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Abstract: This paper proposes a new deterministic branch prediction unit to achieve a uniformly 

timed instruction set architecture (ISA). The deterministic ISA is achieved by utilizing two address 

buses in conjunction with dual-port block RAMs that are common in commercial FPGAs. The goal 

is to remove mandatory branch and load delays to achieve a uniform one clock cycle per every in-

struction. To demonstrate the concept, the proposed architecture is applied to the Xilinx PicoBlaze 

firm core. The result is a new soft core named DAP-Zipi8 that reduces the clock per instruction 

(CPI) metric of PicoBlaze from two to one at the expense of extra logic and a longer critical path. 

The increased critical path reduces maximum achievable clock speed from 357.509 MHz to 224.022 

MHz. Merging the gain in CPI with the loss in maximum clock frequency still improves overall 

processor performance by 18.28–19.49%. The high-performance deterministic DAP-Zipi8 is a via-

ble choice for hard RTES applications. 

Keywords: FPGA; field programmable gate arrays; microprocessors; real-time embedded systems; 

Xilinx PicoBlaze; deterministic instruction set architecture 

 

1. Introduction 

This paper focuses on central processing units for real-time embedded systems 

(RTESs). The majority of microprocessors available on the market are not designed for 

hard RTESs [1]. Advanced performance improvement techniques (pipelining, branch 

prediction units (BPUs), floating point units (FPUs), caching, memory management 

units (MMUs), frequency scaling, shared buses, etc.) sacrifice determinism and intro-

duce timing anomalies [1–3] which increase the complexity of static timing analysis (STA) 

[4,5]. 

A good example of the increase in the complexity of STA is the case of a pipeline 

stall, where execution of an instruction must stall (e.g., due to register data dependency) 

for � extra cycles where � depends on pipeline depth. Another example is incorrect pre-

dictions from the BPU, which forces the processor to discard speculatively fetched in-

structions, thus incurring a delay (equal to the number of stages between the fetch and 

execute stages [6]). 

FPU performance depends on implementation and input operands. For example, a 

subnormal input can increase the execution time by two orders of magnitude [7]. A 

cache miss requires the upper memory layers to be accessed, which imposes a much 

longer delay. Accessing a memory page that is not mapped into virtual address space 

causes a page fault in the MMU, forcing a page to be loaded from disk which, again, in-

curs a delay. Frequency scaling and shared buses exhibit similar non-deterministic de-

lays. All these performance improving techniques introduce timing anomalies and in-

crease STA’s complexity. 

There is a misconception that fast computing equals real-time computing. Rather 

than being fast, the most important property of RTESs is predictability [8]. All tech-
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niques mentioned above are sources of indeterminism. They add complexity to static 

analysis tools and have a negative impact on worst-case execution time analysis 

(WCET), which determines the bounded response time of an RTES. Although achieving 

acceptable WCET analysis is still possible in the presence of those advanced techniques 

(through end-to-end testing, static analysis, and measurement-based analysis [9]), 

achieving better WCET analysis when some features are present (e.g., caches [1]) is still 

an open problem. Therefore, designers tend to use simpler microprocessors that have 

adapted reduced instruction set computer (RISC) architecture with less of those perfor-

mance improving features for hard real-time systems. The RISC architecture has a major 

advantage in real-time systems as the average instruction execution time is shorter than 

complex instruction set computer (CISC) architecture. This leads to shorter interrupt la-

tency and shorter response times [10]. One of the major neglected sources of perfor-

mance inconsistency is indeterministic instruction set architecture (ISA). Branch instruc-

tions require more clock cycles if taken than not taken. For example, ARM11 branch in-

structions require three clock cycles if taken, but one cycle if not taken [11]. In PowerPC 

755, a simple addition may take anywhere from 3 up to 321 cycles [12] due to its non-

compositional architecture [13] that produces a domino effect. 

For most 4-bit, 8-bit, 16-bit, and non-pipelined microarchitectures without caches, 

one could simply sum up the execution times of individual instructions to obtain the ex-

act execution cycle of the instructions sequence [14,15]. This is only valid if the ISA of a 

microarchitecture is deterministic. In this context, determinism means the exact number 

of clock cycles for all instructions is known, and the number of clock cycles per instruc-

tion is permanent and does not vary based on previous states of the processor. This 

property is very important in hard real-time embedded systems that need to respond to 

external events (e.g., execution completion of machine instructions in a procedure) with 

precise timing. In those systems, WCET estimation cannot be used, as even a single clock 

cycle deviation from expected timing makes the system non-functional. A good example 

of such systems is the controller of multi-core architectures, where a complex finite state 

machine performs the role of an operating system and delegates independent tasks to 

cores and retrieves the result. 

Consequently, RISC-V, ARM, Intel, MIPS, and all processors that have a pipeline, 

cache systems, or other sources of indeterminism cannot be used in systems where cycle-

accurate predication is one of their hard requirements. PicoBlaze is a good choice as it is 

already a deterministic core (uniform CPI = 2) with relatively low performance. It can be 

used as a controller for a complex finite state machine that governs multiple cores. 

In this paper, a technique for a deterministic branch prediction is proposed. Using 

the proposed design, the processor always has the correct program counter regardless of 

whether the branch is taken or not, which eliminates ISA indeterminism. The Xilinx 

PicoBlaze firm core has a clock per instruction (CPI) value of two for all its instructions 

[16]. It is already a deterministic core through the setting of CPI to two. It is modified to 

incorporate the proposed architecture in this paper. A lookahead circuit, in conjunction 

with a dual-fetch mechanism, is employed for reducing the CPI from two to one while 

retaining the ISA determinism (identical CPI for all instructions). 

The uniform CPI = 1 value for all instructions is achieved by removing register data 

dependency and flags/conditional branch interlocks. That is why “branch and load de-

lay” definitions are given; how other architectures have dealt with them will also be dis-

cussed. Note that CPI provides a sufficient way of comparing two different implementa-

tions of the same ISA (in our case PicoBlaze ISA) [17]; therefore, no benchmarking pro-

gram is required because both cores execute the same instruction sequence. 

The objective and contribution of our work is to improve processor performance 

without sacrificing ISA determinism. In the case of Xilinx PicoBlaze, the objective can be 

translated to improving the performance of the core from CPI = 2 to CPI = 1. A dual-fetch 

technique alongside a branch prediction circuit is proposed that fetches two instructions 

at one clock cycle and uses the second fetch for the sole purpose of removing branch and 
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load delays with the goal of achieving uniform CPI = 1 values. The dual-issue technique 

(related work) requires a pipeline and refers to fetching two instructions at each clock 

cycle and then issuing them to the next stage of a pipeline to achieve CPI = 0.5 without a 

guarantee of CPI uniformity. In our ongoing project, a complex finite state machine has 

been implemented using a PicoBlaze core that controls 1024 other PicoBlaze cores. Be-

cause of deterministic ISA, the state machine can react to external triggers, such as com-

pletion of procedure execution, and can retrieve and then pass the result to other cores at 

precise clock cycles (precise timing). 

The contributions of this paper are: 

1. A microprocessor architecture that eliminates branch and load delays to achieve 

uniform CPI = 1 values. 

2. The utilization of unused ports of FPGA memory primitives to boost overall pro-

cessor performance while retaining ISA determinism. 

3. The 18.28–19.49% performance improvement of Xilinx PicoBlaze in terms of MIPS. 

Preliminary definitions are provided in the next session and related work is pre-

sented in Section 3. A brief overview of PicoBlaze architecture is then provided in Sec-

tion 4. In Section 5, a technique (proposed in [18]) is employed to transform the Pico-

Blaze into a modifiable soft core named Zipi8. The source code of the new core is written 

at the RTL-level, which makes architectural customization possible. Section 6 discusses 

the Zipi8 modifications used to achieve CPI = 1; the modified core is named DAP-Zipi8. 

The work presented in this section contains the two main contributions of the paper. Fi-

nally, the comparison of resource and power utilization for DAP-Zipi8 versus PicoBlaze 

is presented in Section 8. The verification process is covered in Section 9. 

2. Definitions 

Real-time systems (RTSs) are computing systems that must react within precise 

time constraints to events in the environment [19]. We can categorize RTSs into three 

groups [18]: 

1. Hard RTSs: impose strict timing requirements with fatal consequences if temporal 

demands are not met. 

2. Soft RTSs: set coarse temporal requirements, without catastrophic consequences if 

several deadlines are missed. 

3. Firm RTSs: set fine-grained temporal requirements, without fatal consequences in 

the case of infrequent deadline misses. 

Embedded systems are computing systems with tightly coupled hardware and 

software integration that are designed to perform a dedicated function [20]. The reactive 

nature of embedded systems is shown in Figure 1. A reactive system must respond to 

events in the environment within defined time constraints. External events being aperi-

odic and unpredictable makes it more difficult to respond within a bounded time frame 

[21]. 

 

Figure 1. A model of sensors and actuators in an embedded system [21]. 
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Hard real-time embedded systems (RTESs) refer to those embedded systems which 

require real-time behavior with for a missed deadline [22]. The software part of an RTS 

is an application that runs either in stand-alone mode (bare metal) or scheduled as a task 

on a real-time operating system (RTOS). The hardware part includes one or more central 

processing units (CPU), memory elements, and input/output (I/O) devices with interrupt 

mechanisms to provide deterministic bounded responses to external events. 

The term timing anomaly refers to a situation where a local worst case does not en-

tail the global worst case. For instance, a cache miss (the local worst case) may result in a 

shorter execution time than a cache hit due to scheduling effects [3]. The domino effect 

is a severe special case of timing anomalies that causes the difference in execution time 

of the same program starting in two different hardware states to become arbitrarily high 

[13]. 

One of the metrics of microprocessor performance is the average number of clock 

cycles per instruction (CPI), the lower the value the better the performance. Given a 

sample program with � instructions, the instruction count �� for each instruction type �, 

and the number of clocks needed to execute instruction type ��, CPI can be defined as 

shown in Equation (1). 

��� =
∑ �����

�
 (1)

CPI in conjunction with processor clock rate can be used to determine the time 

needed to execute a program [17]. The classic 8051 CPU requires at least 12 cycles per in-

struction (CPI > 12) [23], PIC16 takes 4 cycles or more (CPI > 4) [24], but Xilinx PicoBlaze 

takes 2 clock cycles exactly (CPI = 2) [16]. Optimization of CPU architecture may achieve 

CPI = 1 for most instructions, but a few of them still need more than one cycle. This takes 

away the ISA uniformity attribute. 

The implementation of processor-based design can be done via three mediums: 

1. A Microcontroller Unit (MCU). 

2. A Field-Programmable Gate Array (FPGA). 

3. An Application-Specific Integrated Circuit (ASIC). 

We exclude the Application-Specific Integrated Circuit (ASIC) as an approach due 

to its high Non-Recurring Engineering (NRE) cost, and its impracticality for low volume 

production [25]. 

An FPGA chip includes input/output (I/O) blocks and a core programmable fabric 

[26]. FPGAs are being used extensively to cover a broad range of digital applications, 

from simple glue logic [27] and hardware accelerators to very powerful System-on-Chip 

(SoC) platforms [28]. Having an 8-bit architecture as the cornerstone of MCUs used in 

designing tiny embedded systems is widely accepted [29]. 

FPGAs have a higher level of flexibility than MCUs by providing a programmable 

logic (PL) fabric [30]. For example, FPGAs allow designers to change a product after re-

lease by upgrading its firmware [31]. The drawback of FPGA flexibility is that it uses 

approximately 20 to 35 times more area, has a speed roughly 3 to 4 times slower, and 

consumes roughly 10 times as much dynamic power [32]. There are also occasions when 

FPGAs can outperform MCUs by implementing kernel applications in PL and integrat-

ing them with soft cores [33] to take advantage of the inherent parallelism of FPGA de-

vices in an optimal way [34]. Meanwhile, FPGAs can host intellectual property (IP) CPU 

cores with the capacity to add custom instructions (e.g., Nios-II [35]). 

IP cores come in three different flavors [36]: 

1. Soft cores: written in HDL without extensive optimization for the FPGA target ar-

chitecture. 

2. Firm cores: written in HDL but implementations have been optimized for a target 

FPGA architecture. 

3. Hard cores: fixed-function gate-level IP within the FPGA fabric. 
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One of the important applications of IP cores is in safety-critical real-time embed-

ded systems where designers can take advantage of deterministic timing [37–40]. The 

Xilinx PicoBlaze is a firm core with uniform CPI = 2 values, which results in determinis-

tic ISA performance [16]. Additionally, it is an industry-level core with enough users to 

find and fix its potential bugs. Unfortunately, its behavioral HDL source code is not 

available. The available source code is highly optimized and uses Xilinx primitives. The 

optimized design has a very small footprint on the FPGA fabric, but its modification and 

implementation on non-Xilinx devices is nearly impossible. 

Performance versus Determinism 

Three factors contribute to system performance: 

1. The no. of instructions required to perform a task (I). 

2. The no. of clock cycles required per instruction (CPI). 

3. The period of a clock cycle (T). 

Both RISC and CISC attempt to minimize T. For CISC, the emphasis is on minimiz-

ing I by providing powerful instructions. This results in an increase in CPI. For RISC, the 

goal is to minimize CPI, and to bring the CPI value as close as possible to one [41,42]. 

To achieve CPI = 1, RISC processors resort to the pipelining technique. The major 

problem with pipelined architectures is that if arbitrary instruction B in the pipeline has 

data dependency with its previous instruction A, then the pipeline must be stalled until 

instruction A passes the execution stage. This delay is called load delay. Most RISC pro-

cessors are designed to possess a load delay of one clock cycle (introducing a load delay 

slot [41]) but come short of eliminating it entirely. 

Another similar case applies to conditional branch instructions. They depend on 

flags set by previous instructions. Therefore, the pipeline must be stalled to let previous 

instructions finish, and then the decision to whether the branch must be taken or not can 

be made. This hold up time is called a branch delay. 

Another issue is when a taken branch invalidates the next immediate fetched in-

struction in the pipeline and forces a flush. There are two solutions to this: 

1. Insert a No Operation (NOP) instruction after each branch instruction. 

2. Always execute the instruction after the branch even if the branch is taken (delayed 

branch [41]). 

This instruction slot that gets executed without the effect of previous instructions is 

called the branch delay slot. To help clarify these concepts they are concisely depicted in 

Figure 2. 

 

Figure 2. Branch and load delay—branch and load delay slots. 
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Aside from advances in fabrication, the common way to speed up the clock is to 

chop a pipeline into many stages (deep pipeline) [43]. Modern processors departed from 

classic 5-stage pipelines and went up to 50 stages [44,45]. However, when power was 

considered [46], the dynamic and leakage power per latch suggested an optimal pipeline 

depth of around 14 to 20 stages [47]. As the number of pipeline stages increases, the 

stalls become more costly. To minimize stalls, several techniques, such as branch predic-

tion, were introduced which worsen the determinism of microarchitectures. For exam-

ple, the core Intel i7 pipeline with 14 stages imposes a cost of an extra 17 clock cycles 

when a branch misprediction occurs [47]. 

The search for RTES microprocessors yields no definite results, as all modern pro-

cessors have deviated from simple architectures and have added performance improv-

ing features. In practice, designers choose a very high performance indeterministic pro-

cessor to meet the WCET requirement. Even processors such as those of the ARM Cor-

tex-R series(advertised as real-time processors) carry the inherent indeterminism con-

cepts discussed earlier. For example, Cortex-R4 branch instruction may take one, eight, 

or nine clock cycles based on correct/incorrect dynamic prediction results [48]. What dif-

ferentiates the Cortex-R series (R stands for real-time) processors from general-purpose 

processors is tightly coupled memory with error correction code (ECC) employed, re-

dundant lock-step configuration with logic for fault detection, and a low latency deter-

ministic interrupt system that allows multi-cycle instructions to be interruptible and 

avoid cache misses in memory management units. 

Considering the arguments presented above, we suggest that, since predictability is 

more important than performance in RTESs, there are situations where a hard RTES pre-

fers a low-power, non-pipelined, non-cache microprocessor that enjoys a deterministic 

ISA over a high-performance processor with an indeterministic ISA, even if that proces-

sor has a pipeline and cache. In those cases, our proposed DAP-Zipi8 processor, which is 

Xilinx PicoBlaze compatible, can be utilized. 

3. Related Work 

Simple architectures, such as the binary decision machine (BDM) [49], can achieve 

CPI = 1 because they do not have branch instructions [50]. BDMs for complex tasks that 

support a limited number of instructions working on the data path, plus ‘call’ and ‘re-

turn’ instructions to support subprograms, are also proposed. Although they achieve a 

RISC-like behavior with CPI = 1, they still lack conditional branches [51]. 

Non-pipelined single-cycle processors are widely used in academia for teaching 

processor architecture (such as MIPS and single-cycle RISC-V [17,52]). Although their 

CPI is one, their clock period is very long, which makes them inefficient [17]. This forces 

techniques such as pipelining to be used to shorten the clock period. A pipelined proces-

sor can only achieve CPI = 1 (an idealized goal) if all instructions are independent [53]. 

Table 1 lists several pipelined RISC processors and the solution that each has 

adopted to deal with load and branch delays. The picks are based on historical im-

portance: the IBM 801 resulted in PowerPC [54], Berkeley RISC-1 contributed to SPARC 

[55], and Stanford RISC developed into MIPS [56]. ARM and RISC-V are also recent no-

table architectures. All these processors have non-uniform instruction timing which con-

tributes to indeterminism. 

Table 1. RISC Solutions to Load and Branch Delays. 

Processor Load Delay Branch Delay 

IBM 801 Locks register, can be optimized by a compiler [57] Branch with execute (BWE) [57] * 

RISC I Load and Store, always takes two cycles [42] Delayed jump [42] † 

SPARC-V8 Load-use interlock stalls the pipeline [58] Annulling delayed branches [58] ‡ 

SPARC-V9 Similar to SPARC-V8 but a 64-bit version Annulled delayed branches [59] ‡ 

MIPS-I Delayed loads with mandatory load delay slot [60] Delayed branch with a branch delay slot [60] 
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MIPS-II 
Removes mandatory load delay slot; in case of vio-

lation, extra real cycles will be added [61] 
Branch-likely [62] § 

MIPS32 Interlock by load delay stalls the pipeline [61] Branch-likely, compact branches [63] ‖ 

ARM7TDMI (3-

stages) 
All loads take at least three cycles [64,65] All branches take at least three cycles [64,65] 

ARM9TDMI (5-

stages) 

Load-use interlock incurs one extra cycle if the fol-

lowing instruction uses a loaded word [66] 
All cases take three cycles [64,66] 

ARM11 (8-

stages) 

Takes one to five clock cycles due to register inter-

locks [11] 
Dynamic branch prediction/folding [11] ¶ 

SiFive E31 (RISC-

V) 
All loads have three-cycle result latency [67] 

Branch predictor with one-cycle latency, mis-

prediction incurs an extra three cycles [67] 

PowerPC 750 CL 
Out-of-order load/store unit with two or three cy-

cles of latency 
Static/dynamic branch prediction/folding ∗∗ 

* Executes the instruction in the branch delay slot even if the branch is taken. In total, 60% of in-

structions can be converted to execute form by the compiler. † Delayed jumps are for every branch 

with compiler optimization to either insert a NOP after each branch or a safe instruction. ‡ If the 

branch is taken, it always executes the instruction in the delay slot; if not taken, then it checks the 

annul bit. If the annul bit is 1, annul the instruction in the slot. If it is 0, then execute it. Using the 

annul bit, compiled code contains less than 5% NOP. § Branch-likely is similar to annul-

ling/annulled delayed branches. ‖ Prior to release six: has a branch delay and uses branch-likely 

instructions. Release six: no delay slot and uses compact branches which have a forbidden slot in-

stead. Adjacent control transfer instructions (CTIs) introduce a performance penalty. An untaken 

branch requires one cycle, and a taken branch requires three or more cycles. ∗∗ Branch instruction 

gets folded if taken (needs no cycle), and one idle cycle will be added on branch target instruction 

cache (BTIC) miss. The pipeline gets flushed on branch misprediction (takes three cycles or more). 

The effect is amplified when performance improving techniques such as caches, 

dynamic branch prediction, or branch folding are present. For example, in PowerPC 750 

CL, the timing for branch instruction is highly irregular and is based on [67]: 

 Whether the branch is taken; 

 Whether instructions in the target stream are in the branch target instruction cache 

(BTIC); 

 Whether the target instruction stream is in the cache; 

 Whether the branch is predicted; 

 Whether the prediction is correct. 

This shows an extreme level of indeterminism which ultimately makes calculation 

of WCET more complex. There are also unconventional ways of achieving a CPI of one, 

such as CoolRISC [68,69] which uses a double-latch clocking scheme with two non-

overlapping clocks to eliminate load and branch delays. The drawbacks of this approach 

are: 

1. Incompatibility with optimization algorithms embedded in electronic design auto-

mation (EDA) tools. 

2. No FPGA primitive support to implement the design. 

3. Accessing memory after MUL instruction needs two cycles instead of one, and in-

terrupt and events have a delay in some cases. 

4. Difficulty reaching high clock speeds (e.g., 60 MIPS needs a 120 MHz oscillator). 

4. The PicoBlaze Firm Core 

4.1. Overview 

KCPSM6 is an upgraded version of the (K)constant Coded Programmable State 

Machine 3 (KCPSM3) [70] and is the technical name of Xilinx PicoBlaze. It is an 8-bit firm 

core with 32 general-purpose 8-bit registers which are arranged in two banks. All in-

structions have 18-bit width and need two clock cycles to be executed [16]. The instruc-
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tion bitfields are divided into a 6-bit opcode allowing 2�  =  64 unique instructions (55 

out of 64 instructions are implemented) and a 12-bit field set aside for operands, as 

shown in Table 2. The core architectural overview is shown in Figure 3. Its program 

memory can go up to 4 KB and it has scratch pad memory (SPM) for temporary data 

storage, with a maximum size of 256 bytes. Additionally, it has a stack with a depth of 30 

and 256 I/O ports. 

 

Figure 3. KCPSM6 architecture and features [16]. 

As shown in Table 2, the 12-bit operand field accommodates one or a mixture of the 

following values: “aaa, kk, pp, p, ss, x, y”. For example, the “JUMP aaa” instruction is en-

coded to a 0x22aaa hex value, 0x22 is the opcode, and 0xaaa is the 12-bit jump target ad-

dress, or “LOAD sX, sY” is encoded to 0x00xy, 0x00 is the opcode, 4-bit x is the destina-

tion register, and 4-bit y is source register. PicoBlaze has three flags: Carry (C), Zero (Z), 

and Interrupt Enable (IE). There is an interrupt pin which forces the processor to execute 

code residing in the Interrupt Service Routine (ISR) (its memory address location is pre-

defined), and there is a sleep input pin for freezing all operations [16]. 

Table 2. PicoBlaze Instruction Bitfields [16]. 

Opcode (6-bit) Operands (12-bit) 

6-bit always aaa 12-bit address (0x000-0xFFF) 

 kk 8-bit constant (0x00-0xFF) 

 pp 8-bit port ID (0x00-0xFF) 

 p 4-bit port ID (0-F) 

 ss 8-bit scratch pad location (0x00-0xFF) 

 x 4-bit register within the bank (s0-sF) 

 y 4-bit register within the bank (s0-sF) 

4.2. PicoBlaze Source Code Analysis 

The PicoBlaze core is provided in both VHDL and Verilog languages. VHDL is cho-

sen for describing the proposed hardware design. FPGA primitives are the basic build-

ing blocks of a design. They perform dedicated functions in the device, implement 

standards for I/O pins, and have standardized names [71]. 
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The first step in source code analysis is to scan the code for all primitives used in 

the design. The list of all primitives used in PicoBlaze is as follows: “LUT6, LUT6_2, FD, 

FDR, FDRE, XORCY, MUXCY, RAM32M, RAM256X1S”. 

The second step is to study the FPGA manufacturer’s library guide to retrieve the 

detailed functionality of each primitive, and then write a VHDL implementation of it to 

obtain vendor-independent modules [72]. In the case of PicoBlaze, the “Xilinx 7 Series 

FPGA Libraries Guide” [73] provides the detailed behavior of each primitive. The next 

section provides the equivalent vendor-independent VHDL code of each primitive. 

5. Zipi8: A PicoBlaze Compatible Soft Core 

In this section, the methodology behind transforming a PicoBlaze firm core to a soft 

core using vendor-independent primitive definitions (in VHDL) is detailed. 

5.1. Primitive Conversion to Vendor-Independent VHDL 

One of the primitives listed in the previous section is picked as an example: LUT6. 

The Xilinx Library Guide reads “LUT6 is a six-input look-up table (LUT), it can either act 

as asynchronous 64-bit ROM (with 6-bit addressing) or implement any six-input logic 

function” [73]. A VHDL implementation must be written according to the extracted def-

inition of the primitive. 

Listing 1 shows one of the LUT6 instances used in the PicoBlaze core as an example. 

The ‘pc_mode2_lut’ is the instance name, and 0xFFFF_FFFF_0004_0000 is a 64-bit hexa-

decimal constant used as the initial value of the LUT6 primitive. I0, I1, I2, I3, I4, and I5 

are inputs, and O is output signals. 

First, a Boolean function minimization on the six-input logic function using the giv-

en 64-bit LUT value is performed. The minimization method can be either manual or au-

tomated, using algorithms such as the Espresso logic minimizer [74]. Equation (2) shows 

the result of minimization of the six-input logic function LUT6(I5, I4, I3, I2, I1, I0) shown 

in Listing 1. 

LUT6(I5, I4, I3, I2, I1, I0) = � =  �5 + �4 .  �3�  . �2�  . �1 . �0�   (2)

Listing 1: An example of LUT6 primitive instantiation used in the PicoBlaze core. 

 

After replacing the I0, I1, I2, I3, I4, I5, and O variables in Equation (2) with the name 

of signals connected to them, the exact equivalent vendor-independent VHDL imple-

mentation of LUT6 can be derived, as shown in Listing 2. 

  

pc_mode2_lut : LUT6 

generic map (INIT=>X"FFFFFFFF00040000") 

port map ( 

I0 => instruction (12), 

I1 => instruction (14), 

I2 => instruction (15), 

I3 => instruction (16), 

I4 => instruction (17), 

I5 => active_interrupt, 

O => pc_mode (2) 

); 
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Listing 2: An example of vendor-independent VHDL implementation of LUT6. 

 

The case for other primitives is the same. The vendor-independent VHDL imple-

mentation of the rest of the primitives, including “LUT6_2, FD, FDR, FDRE, XORCY, 

MUXCY, RAM32M, RAM256X1S”, can be found in Supplementary S1, which includes 

the VHDL source code of all primitives in a Xilinx Vivado project. 

5.2. Modular Conversion of PicoBlaze to Zipi8 

The PicoBlaze VHDL source code has no modular structure. It is a module in a 

VHDL file with a long list of primitive instantiations connected via signals. To convert 

the design from a firm core (PicoBlaze) to soft core (named Zipi8 by the authors), it is 

sufficient to directly replace all the instances with vendor-independent VHDL equiva-

lent code, as mentioned in the previous section. If, along the process, the related primi-

tives are grouped into VHDL modules (based on the characteristic equation of flip-flops) 

and then transformation is performed, then complexity can be managed, human errors 

are minimized, and a modular design emerges. Additionally, the process provides better 

understanding of the internal architecture of the design. 

The PicoBlaze core is transformed into 16 modules which use source code com-

ments and original primitive names. The module names are listed below, and their 

source code can be found in Supplementary S1: 

1. arith_and_logic_operations; 

2. decode4alu; 

3. decode4_pc_statck; 

4. decode4_strobes_enables; 

5. flags; 

6. mux_outputs_from_alu_spm_input_ports; 

7. program_counter; 

8. register_bank_control; 

9. sel_of_2nd_op_to_alu_and_port_id; 

10. sel_of_out_port_value; 

11. shift_and_rotate_operations; 

12. spm_with_output_reg; 

13. stack; 

14. state_machine; 

15. two_banks_of_16_gp_reg; 

16. x12_bit_program_address_generator. 

The modules listed above and important signals between them are shown in Figure 

4. It is a simplified version of a fully detailed schematic that is available (in Supplemen-

tary S2) in Encapsulated Postscript (EPS) format. To simplify the diagram, occasionally 

two or three related modules are combined. This is indicated by mentioning module 

numbers in parentheses. For example, the ‘Decoders’ module consists of three submod-

ules: (2), (3), and (4). Both program memory and the processor share the same clock sig-

nal. Those modules which are synchronized with the clock are marked with a triangular 

pc_mode (2) <= 

active_interrupt or 

instruction (17) and 

(not instruction (16)) and 

(not instruction (15)) and 

     instruction (14) and 

(not instruction (12)); 
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symbol. The absence of a clock symbol indicates pure Combinatorial Logic (CL) (e.g., the 

‘Operand Selection’ module). 

 

Figure 4. Block diagram of modular Zipi8 (a high-resolution version of this figure is available in 

Supplementary S3). 

5.3. Zipi8 Architecture 

The important paths, such as the ‘data path’ and ‘instruction path’, are explicitly 

marked in Figure 4. The allocation of two separate buses connected to two different 

memory blocks indicates a Harvard architecture [56]. To explain the instruction execu-

tion mechanism of PicoBlaze, a sample program (Listing 3) with a branch instruction is 

manually traced. 

Listing 3: A sample PicoBlaze program. 

 

As shown in Figure 5, the de-assertion of the reset signal puts the processor into the 

run state. In this state, the processor waits for the first rising edge of the clock that trig-

gers an instruction fetch from memory location 0x000. The fetch results in the ‘Instruc-

tion Path’ bus (see Figure 4) hold valid data (it is the first instruction, ‘LOAD s0, 05’, in 

Listing 3). 

The instruction bus is connected to flip-flops in ‘Decoders’, ‘State Machine & Con-

trol’, ‘Flags’, and ‘Program Counter’ modules. When the second clock arrives, the in-

struction is decoded (sx_addr is set to 0 to select register s0, and the 05 constant value is 

placed on the instruction [7:0] bus, the kk instruction bitfield), the next state of machine 

is calculated, flags are set, and finally the program counter (PC) is incremented by one. 

In the third clock cycle, the instruction at location 0x001 is fetched and the result of 

the ALU is written back into the register in parallel. This results in the s0 register hold-

Start_at_0x000: 

LOAD  s0, 05  ;Loads value 05 into registers 0 – Mem. Location: 0x001 

LOAD  s1, 04  ;Loads value 04 into registers 1 – Mem. Location: 0x002 

JUMP   subprogram_at_01c     ; – Mem. Location: 0x003 

; ... 

subprogram_at_01c: 

ADD   s1, s0               ; s1 <= s1 + s0             ; – Mem. Location: 0x01c 



Electronics 2022, 11, 3438 12 of 28 
 

 

ing the constant value 05. In the next clock cycle, the instruction at location 0x001 (which 

is ‘LOAD s1, 04’) is fetched. 

 

Figure 5. Tracing PicoBlaze instruction execution after a reset signal is asserted. 

As with previous instructions, the decode and execute stages happen in the next 

clock cycle, which sets the sx_addr signal (see Figure 4) to 1 and prompts the second 

ALU operand (kk bitfield) to hold the constant value 04. In the next clock cycle, the pro-

cessor writes back the result into the register bank, resulting in constant value 04 being 

stored in the s1 register and, at the same time, the next instruction (‘JUMP subpro-

gram_at_01c’) being fetched. 

In the next cycle, the JUMP instruction is decoded and, instead of ‘pc = pc + 1’ and 

the next consecutive instruction being fetched, pc is set to a value of 0x01C, which is the 

jump target location. In the next cycle, the instruction at location 0x01C of program 

memory (‘ADD s1, s0’) is fetched. The ADD instruction is then decoded, and the ALU 

needs some time (ALU propagation delay) to perform the add operation. The result is 

ready before the rising edge of the next clock cycle arrives, when it will be written back 

into the s1 register, and so on. This manual execution tracing clearly shows the behavior 

of the PicoBlaze when it executes a branch instruction in two clock cycles. 

Each original PicoBlaze instruction takes exactly two clock cycles (CPI = 2), making 

its ISA performance deterministic. This turns PicoBlaze into a suitable candidate for 

safety-critical real-time embedded systems [38] if its performance can be improved 

without adding a pipeline or caches. In the next section, a new design is proposed that 

achieves CPI = 1 with PicoBlaze, resulting in significant performance improvement. 

5.4. Zipi8 Verification 

We use the comparison method to verify the integrity of the Zipi8 core against the 

PicoBlaze. Flip-flop output signals have a one-to-one relationship in both cores. There-

fore, the transformation process can be validated by probing signals at all output junc-

tures of flip-flops in both cores and by using VHDL assert statements to catch any dis-

crepancies between them. Verification details and extra information on PicoBlaze to Zi-

pi8 conversion can be found in [18]. 

6. DAP-Zipi8: A Modified Zipi8 Soft Core with CPI = 1 

Modification of the PicoBlaze becomes feasible after converting it to the Zipi8 soft 

core. The goal is to improve performance without those indeterministic performance im-

provement techniques that were discussed in the Introduction. In this section, at first, the 
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overall mechanism of the proposed technique, in terms of how to reduce CPI from two to 

one, is provided without diving deep into details. Next, as a case study, the proposed de-

sign is applied to the converted Zipi8 core, which is Xilinx PicoBlaze compatible. 

Branch and Load Delay Elimination 

Figure 6 shows how simultaneous fetching of two instructions per clock cycle elim-

inates branch delay. Assuming instructions placed in memory location 0, 1, 2, and 3 are 

named inst_0, inst_1, inst_2, and inst_3, then inst_0 and inst_1 are fetched simultaneous-

ly in the first clock cycle, inst_1 and inst_2 in the second cycle, and so on. If an instruc-

tion is a conditional jump to location x, then it is listed as jump@x. 

 

Figure 6. Description of the dual-fetch mechanism and how it allows conditional branch instruc-

tions to take one clock cycle, regardless of them being taken or not taken. 

In Figure 6, inst_0 and jump@x are fetched in the first cycle (dual fetch); the second 

instruction is a conditional jump. Decoding both instructions simultaneously determines 

whether the conditional jump must be taken or not taken prior to the arrival of the sec-

ond clock cycle. Knowing that a branch instruction will be taken or not taken is the cor-

nerstone of the proposed design. In the second cycle, jump@x and inst_2 are fetched. If 

the branch is not taken (known in advance), then jump@x will be considered as a no op-

eration (NOP) instruction and it takes one cycle to be executed. If the branch must be 

taken (known in advance), then, instead of fetching the second instruction (jump@x) in 

the second cycle, the instructions at location x and x + 1 will be fetched simultaneously 

(inst_x and inst_x + 1) by spending only one clock cycle. Applying the proposed dual-

fetch design to predict the behavior of branch instructions results in conditional instruc-

tions taking one cycle, whether they are taken or not taken. 

The term dual-fetch should not be confused with the dual-issue feature that exists in 

some modern processors, such as the ARM Cortex-R. The dual-fetch technique proposed 

in this paper fetches two instructions in one clock cycle and uses the second fetch for the 

sole purpose of removing branch and load delays with the goal of achieving uniform 

CPI = 1 values. The dual-issue feature requires a pipeline and refers to fetching two in-

structions in each clock cycle, and then issuing them to the next stage of a pipeline, in 

order to achieve CPI = 0.5 without a guarantee of CPI uniformity. 

In Figure 7, the behavior of the original PicoBlaze versus a standard two-stage pipe-

line versus our proposed method is shown. It assumes that instructions in program 
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memory are numbered from 1 upwards: 1, 2, 3, and so on. FDx stands for fetch/decode 

of instruction number x, and Ewx stands for execute and write back of instruction num-

ber x. Tax means instruction located at target address x, and EWTAx means execution 

and write back of Tax. 

Figure 7 demonstrates the branch delay elimination. It shows how a standard pipe-

line stalls when a branch instruction is taken. The already fetched and decoded instruc-

tion, number 3 (FD3), must be discarded, and its execution and write back stages (EW3) 

cannot be performed if instruction 2 is a jump to instruction 9 and the branch is taken. 

This results in an invalidated pipeline and imposes a one clock cycle penalty. In contrast, 

our proposed method never generates any stalls. Notice that although the clock period 

of the proposed processor (DAP-Zipi8) is longer than the PicoBlaze, it can execute in-

structions 1, 2, and 9 in shorter time (notice the end of the EW9 cycle). 

 

Figure 7. Original PicoBlaze versus a two-stage pipeline versus the proposed method (assuming 

instruction 2 is a conditional branch to arbitrary location 9 and it is taken). 

Figure 8 demonstrates the load delay elimination. In normal flow, one instruction is 

fetched per clock, and if there is a data dependency between the current fetched instruc-

tion and the previous instruction, then a stall must occur. The proposed dual-fetch 

mechanism leads to complete elimination of delays related to data dependency among 

two consecutive instructions. For example, if inst_1 depends on the inst_0 result saved in 

register A, then a forward path will send on the result of inst_0 to inst_1. The detection is 

simply done by comparing the source and target registers of the instructions. 
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Figure 8. Description of the dual-fetch mechanism showing load delay elimination using two in-

struction buses. 

For PicoBlaze, two clock cycles per instruction are necessary. In the first clock cycle, 

an instruction from the location address pointed to by the PC register is fetched. A sec-

ond cycle is required to decode and execute the fetched instruction. The write back hap-

pens in the same clock cycle while the next instruction fetch occurs. This second cycle is 

mandatory for three kinds of instructions: conditional jump, ‘return’, and ‘call@(sY, sY)’ 

instructions. The reason is that the next PC value depends on other signals, such as ze-

ro/carry flags, the stack, or register content. Therefore, the design by Xilinx opts for two 

clocks per instruction; one clock cycle to “fetch and write back” and another to “decode, 

execute, and calculate next PC value”. This yields uniform ISA with CPI = 2 for all in-

structions. The search for how to reduce CPI while keeping ISA uniformity intact moti-

vated the work presented in the next section. 

7. Zipi8 (CPI = 2) to DAP-Zipi8 (CPI = 1) 

The first step is to set program memory BRAM to dual-port mode with the follow-

ing settings: 

 Memory Type = “True Dual-Port RAM”; 

 Primitives output Register = “Unchecked”. 

Apart from address and instruction buses, two more buses named address2 and in-

struction2 are added to fetch an extra instruction on every rising edge of the clock. The 

original design updates the PC signal every two cycles based on control signal t_state(1) 

and is toggled every cycle. 

By removing the t_state(1) signal, the PC value is forced to be updated every clock 

cycle. The next step is to remove all D flip-flops (FDs) which take part in the construc-

tion of the two-stage pipeline. All modifications applied to all 16 modules of the Zipi8 

core are listed in Supplementary S4. 

After applying the changes, a single-cycle processor is nearly achieved. It includes 

fetch, decode, and execution stages all in one cycle. However, the new design fails to cal-

culate the correct next pc value if the processor state machine deviates from the normal 

flow (pc = pc_value + 1). Figure 9 elaborates this failure when normal flow is disrupted by 

a branch instruction. Let us assume that an instruction at memory location 0x002 is a 

conditional jump to an arbitrary target memory address ‘x’. The processor fetches inst_0 

and inst_1 from memory location 0x000 and 0x001 as normal. The PC value is then set to 

0x002 and, in the next clock cycle, the jump@x instruction is fetched. As the design still 

needs two clock cycles to calculate the right pc_value, the jump target address value 

propagates to pc one clock cycle late and the instruction after the conditional jump 

(inst_3, which should not be reached by the processor and inst_2, is a jump and is taken) 
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is then fetched wrongly. This is the inherent problem of branch instructions that leads to 

pipeline stalls as discussed earlier. 

 

Figure 9. Elaboration of Zipi8 instruction fetch failure after its modifications to achieve CPI = 1 and 

before adding a branch prediction circuit. 

7.1. Adding the Dual Address Bus and Branch Prediction Circuit 

The main idea behind the dual address bus branch prediction (DAP) circuit is to 

fetch two instructions per clock cycle by using a dual-port program memory block. This 

allows the circuit to predict the next PC value correctly by decoding the first fetched in-

struction in one clock cycle and then using the decoded signals in the execution step of 

the next clock cycle. 

The schematic provided In Figure 10 shows the Zipi8 modules which must be mod-

ified to accommodate the DAP circuit (added signals are in blue). Note that ALU, de-

coder, and SPM modules are not shown in this figure as these modules remain intact. 

The most important added signals are instruction2 and address2. They are connected to 

the second port of external program memory BRAM. The address2 signal (derived by 

pc2) holds the address of the second instruction and is always fetched in parallel with 

the current instruction (derived by pc). Both pc and pc2 are generated by the ‘Program 

Counter’ module (module no. 7 and 16). 

The second most important modification is the conversion of RAM32M primitives 

to dual-port instances in module no. 7, 16, and 13. This enables two locations of stack 

memory and registers (which are also memory) to be accessed instead of one location. 

This is achieved through simultaneous access to PORTA and PORTB of block RAMs on 

every clock cycle. 

This is mandatory for prediction of the target address of instructions such as ‘re-

turn’, which uses the stack memory (using PORTB of the stack memory), or ‘call@(sX, 

sY)’, which uses the register banks (using PORTB of the register bank memory). 

sx_addrB and sy_addrB are connected to PORTB of the register memory BRAM, which 

makes simultaneous access to 2 out of 32 registers possible through PORTA and B. 

Referring to Figure 10, the sxB and syB signals are the output of BRAM’s PORTB in 

general-purpose register banks. The push_stack2 and pop_stack2 signals, alongside the pc2 

signal, are added to the PORTB of BRAM used in the ‘Stack’ memory module. These 

signals assist the prediction of correct stack pointer values and, consequently, the ‘Stack’ 

module can then set the correct ‘stack_memory’ value, as well as other necessary out-

puts. 
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Figure 10. Zipi8 schematic with added prediction signals (highlighted in blue)—ALU, decoder, 

and SPM modules are omitted as these modules remain unchanged. 

Next is the addition of the internal_reset_delayed signal to the ‘State Machine’ mod-

ule. As can be seen in Figure 9, this signal goes low one clock cycle earlier than the inter-

nal_reset signal. This provides one extra clock cycle to the ‘Program Counter’ module for 

predicting the pc2 value. The carry_flag_value and zero_flag_value (see Figure 10) are 

simply the next values of the carry_flag and zero_flag signals calculated based on the exe-

cution of the current instruction. There are few internal signals of the ‘Flags’ module that 

are required to be routed out of the module for use as input to the ‘Program Counter’ 

module for prediction. In the original design, the ‘Register Bank Control’ module is re-

sponsible for producing sx_addr and sy_addr and depends on the sx_addr4_value pro-

duced by the ‘State Machine’ module. The purpose of reusing ‘Register Bank Control’ 

and moving it into the ‘Program Counter’ module is to generate the sx_addr [4] signal. 

The core of the prediction mechanism is inside the ‘Program Counter’ module, which 

will be discussed in the next section. 

7.2. Program Counter Module Modification 

In the original PicoBlaze, the ‘Program Counter’ module is responsible for deter-

mining the next PC value in each clock cycle. Figure 11 depicts the internal structure of 

the modified ‘Program Counter’ module. Analysis of PicoBlaze shows that the ‘Program 

Counter’ module receives the following signals as input: 

1. pc (current state); 

2. register_vector; 

3. pc_vector; 

4. pc_mode (current inputs). 

The module then calculates the pc_value as output, which is then clocked to the PC. This 

constructs a simple Mealy state machine where the output depends on inputs and the 
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current state of machine. The state machine then identifies the four necessary signals 

that must be present to calculate the next PC register value (pc_value signal). 

 

Figure 11. Program Counter module with the prediction circuit added (a high-resolution version 

of this figure is available in Supplementary S3). 

At the heart of Figure 11 we have ‘combinational logic (A)’, which receives the pc, 

register_vector, pc_vector, and pc_mode values and generates the pc_value which is the next 

value of the PC register. This block is combinatorial and, in the original design, is con-

structed using LUT6, MUX, and XOR primitives. The exact duplication of this block is 

named ‘combinational logic (B)’ and is used to generate the pc2_value signal. The inputs 

to combinational logic (B) are derived from exact duplication of ‘(16) 12-bit Address 

generation’ and ‘(3) Decoding for program counter and stack’ modules. Instead of in-

struction, sx, sy, carry_flag, and zero_flag signals, the instruction2, sxB, syB, carry_flag_value, 

and zero_flag_value signals drive their inputs. This produces the pc2_value signal which is 

the potential guessed value for the next PC register value. 

Three modes are defined based on the two fetched instructions A and B, and the de-

tails of how the final value of the PC register is calculated and set are then discussed. 

The modes are: 

1. ‘Normal’ mode: instructions A and B do not modify the PC register and both are 

not JUML, CALL, or RETURN instructions. 

2. ‘Guessed value is used’ mode: instruction B modifies the PC register but instruction 

A does not. 

3. ‘Illegal’ mode: instructions A and B both modify the PC register. 

In the original design, the pc_value signal (the next value of the PC register) is di-

rectly connected to the ‘pc_fd’ flip-flop. The design is modified by adding the ‘pc_mux’ 

multiplexer before the ‘pc_fd’ flip-flop, which selects the correct predicted pc_value 

based on three signals ordered from high to low priority: 

1. internal_reset; 

2. guessed_value_used; 

3. pc2_mode. 

If the internal_reset signal is high, regardless of other multiplexor selectors, the pc will be 

set to zero (processor reset). If the internal_reset signal is low, then the processor is in 

running mode and the guessed_value_used signal will be checked. When 
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guessed_value_used is high, it means the processor is in ‘Guessed value is used’ mode, 

which indicates that current instruction A has modified the PC register and, consequent-

ly, the guessed value has been used already; therefore, the next valid instruction will be 

in the ‘pc + 1’ memory location. Note that addition of this multiplexor increases the criti-

cal path of the processor. 

It should be noted that it is illegal to have two consecutive instructions which both 

modify the PC register. Therefore, if the current instruction has modified the PC, the as-

sumption is that the next one will not; therefore, incrementing the PC by one is always 

the correct way to advance the processor state machine. When guessed_value_used is low, 

it means the processor is in ‘Normal’ mode, which indicates that the current instruction 

does not modify the PC register. 

The next step is to investigate the next instruction that has already been fetched and 

decoded. The binary value ‘0b001’ for the pc2_mode signal indicates that the next instruc-

tion will not modify the PC register and, therefore, that pc_value is the next value of pc. 

The binary value ‘0b011’ for the pc2_mode signal indicates that the next instruction is a 

RETURN instruction; therefore, pc_value must be discarded and, instead, the return ad-

dress fetched from stack in advance (pc2_value) must be used as the next pc value. The 

binary value ‘0b110’ for pc2_mode indicates that the next instruction is a ‘CALL@(sX, SY)’ 

instruction and that the next value of pc must be a concatenation of the content of [xS,xY] 

registers, both of which are fetched from the register bank in advance and placed on the 

pc2_value signal. 

In Figure 11, the pc2_mux and pc2_rst_mux signals select the next value for the pc2 

signal. If the internal_reset_delayed signal is high (processor reset), then pc2 will be set to 

zero; otherwise, the next value of pc2 will be either pc2_value (Normal mode) or 

pc2_value + 1 (not Normal mode). 

The last module that needs to be discussed here is the ‘Register Bank Control’ mod-

ule, which outputs the sx_addr [4] signal. As shown in Figure 11, input signal sx_addr [4], 

alongside the shadow_bank and instruction2 signals, sets the output signals sx_addrB and 

sy_addrB. These two output signals hold values destined for PORTB of the register 

bank’s memory. 

To summarize the modification technique presented above, all memory blocks are 

converted to dual-port mode to fetch two instructions in parallel. The minimum logic in 

the original decoder is then replicated (‘combinational logic (A) and (B)’) to produce sig-

nals for prediction circuitry that result in removal of branch and load delays. 

7.3. Stack Module Modification 

In the original PicoBlaze design, the ‘Stack’ module is responsible for producing ze-

ro_flag, carry_flag, bank, and special_bit signals alongside of the stack_memory signal, as de-

tailed in Supplementary S2. They depend on push_stack and pop_stack input signals set 

by decoding circuitry. The current value of the internal signal stack_pointer drives the 

ADDRA port of BRAMs that is used as stack memory. The memory content the 

stack_pointer points to holds the return value address. 

For example, if the processor executes a RETURN instruction, then a pop_stack sig-

nal will be asserted which prompts the ‘Stack’ module to decrement stack_pointer by one. 

This will put the memory content of “stack_pointer − 1” on the stack memory output data 

bus, which in turn recovers the flags, bank, and pc register values. When a CALL instruc-

tion gets executed, the push_stack signal is asserted, which prompts stack_pointer to be in-

cremented by one (“stack_pointer + 1”). Next, the WE signal will be set to a high value so 

the current flags and pc value can be saved into stack memory. 

The modification of the original design starts by enabling the dual-port option for 

BRAMs used as stack memory. The push_stack and pop_stack inputs must be removed as 

they are calculated one clock cycle late (PicoBlaze uses two clock cycles, and these two 

signals are used in the second clock cycle). These two input signals are replaced by 

push_stack2 and pop_stack2 signals, which are generated by prediction circuitry in ad-
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vance. They detect whether the current instruction is a RETURN or a CALL, which 

prompts a pop from stack memory or a push into stack memory, respectively. 

The next step is the removal of all LUT, MUX, XOR, and FD primitives and rede-

sign of the ‘Stack’ module to accommodate prediction circuitry, which is shown in Fig-

ure 12. The stack_pointer signal is connected to the ADDRA port, and a series of multi-

plexors decide whether the pointer must be incremented or decremented based on the 

values of push_stack2 and pop_stack2. The stack_pointer is connected to the ADDRB port 

and always points to the location of “stack_pointer − 1”. 

 

Figure 12. Stack module with prediction circuit added (a high-resolution version of this figure is 

available in Supplementary S3). 

This makes the content of memory locations at stack_pointer and “stack_pointer − 1” 

available at any given clock cycle through stack_memory1 (memory content on ADDRA) 

and stack_memory2 (memory content on ADDRB) signals. The two multiplexors, with 

pop_stack2 as their selector, decide the final value of the flag, bank, and stack_memory sig-

nals. Note that the WE pins of both BRAMs are permanently pulled up (connected to 

Vcc), which forces a continuous write on every clock cycle at the memory location point-

ed to by the ADDRA value. 

With addition of the circuit mentioned above, the processor constantly writes the 

status of flags and the current PC register value into stack memory at every clock cycle 

(constant push). At the same time, it constantly reads two locations from stack memory 

pointed to by the stack pointer and the stack pointer subtracted by one. The prediction 

circuit drives the processor to pop the stack (decrement the stack pointer by one and use 

the output of PORTB to recover the PC register value and flags through the pop_stack2 

signal) or continue normal operation (the stack pointer will be intact and the output of 

PORTA will be used). In case of a push, the processor just needs to increment the pointer 

by one (triggered by push_stack2), as writing to stack memory is already performed on 

every clock cycle regardless of whether the push_stack2 signal is asserted. 

8. Resource and Power Utilization 

Table 3 compares the resource utilization of our proposed DAP-Zipi8 with CPI = 1 

with that of Zipi8 with CPI = 2 and the original PicoBlaze. Referring to Table 3, the max-
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imum clock frequency obtained with the Xilinx Zynq UltraScale+ MPSoC ZCU104 Eval-

uation Kit was 369.041 MHz, which is attributed to the original Xilinx PicoBlaze. 

The conversion of a firm-core PicoBlaze to a soft-core Zipi8 is essential if we want to 

modify the design. The converted soft core, named Zipi8, can achieve a maximum fre-

quency of 357.509 MHz (=2.86% decrease) and an increase in LUT count from 122 to 157 

(28.69% increase). This is the cost (increase in logic area) that must be paid to make the 

register transfer level (RTL) HDL source code of PicoBlaze available for modification. 

Table 3. PicoBlaze vs. Zipi8 vs. DAP-Zipi8 resource utilization and maximum clock frequency on 

a Xilinx ZCU104 development board. 

Core CPI Max Freq. (MHz) LUTs Regs. Carry8 F7 Mux F8 Mux 

PicoBlaze 

(KCPSM6) 
2 369.041 122 74 7 16 8 

Zipi8 1 357.509 157 74 0 16 8 

DAP-Zipi8 1 224.022 305 49 2 16 8 

The dual-fetch technique, explained previously in conjunction with dual-port 

memory, and the addition of dual-address bus prediction circuitry yields a new proces-

sor that is named DAP-Zipi8, which has a LUT count of 305 (94.27% increase compared 

to Zipi8) and a maximum frequency of 224.022 MHz on the Xilinx ZCU104 development 

board. Note that the removal of flip-flops between decoder and execution stages results 

in a reduction in total register count from 74 to 49 (see Table 3). 

Although the DAP-Zipi8 critical path has increased (which results in lower achiev-

able maximum clock frequency), CPI is reduced from two to one (50% decrease). Con-

sidering processor performance in terms of million instructions per second (MIPS), the 

calculation of MIPS for Zipi8 (CPI = 2) is shown in Equation (3). 

��� ����.

���
=

357.509���

2
= 178.75 ���� (3)

For DAP-Zipi8, the calculation is shown in Equation (4). 

��� ����.

���
=

224���

1
= 224 ���� (4)

MIPS is not an accurate metric to compare the performance of processors with dif-

ferent ISAs. For example, comparison of Intel versus ARM versus PicoBlaze using the 

MIPS metric is incorrect. In those cases, benchmarks from Dhrystone, the Embedded Mi-

croprocessor Benchmark Consortium (EEMBC), or the Standard Performance Evaluation 

Corporation (SPEC) should be used, as instructions in different ISAs might perform dif-

ferent amounts of work. For example, one ISA might have an instruction that performs a 

simple addition operation, while another ISA might have special digital signal pro-

cessing (DSP) instructions that perform addition and multiplication as one combined in-

struction. In this paper, the modified PicoBlaze (DAP-Zipi8) and PicoBlaze itself both 

have the same ISA and are compared against each other. This justifies employment of 

the MIPS metric as a meaningful performance indicator [17]. 

As shown in Figure 13, a 25.31% performance improvement for the DAP-Zipi8 pro-

cessor (increase from 178.75 to 224 MIPS) is achieved without considering the impact of 

mandatory NOP instructions (inserted to avoid invalid examples of the design). 
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Figure 13. PicoBlaze vs. Zipi8 vs. DAP-Zipi8 performance and resource utilization comparison. 

Figure 14 shows four programs that were executed on both PicoBlaze and DAP-

Zipi8 cores and their measured execution times (left side y-axis). On the x-axis, the 

‘state_machine’ label refers to a complex finite state machine (FSM) that is used to con-

trol 1024 PicoBlaze cores on a single FPGA chip (XCZU7EV-2FFVC1156). The FSM is 

written by the authors and follows the work presented in [75]. It is an RTES application 

that uses a myriad of cores for the adaptive routing and serving of swarms of incoming 

network traffic (miniature web servers running on PicoBlaze instances). Utilizing a 

PicoBlaze core as an FSM controller is common and the detail of this implementation, 

though out of the scope of this article, will be published in another paper. Note that this 

state machine is the main application of our proposed architecture, and it is not executa-

ble on indeterministic processors (processors with a pipeline or caches) as it expects pro-

grams to be executed in an exact predetermined number of clock cycles. It is noteworthy 

that the worst-case response time to external interrupts in this state machine is just three 

clock cycles using DAP-Zipi8 versus five cycles in the original PicoBlaze. 

 

Figure 14. PicoBlaze vs. Zipi8 vs. DAP-Zipi8 performance and resource utilization comparison. 
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To avoid the invalid case (‘Illegal’ mode as defined in Section 7.2) where two con-

secutive conditional jump instructions are present, a NOP instruction is inserted in be-

tween of jump instructions. A program in the final pass of compilation scans program 

opcodes and inserts a NOP instruction whenever two consecutive branch instructions 

are discovered. 

In Figure 14, the negative impact of added NOP instructions on performance for all 

algorithms is shown. The algorithms used in the benchmark are listed below: 

1. PicoTETRIS [76]: a Tetris game written in PicoBlaze assembly language. 

2. An IEEE-754 64-bit floating point arithmetic library [77]. 

3. A matrix multiplication algorithm written in PicoBlaze assembly language. 

4. A state machine controller that manages multiple cores by implementing a complex 

FSM used to controlled 1024 PicoBlaze cores on an FPGA in real time. 

The added NOPs increase the total instruction count (right-side y-axis in Figure 14 

which is labelled “Instruction Count Increase after Added NOPs”) per algorithm. The 

percentage increase is shown with the black bar along the right-side y-axis. Although the 

number of NOP instructions increased by around 1% (2.42% in the case of PicoTETRIS), 

their impact was quite significant. It reduced the performance gain from the initially ob-

tained 25.31% down to 18.28~19.49%, as reported in Figure 14. 

Power consumption was measured using the Xilinx Vivado v2021.1 ‘Power Report’ 

facility for all three cores at both 100 MHz clock frequency and maximum achievable 

clock frequency. The total FPGA on-chip power consumption for all cores was 722~737 

mW, which is divided into static and dynamic power. Static power was fixed at 615 mW 

and was FPGA device dependent. Total dynamic power consumption was 107~122 mW. 

A large portion of dynamic power was used in memory block RAM, clock generation 

circuitry, and other support modules. The portion of dynamic power that was used by 

cores is reported in Table 4. It shows a 42.86% power increase (against 25.31% perfor-

mance gain) in DAP-Zipi8 when running the cores at their maximum frequency. 

Table 4. PicoBlaze vs. Zipi8 vs. DAP-Zipi8 power utilization on a Xilinx ZCU104 development board. 

Core Power @ 100 MHz Power @ Maximum Achievable Frequency 

PicoBlaze (KCPSM6) 3 mW 12 mW 

Zipi8 4 mW 14 mW 

DAP-Zipi8 8 mW 20 mW 

9. Verification 

Three verification methods have been employed to ensure the correctness of DAP-

Zipi8 and its compatibility with PicoBlaze. 

9.1. Isolated Instruction Execution 

To verify the DAP-Zipi8 core, execution results of all instructions on the machine 

state (registers, flags, scratch pad memory content) were examined. Each instruction was 

used in a tiny test program, and its execution outcome was then compared and verified 

by examining the simulation waveform manually. Note that the comparison method 

mentioned in Section 5.4 cannot be used here as DAP-Zipi8 is cycle-incompatible with 

PicoBlaze. Correct results were observed by thorough examination of waveforms. 

9.2. Math Library Execution 

To verify conditional jumps, calls, returns, and stack mechanisms, both cores were 

set to execute a sequence of complex math methods. The results of those methods were 

obtained and then compared by running the code on both cores. The IEEE-754 64-bit 

floating point arithmetic library [77], which has relatively high complexity, was used to 

expose potential faults. The library has numerous bitwise operations that boost the 
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chance of discovering processor bugs, even if a single bit is miscalculated as it tries to 

compute 64-bit floating point numbers on an 8-bit processor. 

The library extensively uses 8-bit registers and scratch pad memory to perform 64-

bit normal/subnormal floating point (FP) operations. The math methods use carry and 

zero flags for almost every routine and are extremely sensitive to any mistakes while 

performing bit slicing, shifting, concatenation, and other bitwise operations. Figure 15 

shows the hardware setup used to verify DAP-Zipi8. 

The Xilinx ZCU104 development board has a Zynq Ultrascale+ chip which hosts a 

hardened ARM Cortex-A53 processor. The ARM core has an internal floating-point unit 

(FPU) and can perform IEEE-754 64-bit operations natively. The core performs floating-

point operations and the operands used in calculations, as well as the results, are saved 

in a dual-port shared BRAM. DAP-Zipi8 was also connected to this dual-port BRAM 

and its reset pin was controlled by the ARM processor. After the reset signal was assert-

ed by the ARM core, the DAP-Zipi8 was reset and then read the requested FP operation 

stored in the shared BRAM. Next, the appropriate library routine that matched the re-

quested operation was called. The result produced by DAP-Zipi8 was then saved back 

into the shared BRAM and an interrupt signal was sent back to the ARM core to signal 

the end of the operation. The ARM core then fetched the result produced by DAP-Zipi8 

and simply compared it with its own result and printed an error message if a mismatch 

in results occurred. 

Initial runs of this verification method revealed several bugs. After addressing the 

bugs, no inconsistencies were found between the results for both cores. Knowing that 

hardened ARM floating point units are bug-free, DAP-Zipi9 is also concluded to contain 

no mistakes. 

 

Figure 15. Hardware setup for DAP-Zipi8 verification using a math library on a Xilinx Zynq Ul-

trascale+ ZCU104 development board. 

9.3. Random Execution from an Instructon Pool 

A C++ program was developed by the authors to generate a series of PicoBlaze in-

structions randomly. Figure 16 shows the C++ classes used in the program. The random-

ly generated instructions from an instruction pool were passed to both cores (PicoBlaze 

and DAP-Zipi8) for execution. After the completion of execution simulation (with ran-

dom instructions loaded into BRAM program memory), the final states of both cores 

were compared. A bug was reported if there was a discrepancy in register content or 

flag status. Results obtained in this step reinforce the correctness of the design. 
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Figure 16. C++ classes for randomly generating PicoBlaze instructions.  

10. Conclusions 

In this paper, DAP-Zipi8, which is an 8-bit PicoBlaze compatible soft core, is pro-

posed. It is equipped with a branch prediction that uses two address buses to calculate 

branch targets in order to eliminate load and branch delays. By adapting the new design, 

DAP-Zipi8 exhibits a performance boost from 178.75 MIPS to 224 MIPS (25.31%) com-

pared to the original PicoBlaze. The case of two consecutive conditional branches is the 

only invalid situation, which can be easily avoided by inserting NOP instructions be-

tween branch instructions. After measuring the negative impact of extra added NOP in-

structions, an 18.28–19.49% increase in overall core performance was achieved. The im-

proved performance is a trade off with increased LUT count (157 to 305 LUTs, which is a 

94.27% increase in logic area). The enhanced DAP-Zipi8, with its deterministic ISA, 

emerges as a good candidate for hard RTESs. The core is used as a real-time state ma-

chine controller for a homogenous multi-core architecture (1024 PicoBlaze cores). 

Supplementary Materials: The code associated to the work presented in this paper is VHDL 

source code for the DAP-Zipi8, an improved implementation of the Xilinx PicoBlaze, and can be 

found in Supplementary S1. The Supplementary Materials are available on the public GitHub re-

pository: https://github.com/ehsan-ali-th/DAPZipi8Appendices. Supplementary S1: VHDL source 

code of DAP-Zipi8 Xilinx Vivado 2020.1 Project: https://github.com/ehsan-ali-

th/DAPZipi8Appendices/tree/main/Appendix_A (accessed on 23 October 2022). Supplementary 

S2: Complete high-resolution schematic of Zipi8 in E PS format: https://github.com/ehsan-ali-

th/DAPZipi8Appendices/tree/main/Appendix_B (accessed on 23 October 2022). Supplementary 

S3: High-resolution version of Figure 4, 11, and 12. https://github.com/ehsan-ali-

th/DAPZipi8Appendices/tree/main/Appendix_C (accessed on 23 October 2022). Supplementary 

S4: Zipi8 modules modifications for improving CPI to 1. https://github.com/ehsan-ali-

th/DAPZipi8Appendices/tree/main/Appendix_D (accessed on 23 October 2022). 
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