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Abstract: To address the poor searchability, population diversity, and slow convergence speed of the
differential evolution (DE) algorithm in solving capacitated vehicle routing problems (CVRP), a new
multistrategy-based differential evolution algorithm with the saving mileage algorithm, sequential
encoding, and gravitational search algorithm, namely SEGDE, is proposed to solve CVRP in this
paper. Firstly, an optimization model of CVRP with the shortest total vehicle routing is established.
Then, the saving mileage algorithm is employed to initialize the population of the DE to improve the
initial solution quality and the search efficiency. The sequential encoding approach is used to adjust
the differential mutation strategy to legalize the current solution and ensure its effectiveness. Finally,
the gravitational search algorithm is applied to calculate the gravitational relationship between points
to effectively adjust the evolutionary search direction and further improve the search efficiency. Four
CVRPs are selected to verify the effectiveness of the proposed SEGDE algorithm. The experimental
results show that the proposed SEGDE algorithm can effectively solve the CVRPs and obtain the
ideal vehicle routing. It adopts better search speed, global optimization ability, routing length, and
stability.

Keywords: differential evolution; capacitated vehicle routing planning; saving mileage;
gravity search

1. Introduction

The vehicle routing problem (VRP) was formally presented in 1959 by Dantzig [1].
The problem is defined as finding the optimal route of a vehicle under certain constraint
conditions (such as vehicle capacity, customer demand, transportation process, etc.), so as
to minimize the transportation cost or find the shortest transportation distance [2–4]. VRP
is a NP-hard problem and is one of the hotspots in operations research and combinatorial
optimization. In recent years, heuristic algorithms have been widely explored in solving
large-scale VRPs [5–8]. Therefore, a new algorithm for VRP has a certain theoretical
significance and practical value.

The algorithms for solving VRP can be broadly divided into exact algorithms and
heuristic algorithms (including metaheuristics). The exact algorithm can obtain the optimal
solution, but its high computational complexity makes it unsuitable for solving large-
scale VRPs [9–11]. Heuristic algorithms can be further divided into neighborhood-based
algorithms and population-based algorithms [12–14]. The neighborhood-based algorithms
maintain a single solution during the search process and seek a more optimal solution by
iterating between neighborhood solutions according to the strategy. The algorithms include
iterative local search, Tabu search, and so on.
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The differential evolution (DE) algorithm is a heuristic search algorithm based on
population, and each individual in the population corresponds to a solution vector [15].
The evolution process of DE favors that of GA, which includes mutation, crossover, and
selection, but its specific definition is different from that of GA. Since the DE has a simple
structure, fast convergence, and so on, it is applied in data mining, pattern recognition,
electromagnetics, and so on. However, the DE algorithm also has some defects in solving
large-scale VRPs, such as poor searchability and population diversity, slow convergence
speed, and so on. Therefore, some variants of DE algorithms are proposed from the different
aspects of algorithm, such as parameter adaption, new mutation strategies, crossover
strategy strategies, population initialization, hybrid DE with the other algorithms, and
so on.

To some extent, these improved DE algorithms have improved the searchability, accel-
erated the convergence, strengthened avoidance of falling into local optimum, and so on,
which can help better obtain optimization results in solving the complex optimization prob-
lems and the different VRPs. However, there still exists some defects in solving the complex
optimization problems, such as poor population diversity, low search accuracy, easily
falling into local optimum, and so on. To solve these problems, a new multistrategy-based
differential evolution algorithm with the saving mileage algorithm, sequential encoding,
and gravitational search algorithm, namely SEGDE, is proposed to solve the CVRP. A
planning method of the CVRP based on SEGDE is implemented to solve the actual CVRP
for obtaining the ideal results of the vehicle routing problems.

The main contributions of this study are described as follows:

(1) A new multistrategy DE algorithm, namely SEGDE, is developed to improve the
solution quality and the search efficiency in solving the CVRPs.

(2) The saving mileage algorithm is used to initialize the population of the DE to ensure
the initial solution quality and improve the search efficiency.

(3) The sorting and coding strategy is used to adjust the differential mutation strategy,
and the vectors are added and subtracted.

The structure of this paper is as follows: In Section 3, the related works are reviewed,
and the basic DE is introduced. In Section 4, the capacitated vehicle routing model is
constructed. Section 5 develops a new multistrategy DE algorithm, and the idea, model,
and steps are described in detail. The experimental calculation and analysis are executed in
the Section 6. Finally, the conclusions are summarized in Section 7.

2. Related Works

Since the VRP was proposed, many researchers have made in-depth explorations and
solved VRPs. When the traditional methods, the exact algorithm, heuristic algorithms,
and so on are used to solve the VRPs, a slow solving speed and excessive calculation
will occur. In recent years, the focus for solving VRPs has been on combining heuristic
algorithms with artificial intelligence technology, such as simulated annealing (SA), tabu
search (TS), genetic algorithm (GA), ant colony optimization (ACO), different improve-
ments, and so on. Yusuf et al. [16] studied the GA to solve a combinatorial problem of
VRP. Akpinar [17] presented a hybrid algorithm with a large neighborhood search and
ACO for CVRP. Zhang et al. [18] presented a hybrid approach with Tabu search and ABC
to solve VRP. Dechampai et al. [19] presented a MESOMDE_G-Q-DVRP-FD for solving
GQDVRP. Gutierrez et al. [20] presented a new memetic algorithm with multipopulation
to solve VRP. Fallah et al. [21] presented a robust algorithm to solve the competitive VRP.
Altabeeb et al. [22] presented a new CVRP-firefly algorithm. Altabeeb et al. [23] presented
a cooperative hybrid FA with multipopulation to solve VRP. Xiao et al. [24] presented a
heuristic EMRG-HA to solve CVRP with a large scale. Jia et al. [25] presented a novel
bilevel ACO to solve the CEVRP. Jiang et al. [26] presented a fast evolutionary algorithm
called RMEA to accelerate convergence for CVRP. Deng et al. [27] presented an ACDE/F for
the gate allocation problem. Zhang et al. [28] presented a branch-and-cut algorithm to solve
the two-dimensional loading constraint VRP. Song et al. [29] presented a dynamic hybrid
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mechanism CDE to solve the complex optimization problem. Niu et al. [30] presented a
multiobjective EA to tackle the MO-VRPSD. Deng et al. [31] presented a new MPSACO
with CWBPSO and ACO for solving the taxiway planning problem. Gu et al. [32] presented
a hierarchical solution evaluation approach for a general VRPD. Azad et al. [33] presented a
QAOA to solve VRP. Lai et al. [34] presented a data-driven flexible transit method with the
origin-destination insertion and mixed-integer linear programming for scheduling vehicles.
Voigt et al. [35] presented a hybrid adaptive large neighborhood search method to solve
three variants of VRP. Seyfi et al. [36] presented a matheuristic method with a variable neigh-
borhood search with mathematical programming to solve multimode HEVRP. Cai et al. [37]
presented a hybrid evolutionary multitask algorithm to solve multiobjective VRPTWs.
Wen et al. [38] presented an improved adaptive large neighborhood search algorithm to
efficiently solve large-scale instances of the multidepot green VRP with time windows.
Ma et al. [39] presented an adaptive large neighborhood search algorithm to find near-
optimal solutions for larger-size time-dependent VRPs. In addition, some other algorithms
are also presented for solving VRPs and the other optimization problems [40–51].

The DE algorithm is widely applied in solving different VRPs. For solving large-scale
VRPs, there exist poor searchability, worsened population diversity, a slow convergence
speed, and so on. Many researchers have deeply studied and proposed some improve-
ments to the DE algorithm. Zhang et al. [52] presented a new constrained DE to obtain
an optimal feasible routing. Teoh et al. [53] presented a local search-based DE to solve
CVRP. Pitakaso et al. [54] presented five modified DEs for solving three subproblems.
Xing et al. [55] presented a hybrid discrete DE for solving the split delivery VRP in the lo-
gistic distribution. Sethanan et al. [56] presented a novel hybrid DE with a genetic operator
to solve the multitrip VRP with backhauls. Hameed et al. [57] presented a hybrid algorithm
based on discrete DE and TS for solving many instances of QAP. Liu et al. [58] presented
a mixed-variable DE for solving the hierarchical mixed-variable optimization problem.
Moonsri et al. [59] presented a hybrid and self-adaptive DE for solving an EGG distribu-
tion problem. Chai et al. [60] presented a multi-strategy fusion DE with multipopulation,
self-adaption and interactive mutation to solve the path planning of UAV. Wu et al. [61]
presented a fast and effective improved DE to solve the integer linear programming model.
Hou et al. [62] presented a multistate-constrained MODE with a variable neighborhood
to solve the real-world-constrained multiobjective problem. Chen et al. [63] presented a
fast-neighborhood algorithm based on crowding DE. In addition, some other DE algorithms
are also improved for solving the complex optimization problems [64–66]. A summary of
the main works is shown Table 1.

Table 1. A summary of the main works.

Name Key Points Advantages Disadvantages

Zhang et al. [52] Constrained DE Improve optimization
performance Lack of population diversity

Teoh et al. [53] Local search-based DE Explore new search areas Lack of global searchability

Pitakaso et al. [54] Five modified DE Improve population diversity Fall into local optimal value

Xing et al. [55] Hybrid discrete DE Avoid the prematurity and
ensure the solution quality

Slow convergence to
some extent

Sethanan et al. [56] Hybrid DE with a
genetic operator Balance the exploration ability Fall into local optimal value

Hameed et al. [57] Hybrid algorithm
Enhance solutions, to reduce

the distances between
the locations

Increase the time complexity

Liu et al. [58] Mixed-variable DE Hierarchical mixed-variable
mutation operator Lack of population diversity
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Table 1. Cont.

Name Key Points Advantages Disadvantages

Moonsri et al. [59] Hybrid and self-adaptive DE Self-adaptive
mutation strategy Fall into local optimal value

Chai et al. [60] Multistrategy fusion DE Enhance population diversity Slow convergence to
some extent

Hou et al. [62] Multistate-constrained MODE Enhance the
optimization effectiveness Increase the time complexity

Chen et al. [63] Fast-neighborhood DE Faster convergence Lack of population diversity

Through these variants of DE, algorithms from various aspects have improved its
performance by parameter adaption, designing new mutation/crossover strategy, and
hybridity with the other algorithms, and so on. However, some defects, such as poor
population diversity and low search accuracy, still exist in solving the complex optimization.
Therefore, the DE algorithm needs to be further and more deeply studied in order to solve
the large-scale complex optimization problem.

3. Differential Evolution Algorithm

DE is an efficient evolutionary algorithm with a simple and clear structure and idea.
It combines parent individuals with other individuals in a population to produce new
offspring, which will continue to evolve in place of the parent if they possess better fitness
values. In brief, DE consists of the following parts:

3.1. Initialization

The parameters of DE are initialized and generally include: population (Np), dimen-
sion (D), mutation factor (F), crossover factor (CR), and the maximum number of iteration
(Gm). In addition, the individuals are initialized randomly within the specified range:{

x(G)
i,1 , x(G)

i,2 , . . . , x(G)
i,D

}
, xi,D ∈ RD, i = 1, 2, . . . , NP.

3.2. Mutation

In each iteration of evolution, the parent generation generates Np mutation vectors
through certain mutation strategies. The mutation strategy is usually expressed as DE/x/y,
where x represents the vector to be mutated and Y represents the number of vectors to be
mutated during the mutation process. There are five variation strategies that are commonly
used in DE:

(1) DE/rand/1
(2) DE/Rand/1

Vg
i = Xg

r1 + F× (Xg
r2 − Xg

r3) (1)

(3) DE/best/1
(4) DE/Best/1

Vg
i = Xg

best + F× (Xg
r1 − Xg

r2) (2)

(5) DE/rand-to-best/1
(6) DE/Rand-to-best/1

Vg
i = Xg

i + F× (Xg
best − Xg

i ) + F× (Xg
r1 − Xg

r2) (3)

(7) DE/current-to-rand/1
(8) DE/Current-to-rand/1

Vg
i = Xg

i + K× (Xg
r1 − Xg

i ) + F× (Xg
r2 − Xg

r3) (4)
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(9) DE/current-to-best/1
(10) DE/Current-to-best/1

Vg
i = Xg

i + F1 × (Xg
best − Xg

i ) + F2 × (Xg
r1 − Xg

r2) (5)

where r1, r2 and r3 are individuals selected randomly from 1 to Np individuals, and X is the
individual with the best adaptation in the gth iteration.

3.3. Crossover

After the mutation is executed, a crossover operation is performed to generate the
final experimental vector U by crossing the parent vector X with the mutation vector V
with a certain probability:

Ug
i,j =

{
Vg

i,j, i f rand(0, 1) ≤ CR or j = jrand

Xg
i,j, otherwise

(6)

where j ∈ [1, D].

3.4. Selection

If the experimental vector U performs better in fitness than the parent individual X,
then the parent individual is replaced with it:

Xg+1
i =

{
Ug

i , i f f
(

Ug
i

)
≤ f (Xg

i )

Xg
i , otherwise

(7)

where X will be the parent individual of the next generation evolution, and f (U) and f (X)
represent the adaptation values of the current generation experiment vector and the parent
individual, respectively.

4. Modeling Capacitated Vehicle Routing

VRP generally refers to organizing and calling a certain number of vehicles to a series
of shipping and receiving points, arranging appropriate travel routes so that the vehicles
pass through them in an orderly manner [67]. Under specified constraints (e.g., demand
and delivery of goods, delivery time, vehicle capacity limits, mileage limits, travel time
limits, etc.), we strive to achieve certain goals (e.g., shortest total vehicle miles driven,
lowest total transportation costs, vehicles arriving at a certain time, minimum number of
vehicles used, and so on.) [68–71].

4.1. Model Assumptions

The following assumptions are made for the model based on the actual problem:

(1) The distribution center is assigned to complete a series of demand point distribution
services.

(2) The relative geographical location and the corresponding demand quantity of the
distribution center and each demand point are given clearly.

(3) Vehicle distribution is completed and returned to the designated distribution center.
(4) The vehicles have the same specifications, and there are no errors.
(5) There is no consideration of urban traffic congestion.
(6) The distribution vehicles always travel at a constant speed, and the distribution cost is

equal within the unit distance, so the travel distance can represent the distribution cost.
(7) Each demand point shall be served by only one delivery vehicle, and the sum of the

requirements of all the demand points of the vehicle service shall be less than or equal
to the rated load limit of the vehicle.
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4.2. Symbolic Description

The relevant symbols are described in Table 2.

Table 2. List of symbols involved in the CVRP model.

Symbols Meaning

m Number of vehicles in distribution center
n Number of customer points
Q Vehicle capacity

di The requirement for customer points I, di > 0
(i > 0), and D0 = 0

cij The distance from point i to point j

Xijk The degree of delivery requirements from the k
vehicle distribution Point i to point j

V A collection of distribution centers and
customer points

4.3. Objective Optimization Function

The CVRP model can be constructed based on the mentioned distribution objectives
and distribution requirements as follows:

Distribution objective:

Min Z =
n

∑
i=0

n

∑
j=0

m

∑
k=1

cijxijk (8)

Constraints:
n

∑
i(j)=0

m

∑
k=1

xijk = 1 , i, j = 0, 1, 2, . . . , n (9)

n

∑
i=0

xipk −
n

∑
j=0

xijk = 0 , k = 1, 2, . . . , m , p = 0, 1, . . . , n (10)

n

∑
i=0

n

∑
j=0

dixijk ≤ Q, k = 1, 2, . . . , m (11)

n

∑
i=1

n

∑
j=1

xijk ≤ |V| − 1 , k = 1, 2, . . . , m (12)

xijk ∈ {0, 1} , i, j = 0, 1, 2, . . . , n , k = 1, 2, . . . , m (13)

The optimization goal is represented by an Equation (8) to minimize the total distance
traveled. The constraint (9) represents the availability of one and only one vehicle per
customer point to provide service. The constraint (10) ensures that a customer point is
visited the same number of times as it is left. The constraint (11) ensures that the vehicle
works within its maximum load. The constraint (12) means that the subtour is eliminated.
The constraint (13) provides a mutable limit.

5. A Multistrategy-Based Differential Evolution Algorithm

The DE is a population-based adaptive global optimization algorithm with a simple
structure and high robustness. However, there are some problems in solving optimization
problems, such as poor searchability, slow convergence, and a tendency to fall into local
optimality. Therefore, a multistrategy DE algorithm, namely SEGDE, is proposed by
introducing the population initialization strategy, the differential mutation strategy, and the
gravity search algorithm. The mileage saving method is used to initialize the population
of the DE to improve the initial solution quality and the search efficiency. The differential
mutation strategy is adjusted by using a sequential encoding approach to perform a
legalization operation on the current solution to ensure that the solution is valid. Finally,
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the gravity search algorithm (GSA) is introduced to calculate the gravitational relationship
between points, which can be used to legitimize the solution, reinsert the points, effectively
adjust the search direction of evolution, optimize the search efficiency, and prevent the
algorithm from falling into local optimum, to obtain better optimization ability of complex
optimization problems.

These strategies in the SEGDE are described in detail as follows.

5.1. Population Initialization Strategy

Traditional DE algorithms usually use population random initialization to randomly
distribute the initial population in the feasible domain. In this way, the algorithm does
not depend on the initial population solution, but the quality of the initial population
often affects the efficiency and accuracy of the global search algorithm. The saving mileage
method is a heuristic algorithm for solving transportation problems [72]. The key idea of
the heuristic method is to combine the two circuits of the transportation problem according
to the distance table, which can reduce the total transportation distance and make the
distribution more efficient. Therefore, the initial population is a combination of the solution
of the mileage-saving method and the random individuals, which ensures the initial
population solution quality and allows the algorithm to carry out the follow-up search
around the individuals with better quality, to improve search efficiency.

5.2. Differential Mutation Strategy

Since the CVRP is discrete, a ranking encoding approach is used to adjust the operation
of the differential variation strategy DE/neighbor-to-neighbor/1 by using ranking numbers
instead of vectors for addition and subtraction. In addition, the solution after mutation
operation is not necessarily the legal solution to meet the requirements; after the mutation
operation, the current solution should be legal operation to ensure the effectiveness of the
solution. The solutions are searched from right to left, the repeated points are set to zero,
and the zero positions are re-inserted by using contemporary evolutionary individuals.
The individual variation was calculated using Equation (14), and the adjusted variation
process is shown in Table 3.

Vg
i,j =

{
mod

(
Xg

r3,j +
(

Xg
best,j − Xg

r3,j

)
+
(

Xg
r1,j − Xg

r2,j

)
+ j− 1, j

)
, i f rand < F

Xg
best,j, i f rand ≥ F

(14)

Table 3. Examples of variant operations (F = 0.5).

Xg
r1 − Xg

r2

Xg
r1

7 4 3 5 2 1 6

Xg
r2

5 2 1 3 7 4 6

Xg
r1 − Xg

r2
2 2 2 2 −5

−5
−3
−3 0

Xg
best − Xg

r3

Xg
best 5 1 3 4 2 7 6

Xg
r3

2 3 5 1 7 6 4

Xg
best − Xg

r3
3 −2

−2
−2
−2 3 −5

−5 1 2

Vg
i

rand
Rand 0.18 0.22 0.53 0.78 0.61 0.39 0.42

Ug
i 1 1 3 1 1 5 1

Vg
i 5 1 3 1 1 7 6
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5.3. Variable Correlation Using GSA

VRP is an optimization problem with point-line network topology. The key to solving
this problem is discovering the correlation between the points and connecting them. The
gravitational search algorithm (GSA) is used to calculate the gravitational relationship
between points, and the point-point relationship table is used for the legitimization of the
solution and the reinsertion link of points, which can effectively adjust the evolutionary
search direction and optimize the search efficiency. GSA is a bionic algorithm based on
the laws of Newton’s law of gravity and the laws of kinematics [73]. The core idea of the
algorithm is to calculate the value of the gravitational force between points according to
Newton’s universal gravity formula, update the gravitational table, adjust the mass of the
points according to the gravitational table, and use the mass table updated in the current
generation to guide the next generation solution.

Define the attraction between individual i and individual j as follows:

Fd
ij (t)= G(t)

Mpi(t)×Maj(t)
Rij(t)+ε

(
xd

j (t)− xd
i (t)

)
(15)

where Maj is the related active gravitational mass of individual j, and Mpj is the related
passive gravitational mass of individual i. ε is a variable to prevent variables with denomi-
nators. Rij(t) is the Euclidean distance between individuals i and j.

Rij(t) =‖Xi(t) · Xj(t)‖2 (16)

In the d-dimension space, the exerted force on any particle is the exerted resultant
force on it by other particles, and the random weighted sum of the gravitational forces of
each particle is expressed as follows:

Fd
i (t) =

N

∑
j=1,j 6=i

randjFd
ij (t) (17)

where randj is a random value in [0,1].
Therefore, the acceleration of an individual i in the d-dimension is described as follows:

ad
i (t) =

Fd
i (t)

Mii(t)
(18)

where Mii is the inertial gravity of individual i at iteration t.
Based on the above model, the position update of individuals can be obtained as fol-

lows:
vd

i (t + 1) = randi × vd
i (t) + ad

i (t) (19)

xd
i (t + 1) =xd

i (t)+vd
i (t + 1) (20)

where randi is a random value in [0,1].
The GSA algorithm framework is shown in Figure 1.
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The implementation steps of the SEGDE are described as follows:
Step 1. The initial population is randomly generated by sequence coding, and the

size of the initial population is NP, the dimension D, the maximum evolutionary iteration
number Max, and the iteration number G = 1.

Step 2. The initial population is composed of the solution of the mileage saving method
and the random solution of the mileage saving method.

Step 3. Calculate the initial fitness values of the individuals.
Step 4. If the number of iterations G is less than the maximum number of evolutionary

iterations Max, enter Step 5; otherwise, proceed to Step 10.
Step 5. The strategy of neighborhood mutation is implemented to legalize the solution

of the mutated population.
Step 6. The neighborhood search is carried out for the individual population, and the

optimal solution in the local search is preserved.
Step 7. The gravity search algorithm is used to explore the relationship between

variables and update the table of point-point relations, preserving the optimal solution.
Step 8. A population selection operation is performed.
Step 9. If the number of iterations G = G + 1, return to Step 4.
Step 10. The output evolutionary optimal solution is obtained.

6. Experimental Calculation and Analysis
6.1. Experimental Data

In order to verify the effectiveness of the SEGDE algorithm in solving the CVRP,
data sets were selected from the operational research database OR-LIBRARY and the VRP
database | NEO Research Group (uma.es). A total of 41 data instances with fewer than 50
dimensions were selected from among four test data sets.

6.2. Experimental Environment and Parameter Settings

The experimental environment included CPU-intel Core I5-4200H, Windows-Win8,
RAM-4GB, and MATLAB R2018B. In the experiment, many alternative values are tested,
and some classical values were selected from the literature; these parameter values were
experimentally modified until the most reasonable parameter values were determined.
These selected parameter values obtained the optimal solution, so that they could accurately
and efficiently verify the effectiveness of the proposed SEGDE algorithm. Each experiment
was carried out 25 times independently, and the optimal solution of 25 experiments was
selected to compare with the other five algorithms. The five comparison algorithms were
standard DE, GA, SA, the mileage-saving method (MS), and the improved MS(IMS) method.
The settings of the parameters are shown in Table 4.

Table 4. The initial parameters of all algorithms.

Algorithms Parameter Settings

SA delta = 0.85, T = 150, Np = 100
GA CR = 0.7, F = 0.5, Np = 100
DE CR = 0.9, F = 0.5, Np = 100

SEGDE Fmin = 0.5, Fmax = 0.9, CR = 0.9, Np = 100

6.3. Experimental Results and Analysis

The obtained experimental results are shown in Tables 5–8.
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Table 5. The experimental results of six algorithms in solving set A.

Test Data Opt. SA GA MS IMS DE SEGDE

A32_5 784 739 850 842 827 1426 813
A33_5 661 740 700 713 700 1194 680
A33_6 742 924 798 775 743 1233 746
A34_5 778 895 856 810 793 1347 789
A36_5 799 814 897 826 806 1367 805
A37_5 669 806 752 705 708 1366 685
A37_6 949 949 1047 975 974 1595 954
A38_5 730 908 789 765 751 1497 734
A39_5 822 1009 954 898 894 1575 871
A39_6 831 1011 940 861 848 1618 852
A44_6 937 1021 974 985 1785 1534 943
A45_6 944 1231 1111 1005 955 2093 963
A45_7 1146 1431 1282 1200 1178 1968 1203
A46_7 914 1431 1068 940 934 1862 935
A48_7 1073 1343 1280 1110 1102 2180 1129

Table 6. The experimental results of six algorithms in solving set E.

Test Data Opt. SA GA MS IMS DE SEGDE

E22_K4 375 394 375 388 375 441 375
E23_K3 569 575 575 621 574 888 569
E30_K3 508 564 557 532 - 976 508
E33_K4 835 929 904 841 841 1180 841
E51_K5 521 697 685 582 - 1315 575

Table 7. The experimental results of six algorithms in solving set P.

Test Data Opt. SA GA MS IMS DE SEGDE

P16_K8 450 889 451 478 472 452 451
P19_K2 212 213 213 237 219 276 213
P20_K2 216 217 218 234 247 452 217
P21_K2 211 213 213 236 233 318 213
P22_K2 216 222 219 240 234 317 218
P22_K8 589 589 589 591 590 624 589
P23_K8 529 541 532 537 537 633 531
P40_K5 458 561 526 516 484 629 508
P45_K5 510 616 614 569 519 1142 563

Table 8. The experimental results of six algorithms in solving set B.

Test Data Opt. SA GA DE SEGDE

B31_K5 672 697 706 886 679
B34_K5 788 839 799 1186 790
B35_K5 955 1021 991 1665 970
B38_K6 805 887 845 1343 825
B39_K5 549 649 577 1314 563
B41_K6 829 989 880 1565 838
B43_K6 742 907 833 1387 775
B44_K7 909 1139 1058 1725 931
B45_K5 751 918 880 1631 755
B45_K6 678 888 791 1317 698
B50_K7 741 1006 879 1875 766
B50_K8 1312 1462 1401 2132 1352
B31_K5 672 697 706 886 679
B34_K5 788 839 799 1186 790
B35_K5 955 1021 991 1665 970
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As can be observed from Tables 5–8, for set A, the proposed SEGDE algorithm has
the best solutions of A33_5, A34_5, A36_5, A37_5, A38_5, and A39_5, and the IMS has
the best solutions of A33_6, A39_6, A45_6, A45_7, A46_7, and A48_7. SA has the best
solutions of A32_5 and A37_6. The IMS and SEGDE algorithm have obtained the best
solutions of six cases. The obtained best solutions of A33_6, A34_5, A37_6, A38_5, and
A44_6 are close to the optimal values by using the proposed SEGDE algorithm. For set E,
the proposed SEGDE algorithm has obtained the best solutions of all cases. In particular, the
optimal solutions of E22_K4, E23_K3, and E30_K3 are obtained using the proposed SEGDE
algorithm. The best solutions of the other cases are also close to the optimal values using
the proposed SEGDE algorithm. For set P, the proposed SEGDE algorithm has obtained
the best solutions, except those of P40_K5 and P45_K5. The optimal solution of P22_K8 is
obtained, and the obtained other solutions are also infinitely close to the optimal values
using the proposed SEGDE algorithm. The IMS has obtained the best solutions of P40_K5
and P45_K5. For set B, the proposed SEGDE algorithm has obtained all best solutions of all
cases. The obtained best solutions of B31_K5, B34_K5, B45_K5, and B34_K5 are infinitely
close to the optimal values using the proposed SEGDE algorithm. The experimental results
demonstrate that the proposed SEGDE algorithm can better solve these CVRPs from the
operational research database OR-LIBRARY and the VRP database, and the optimized
solutions are the optimal values, or are (infinitely) close to the optimal values. Therefore,
the proposed SEGDE algorithm takes on a better global optimization ability in solving
these different CVRPs. The reason for this is that the proposed SEGDE algorithm optimizes
the abilities of the saving mileage algorithm, the sequential encoding approach, and the
differential mutation strategy.

The routing comparison curves for generations 1 and 200 in the A33-K6 and B34-K5
optimization iterations are shown in Figures 3 and 4.

As can be observed from the optimization curves of the A33-K6 and B34-K5 cases in
Figures 3 and 4, the obtained optimization paths by using the proposed SEGDE algorithm
overlap to lessen, eliminate the path knot phenomenon, and effectively connect the adjacent
points. In addition, the paths gradually become localized, which achieves the total path
reduction. Through the experimental results of the test data, it can be observed that the
proposed SEGDE algorithm possesses an advantage in addressing the vehicle path planning
problem, and can approach the optimal solution to a great extent when the problem of
fewer than 30 dimensions are processed. It also performs well on most of the problems
with fewer than 50 dimensions, which proves the effectiveness of the proposed SEGDE
algorithm in solving the different CVRPs. Therefore, the proposed SEGDE algorithm can
effectively solve the CVRPs and obtain the optimized vehicle routing, as well as eliminate
the path knotting, thus avoiding overlap. It is an effective algorithm for solving the CVRPs
and the complex optimization problems.
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6.4. Discussion

As can be observed from Tables 5–8 and Figures 3 and 4, the proposed SEGDE algo-
rithm is used to solve CVRPs of set A, set B, set E, and set P; the obtained best solutions
of E22_K4, E23_K3, E30_K3, and P22_K8 are the optimal values, and the obtained best
solutions of A36_5, A38_5, E33_K4, P16_K8, P19_K2, P20_K2, P21_K2, P22_K2, and P23_K8
are (infinitely) close to the optimal values. Compared with the SA, GA, MS, IMS, and DE,
the proposed SEGDE algorithm can effectively solve these various CVRPs and obtain the
ideal vehicle routing, as well as eliminate the path knotting, avoiding overlap. Therefore,
the proposed SEGDE algorithm adopts a better global optimization ability. The reason is
that the proposed SEGDE algorithm is based on the saving mileage algorithm, the sequen-
tial encoding approach, and the differential mutation strategy. It optimizes the abilities
of the saving mileage algorithm, the sequential encoding approach, and the differential
mutation strategy. The saving mileage algorithm can improve the initial solution quality
and the search efficiency by initializing the population of the DE. The sequential encoding
approach can legalize the current solution and ensure its effectiveness by adjusting the
differential mutation strategy. The gravitational search algorithm can effectively adjust the
evolutionary search direction and further improve the search efficiency by calculating the
gravitational relationship between points.

7. Conclusions

In this paper, a new multistrategy DE, namely SEGDE, is proposed to solve various
CVRPs. In order to improve the search efficiency, the saving mileage algorithm is employed
to initialize the population of DE. The sequential encoding method is used to adjust the
differential mutation strategy to legalize the current solution and ensure its effectiveness.
The GSA is applied to calculate the gravitational relationship between points for solution
legalization and point reinsertion, which can effectively adjust the evolutionary search
direction and optimize the search efficiency. Finally, the CVRP example from the operational
research database is selected to verify the effectiveness of the proposed SEGDE algorithm.
The obtained best solutions of E22_K4, E23_K3, E30_K3, and P22_K8 are the optimal
values, and the obtained best solutions of A36_5, A38_5, E33_K4, P16_K8, P19_K2, P20_K2,
P21_K2, P22_K2, and P23_K8 are (infinitely) close to the optimal values. Compared with
the SA, GA, MS, IMS, and DE, the proposed SEGDE algorithm can effectively solve these
different CVRPs and obtain the ideal vehicle routing, as well as eliminate the path knotting,
avoiding overlap. Therefore, the experimental results demonstrate that the proposed
SEGDE algorithm has a good optimization ability, search speed, and routing length. In
addition, the stability of the SEGDE also possesses a good advantage.
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