)

where vτ is the relative velocity of contact points, vs and vd represent the stiction transition
velocity and friction transition velocity, respectively, and µs and µd represent the static
friction coefficient and dynamic friction coefficient, respectively.

The step function expression in MSC Adams is defined as follows:

step(x, x0, h0, x1, h1) =


h0

h0 − a ·∆2(3− 2∆)
h1

x 6 x0
x0 < x < x1

x > x1

(21)

where a = h0 − h1, ∆ = (x− x0)/(x1 − x0).
The parameters used in the contact force model can be chosen while following the

instruction of previous studies [37,38], which provide recommended ranges of the re-
lated parameters for different materials. Based on those recommendations, the values of
parameters are finally determined after multiple simulations in Adams.

Four test cases are formed by the combination of different rear-wheel angle velocities,
v, and periodic lateral disturbances (for simulating wind gusts), d, as shown in Table 1. In
addition, a vertical upward perturbation y = 0.1sin(0.5t/π)Nm is added at the center of
the RWBR.
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Figure 9. Coefficient of friction in velocity-based friction model.

Table 1. The parameters of four test cases.

Case 1 Case 2 Case 3 Case 4

v (rad/s) 1.5 1.5 3 3
d (Nm) 0.2sin(t/π) 0.3sin(t/π) 0.2sin(t/π) 0.3sin(t/π)

In each case, performances of TSMC, AITSM, PPO, RRL, and PPO-TSMC are com-
pared. In all cases, the control frequency is set to 1 kHz. All cases in the experiments are set
to 400 s. The initial coefficients of all controllers are tuned to obtain an acceptable control
performance. Four existing controllers are implemented as follows. (1) The implemen-
tation of TSMC is shown in Section 3.1 in addition to parameters θ1(0) = [1, 1, 1, 1] and
θ2(0) = [5, 6]. (2) PPO is implemented by replacing the TSMC Net. in Section 3.2 with the
actor Net. The actor Net. in PPO is shown in Figure 10. (3) The output of the RRL is the
output of TSMC multiplied by 0.7 plus the output of PPO multiplied by 0.3, as shown in
Figure 1a. (4) The implementation of the AITSM controller is as follows:

ur = (γ0 + γ1|s1|+ γ2|ṡ1|)sign(s2) + ε|s1|asign(s2) + k|s2|b·sign(|s2|−1)s2 (22)

and γ0, γ1, and γ2 are generated by the adaptation laws as follows:

γ̇0 =

{
η0|s2| i f |s2| > ξ

0else
γ̇1 =

{
η1|s2||s1| i f |s2| > ξ

0else
γ̇2 =

{
η2|s2||ṡ1| i f |s2| > ξ

0else
(23)

where ε = 0.01, a = 0.5, k = 0.05, b = 0.2, ξ = 0.8, η0 = 1, η1 = 1, η2 = 1, γ0(0) = 5,
γ1(0) = 5, and γ2(0) = 5 .
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Figure 10. Actor Net.

4.2. Experimental Results

In this section, we present the experimental results of the controllers, including TSMC,
AITSM, RRL, RL, and PPO-TSMC. The following conclusions can be drawn from exper-
iments. Firstly, the RWBR with PPO-TSMC is the only controller that completes the full
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400 s test scenario in all four cases (Figure 11), which shows that it has the best robust-
ness over others. Secondly, it is straightforward to observe that the PPO-TSMC obtained
the smallest roll angle tracking error from Table 2; thus, PPO-TSMC has the best control
performance among the five controllers. This is mainly due to the fact that both TSMCs
without information about the bound of disturbance and AITSM with a monotonically
increasing adaptation law (23) cannot maintain a good control performance for the balance
control of RWBR with matched disturbances, mismatched disturbances, and unmodeled
characteristics. Moreover, the reinforcement learning method is difficult to directly apply
to the online balance control task. In order to adaptively adjust the parameters of TSMC,
PPO-TSMC explores the influence of various disturbances through TSMC Net. and then
fits an estimator of value function through a sequence of states, actions, and rewards. This
value function can effectively guide the update of policy parameters based on gradients.

Table 2. Performance comparisons of five controllers.

Case Controller MAX (rad) MEAN (rad) RMS (rad) Time (s)

1

TSMC - - - 196
AITSM 0.215 −0.0229 0.0625 -

PPO - - - 22
RRL - - - 361

PPO-TSMC 0.0869 −0.0053 0.0371 -

2

TSMC - - - 168
AITSM 0.231 −0.0353 0.0735 -

PPO - - - 14
RRL - - - 274

PPO-TSMC 0.132 −0.0078 0.0539 -

3

TSMC 0.224 −0.0199 0.0883 -
AITSM - - - 389

PPO - - - 11
RRL 0.321 −0.0171 0.0931 -

PPO-TSMC 0.137 −0.0082 0.0489 -

4

TSMC 0.269 −0.0194 0.0858 -
AITSM - - - 265

PPO - - - 8
RRL 0.314 0.0046 0.0774 -

PPO-TSMC 0.211 −0.0072 0.0540 -

Since the RWBR with RL easily falls, to rule out this low-efficiency controller, Figure 11
only presents the tracking performance of the remaining four controllers. Figures 12–14
illustrate the variety of critic Net., weights, the mean parameters of the TSMC Net., and
the std of TSMC Net. The gain value of AITSM is shown in Figure 15. In case 1 and case 2,
the RWBR with the TSMC controller falls down in less than 200 s, and the RWBR with the
RRL controller falls down at about 380 s and 300 s. In case 3 and case 4, the RWBR with the
AITSM controller falls down at 390 s and 260 s, respectively. The RWBR with a PPO-TSMC
controller completed 400 s simulation in all four cases.

In order to present the adaptive change process of the parameters of the proposed
controller. In Figure 12, neural network weights of the middle layer of Critic Net. in four
cases are described over time. As can be seen from Figure 12, at about 200 s, the weight
of the Critic N. neural network becomes stable. In Figures 13 and 14, the weight of TSMC
Net, namely the coefficient of the sliding mode control, shows a relatively clear trend
with respect to changes after 200 s. The adaptive parameter tunement method of AITSM
(Figure 15) leads to the phenomenon of high-amplitude chattering, or even instability in
Figure 11c, due to the monotonically increasing adaptation law (23).
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Figure 11. Roll anglesof four different controllers.
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Figure 12. Weights of one of the fully connected layers of the critic Net.
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Figure 13. θ1 of the mean part of the TSMC Net.
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Figure 14. θ2 of the mean part of the TSMC Net.
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Figure 15. The gain values of the AITSM.

For further data comparisons, the maximum (MAX), the root mean square (RMS), and
the mean (MEAN) values of the roll are adopted, which are defined as follows.

MAX(q1(i)) = max(|q1(i)|)

MEAN(q1(i)) =
N

∑
i=1

q1(i)
N

RMS(q1(i)) =

√√√√ N

∑
i=1

q2
1(i)
N

(24)

In Table 2, for the BR that fell in the 400 s simulation test, no relevant comparisons were
made between the system and the machine. The comparison of control performances under
five controllers in four cases is listed. The simulations with PPO-TSMC exhibit the smallest
MAX, MEAN, and RMS. The PPO controller behaves the worst performance. Although the
TSMC controller can run the entire distance in case 1 and case 4, it performs poorly in case 1
and case 2, while AITSM and RRL controllers are better than TSMC but still worse than the
proposed control. It can be concluded that the proposed PPO-TSMC controller achieves
superior balancing performances compared to the other four proposed controllers.
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5. Conclusions

In this paper, a PPO-TSMC controller is developed for the balancing purpose of an
RWBR system on curved pavement with matched disturbances (the dry friction of inertia
wheels, etc.) and composite mismatched disturbances (including unmodeled wheel–ground
contact and gust disturbances and topographically introduced periodic disturbances, etc.).
By connecting PPO and TSMC in series, a random action strategy based on a normal
distribution is constructed in the framework of an initial TSMC controller. The controller
parameters under disturbances and unmodeled characteristics are explored by using the
strategy, and the online adaptive adjustment of TSMC parameters based on PPO algorithm
is realized. The comparison between the proposed PPO-TSMC and TSMC, PPO, AITSM,
and RRL illustrates stronger robustness and better control performance.

This study is different from existing related research studies about the reaction wheel
bicycle robot from the perspective of the task, the method of the control, and the simula-
tion test. Previous studies have not considered the influence of an unstructured curved
pavement on the balance control of RWBR. For example, in [9] (2021), an adaptive integral
terminal sliding mode control scheme was developed for the balancing purpose of the
RWBR on a flat road with uncertainties and unmodelled dynamics by designing adaptive
laws. In [39] (2022), an extreme-learning-machine scheme was designed as a compensator
for estimating lumped uncertainties of the RWBR on a flat road. From the perspective
of control methods, the existing studies [9,39] only considered reducing the influence of
matched disturbances but not mismatched disturbances. However, not only the matched
perturbation term but also the influence of the mismatched disturbances are considered in
this work. Namely, parameters of the sliding mode surface and reaching control are ad-
justed simultaneously. In terms of simulation test settings, this work sets four different test
cases in MSC Adams via different vehicle speeds and lateral disturbances. The comparison
between the proposed PPO-TSMC and TSMC, PPO, AITSM, and RRL illustrates stronger
robustness and better control performances. It shows that the PPO-TSMC in this work has
application prospects.

On the other hand, improving the sample efficiency of the proposed PPO-TSMC will
be considered as the main future research direction of this paper. From Figures 12 and 13,
the critic network does not become stable until about 200 s. Moreover, the convergence of
actor Net. occurs later than that of critic Net. It is not very ideal for the practicability of the
algorithm and limits the effectiveness of PPO-TSMC in a rapidly changing environment or
when there are more random disturbances. Therefore, our future work aims to replace the
critic deep neural network with Gaussian process regression [40], radial basis functions [41],
or some other components of model-based reinforcement learning [42] to reduce the
demand for data samples. Next, discretizing the output of the controller [43] is another
method for reducing sample requirements. Finally, a physical deployment and pilot study
are planned.
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