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Abstract: The high prevalence of Alzheimer-type dementia and the limitations of traditional neu-
ropsychological tests motivate the introduction of new cognitive assessment methods. We discuss
the validation of an all-digital, ecological and non-intrusive e-health application for the early de-
tection of cognitive impairment, based on artificial intelligence for patient classification, and more
specifically on machine learning algorithms. To evaluate the discrimination power of this applica-
tion, a cross-sectional pilot study was carried out involving 30 subjects: 10 health control subjects
(mean age: 75.62 years); 14 individuals with mild cognitive impairment (mean age: 81.24 years) and
6 early-stage Alzheimer’s patients (mean age: 80.44 years). The study was carried out in two separate
sessions in November 2021 and January 2022. All participants completed the study, and no concerns
were raised about the acceptability of the test. Analysis including socio-demographics and game
data supports the prediction of participants’ cognitive status using machine learning algorithms.
According to the performance metrics computed, best classification results are obtained a Multilayer
Perceptron classifier, Support Vector Machines and Random Forest, respectively, with weighted recall
values >= 0.9784 ± 0.0265 and F1-score = 0.9764 ± 0.0291. Furthermore, thanks to hyper-parameter
optimization, false negative rates were dramatically reduced. Shapley’s additive planning (SHAP)
applied according to the eXplicable AI (XAI) method, made it possible to visually and quantitatively
evaluate the importance of the different features in the final classification. This is a relevant step
ahead towards the use of machine learning and gamification to early detect cognitive impairment.
In addition, this tool was designed to support self-administration, which could be a relevant aspect
in confinement situations with limited access to health professionals. However, further research
is required to identify patterns that may help to predict or estimate future cognitive damage and
normative data.

Keywords: early detection; cognitive impairment; gamification; machine learning algorithms;
eXplicable AI (XAI); non-intrusive assessment

1. Introduction

Dementia currently affects more than 50 million people worldwide. It is estimated that
by 2030 more than 75 million people will suffer from this disease and that this figure will
triple by 2050 [1]. These data show the high prevalence of this condition, as well as its social
impact, since it affects such a large population. Specifically, Alzheimer’s disease is the most
common cause of dementia and may contribute to 60–70% of all cases. Throughout, the
World Health Organization recognizes dementia as a public health priority and makes a
global call against it [2]. In addition, the likelihood of developing dementia increases with
advancing age, so that the aging of Western populations is also another factor that will
further increase its prevalence.
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The diagnostic methods to detect such a medical condition, from a cognitive point
of view, are the so-called neuropsychological tests [3], such as the Mini-mental State
Examination (MMSE) for dementia or Reisberg’s Global Deterioration Scale (GDS). GDS is a
dementia diagnosis and rating system used to classify patients according to the experienced
stage of mild cognitive impairment or dementia, regardless of cause [4]. These tools perform
a neuropsychological assessment addressing certain areas, such as memory, language,
attention or visuospatial ability. However, despite their normative value, these tools
have some limitations, such as being affected by the white coat effect, as they are generally
perceived by users as intrusive and alien tools [5]; providing a late diagnosis [6]; notoriously
lacking ecological validity [7,8]; and being dependent on confounding variables (e.g., age,
educational level [9], practice effect or testing effect [10,11], etc.).

For all these reasons, alternative cognitive assessment mechanisms were explored
in recent years, including the digitization of classic tests [12], gamification [13] or virtual
reality [14–21], among others. In particular, our proposal is based on the introduction of
serious games, immersive virtual reality and artificial intelligence (AI), more specifically
machine learning algorithms [22,23]. Serious games are “games that do not have enjoyment,
entertainment or fun as their primary purpose” [24]. It is possible to find in the literature
several proposals to perform neuropsychological assessment using videogames address-
ing attention [20,25,26], working memory [27,28] and executive functions [29,30], among
others. Gamification techniques offer significant advantages [5] to assess the cognitive
status of an individual, as they are more ecological, reproducing real-life situations, and
are not perceived as an intrusive tool. However, more research is still needed to build
reliable and valid serious game-based tests ready to be used in clinical neuropsychological
assessment [22]. For this, an adequate psychometric validation of existing solutions is
required [31,32].

This paper discusses the effectiveness of Panoramix 2.0, a battery of three serious games,
for the detection of cognitive impairment in older adults supported by machine learning
artificial intelligence (AI) algorithms. Originally, this e-health tool, named Panoramix, was
designed by the authors as a digital test consisting of 6 games, which once psychometrically
validated served as the foundation of Panoramix 2.0, a new 3-game version with improved
usability, support for additional cognitive tasks and better scalability. This new version
focuses on assessing the most predictive cognitive areas identified in previous studies
for Mild Cognitive Impairment (MCI) [33,34], namely episodic memory [35–37], semantic
memory and procedural memory. In addition, this tool was designed to support self-
administration. Users may play with the three games in the battery on their own, and
all data collected would be submitted online to a health facility to be further analyzed by
health professionals. This is a relevant feature in confinement situations such as the ones
consequence of the coronavirus disease of 2019 (COVID-19) pandemic.

Throughout this paper, we will present the results of a pilot experiment, described
in Section 2, whose main objectives are (1) to validate the predictive ability of the new
version of the digital test to discriminate healthy people from those suffering from cognitive
impairment and (2) to measure the degree of acceptance by the participants of this new
tool. The results of this pilot are presented in Section 3 and discussed in Section 4. Finally,
concluding remarks are offered in Section 5.

2. Materials and Methods
2.1. Selection and Description of Participants

The distribution of participants according to main statistics is collected in Table 1.
Sociodemographic characteristics include gender, age, educational level (0 = illiterate;
1 = ability to read and write; 2 = primary; 3 = secondary; 4 = high school; 5 = vocational
training; 6 = university), exercise level and socialization level, all of them based on a 5-point
Likert scale ranging from 1 (never) to 5 (always); and finally, chronic treatment (0 = no;
1 = yes).
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Table 1. General description of the population sample utilized.

Variables Sample n (%)
Mean (SD)

Gender Female 22 (±0.73)

Male 8 (±0.27)

Mean (SD)

Age (65+ years) n = 30 78.64 (±7.23)

Educational level 2.42 (±1.2)

Exercise level 3.57 (±0.99)

Socialize level 4.17 (±1.05)

Chronic treatment 0.70 (±0.36)
(SD = standard deviation).

A total of 30 subjects (22 women and 8 men) from southern Galicia (Spain) participated.
The sample was divided into three groups: (1) 10 persons without cognitive impairment or
healthy control (HC) group (average age of 75.62 years); (2) 14 patients experiencing mild
cognitive impairment (MCI, average age of 81.24 years); and finally, 6 patients suffering
from incipient Alzheimer’s disease (AD, average age of 80.44 years).

Participants were provided by the Galician Association of Relatives of Alzheimer and
other Dementia Patients (AFAGA), and social and health professionals of this organization
provided participants’ diagnosis or cognitive status. All of them meet the inclusion criteria,
namely being over 65 years of age, from a semi-urban Galician environment and having a
proactive attitude towards the pilot. In addition, none of them suffered from an advanced
stage of dementia, severe disability or technological phobia; aspects that would exclude
them from the experiment. All participants read and gave written informed consent before
participation in this study. The study procedure was approved by the Autonomic Research
Ethics Committee of Galicia (Spain).

2.2. Design of the Study
2.2.1. Procedure

The baseline for the pilot experiment was established by means of an initial interview,
in which they were administered several classic tests, were asked to complete an initial
perception survey, and played the three games in the new version of the digital test. Then,
a period of 1 month was left between the tests to avoid the test–retest effect, and the
administration of the 3 serious games was repeated again. The pilot was completed with
a final questionnaire on the experience and participants’ perception about these games.
All sessions were carried out in regular cognitive sessions in AFAGA premises. This
guaranteed a relaxed, non-intrusive environment, close to the subjects’ routines, that is, an
environment as ecological as possible to carry out a cognitive evaluation experiment.

2.2.2. Development and General Information Questionnaires

Our team developed and administered two questionnaires to collect information
on personal and family life, education, basic medical and neuro-psychology aspects and
videogames preferences. The questionnaires were used to verify that all participants met
the inclusion and exclusion requirements; to collect cross-sectional information about the
main confounding variables [38] (e.g., age, gender, educational level, regular physical
exercise and level of socialization, among others); and finally to collect relevant data about
participants’ previous technological attitude according to the Technology Acceptance Model
(TAM), that is, perceived usefulness, perceived ease of use and perceived enjoyment.
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2.2.3. Traditional Neuropsychological Test

The GDS neuropsychological screening test was selected with a double purpose: to
obtain a ground truth or golden standard to correlate with data extracted from the digital
test and to validate or diagnose the cognitive status of participants in the study [39,40]. Par-
ticipants affected by dementia also had a clinical diagnosis. The GDS test was administered
to all participants.

2.2.4. Digital Neuropsychological Test: Panoramix

As pointed out above, the authors developed a digital test based on gamification,
virtual immersion and artificial intelligence, to perform a neuro-psychological assessment
using exclusively gaming data. The design approach followed was based on replicating
real-life situations using virtual reality for the purpose of achieving an ecological tool.

The resulting artifact, Panoramix, consists of a main game that assesses episodic
memory—as this is a clear predictor of MCI and AD—called Episodix and two additional
games. Episodix implements a more ecological version of the California Verbal Learning
Test (CVLT) where, instead of learning and recalling shopping lists, a virtual walk through
a medium-sized town is emulated. Along the walk, objects are presented—in visual and
audio format—integrated naturally in the environment. Episodix consists of the same
phases as CVLT, that is, stimuli presentation and remembering of objects. Players have to
learn and recall as many objects as possible across several phases. Variables captured from
Episodix include the ones in the classical test (e.g., yes/no recognition, free recall, short and
long delayed recall, recency, primacy, semantic clustering, response to inhibitions, etc.), and
also variables obtained transparently from user interactions (i.e., hits, repetitions, guesses,
omissions, errors, and total time spent in each phase).

Through the two additional games it is possible to evaluate semantic memory by
means of Semantix, which emulates the Pyramids and Palm Trees test [41], and procedural
memory and executive functions by means of Procedurix, which reproduces the Rotor
Pursuit test [42]. Semantix consists of 52 sets of 3 images corresponding to the stimulus
given, the target stimulus, and the distraction stimulus. The subject tries to match the
stimulus to one of the other two images. Semantic memory is assessed from the analysis of
the total playing time, number of hits, number of errors, number of omissions, and the total
number of right answered chips. Finally, Procedurix consists of tracking a rotating circle as
accurately as possible using the index finger on a touch-sensitive display. The variables
used to assess procedural memory include playing time, deviation from the element to be
tracked, initial response time, and total time on track.

The games in the digital test were developed in Unity to be played by means of a
regular touch device (e.g., smartphone, tablet). Data management was facilitated by a
Fast Healthcare Interoperability Resources (FHIR) [43] server provided by the Gatekeeper
project through an open call.

2.3. Analytical Algorithms

Different machine learning (ML) algorithms were utilized, all of them widely used
in medical research [44–46]: (i) a Logistic Regression linear model (LR), (ii) a Support
Vector Machines (SVMs) model, which is based on hyperplanes, (iii) a Random Forest (RF)
ensemble method, (iv) the AdaBoost classifier (ADB), (v) k-Nearest Neighbors (kNN), and
finally (vi) Multi-layer Perceptron classifier (ANN), based on neural networks. The rest of
the methods (i.e., RF, ADB and KNN) are tree-based algorithms. Moreover, we used k-fold
cross validation to test and evaluate the aforementioned algorithms splitting data for this
procedure according to 80–20 composition (i.e., 80% for training and 20% for testing the
resulting model).

Quantitative metrics were also utilized as performance indications:

• F1-score as a measure of a test’s accuracy.
• The ratio of correct predictions vs. the total number of input samples.
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• Precision, also called positive predictive value, to compute the fraction of relevant
instances among the retrieved instances.

• Recall, also known as sensitivity, to compute the fraction of relevant instances retrieved.
• Specificity or true negative rate, that refers to the probability of a negative test, condi-

tioned on truly being negative.

Metrics above were computed according to three models: (1) Micro, that computes
a global average of metrics: (2) Macro, which treats all classes equally regardless of their
support values; and (3) Weighted, where metrics are calculated by taking the mean per-class.
Essentially, this refers to the proportion of each class’s support relative to the sum of all
support values. In our studio, as we are working with an imbalanced dataset where all
classes are equally important, using the macro average would be a good choice as it treats
all classes equally.

The need to improve the transparency and explainability of AI-based decisions is
broadly discussed in the literature [47,48] and many different methods were proposed over
the years [49]. According to our specific domain and the tasks to be performed (i.e., to detect
MCI) explainability may become a fundamental requirement to offer a suitable AI solution.
Therefore, Shapley’s additive planning (SHAP) applied according to the eXplicable AI
(XAI) methodology was selected to explain and interpret the classification decisions of the
ML models, together with the relevance of individual features to detect the cognitive state.

Finally, hyper-parameter tuning is performed to improve the results obtained [50,51].
To this end, the model’s hyper parameters are fine-tuned to maximize the resulting recall
without significantly affecting precision. The main hyper-parameters tuned are C—the
regularization strength—, gamma—to control the distance of influence of a single training
point, with low values of gamma indicating a large similarity radius, which in turn results
in more points being grouped together—, kernelization—the application of functions so
that features become linearly separable—, and class-weighting—related with the degree of
balancing among classes. Data analytics was performed with the Scikit-Learn [52] machine
learning library under a Python ecosystem.

3. Results

The ability to predict mild cognitive impairment of Panoramix 2.0, the updated and
improved version of the Panoramix cognitive battery, is discussed below. This predictive
ability and its acceptability by the target population were analyzed for the sample (n = 30)
and for the defined cognitive groups, namely HC (n = 10), MCI (n = 14) and AD (n = 6).

3.1. General and Cognitive Participants’ Characteristics

Participants were characterized according to the parameters below, grouped by cogni-
tive group (cf. Table 2):

• Educational level (i.e., years of education): 3.00 for people without cognitive impairment;
2.14 for the MCI group; and 2.83 mean years of education for people with AD.

• Exercise level (i.e., 5-point Likert scale: 1 (nothing) to 5 (a lot)): 3.50 for controls; 3.43
for the MCI group; and 4.50 for the AD group.

• Socialization level (i.e., 5-point Likert scale: 1 (no social interaction) to 5 (frequent
social interaction): 4.20 for HC subjects; 4.00 for participants with MCI; and 4.67 for
people affected by AD.

• GDS (cut-off score: 1: HC; 2–3: MCI and >3 AD). In this case, the average score for
controls was 1.00; 2.50 for subjects with MCI, and 3.67 for AD participants.
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Table 2. Participants’ general and cognitive characteristics by cognitive state.

GENERAL SUBJECTS’
CHARACTERISTICS

HC (n = 10) MCI (n = 14) AD (n = 6)

Mean (SD) Mean (SD) Mean (SD)

Age 75.62 (±6.69) 81.24 (±5.72) 80.44 (±3.39)
Educational Level 3.00 (±1.13) 2.14 (±0.66) 2.83 (±0.98)

Exercise level 3.50 (±0.71) 3.43 (±0.65) 4.50 (±0.55)
Socialization level 4.20 (±0.64) 4.00 (±0.00) 4.67 (±0.52)

GDS 1.00 (±0.00) 2.50 (±0.52) 3.67 (±0.52)
Notes: SD = standard deviation. General characteristics: age; chronic treatment (i.e., 0 = no; 1 = yes); educational
level (i.e., 0 = illiterate; 1 = ability to read and write; 2 = primary school; 3 = secondary school; 4 = high school;
5 = vocational training; 6 = university), exercise level and socialization level, all of them based on a 5-point Likert
scale: 1(never) to 5 (always). Cognitive characteristics: GDS cut-off score: 1: HC; 2–3: MCI and >3 AD likely.

3.2. Prediction of Cognitive Impairment Using Machine Learning Classifiers

Table 3 below collects the main metrics obtained to evaluate the classification capabili-
ties of the applied algorithms. The main macro metrics computed were:

• F1-score: 1.0000 for SVM, ANN and KNN. The worst result obtained was 0.8510 in the
case of ADB.

• Accuracy: a value greater than 0.9150 was obtained for all algorithms. The maximum
value of 1.0000 was obtained for SVM, ANN and KNN.

• Recall or sensitivity: 1.0000 for SVM, ANN and KNN. Again, the worst result was
obtained in the case of ADB (0.8000).

Table 3. Main classification metrics without hyper-parameters.

ML
Algorithm Accuracy Sensitivity

(Recall) ↓ Specificity Precision F1-Score

SVM 1.00 (±0.000) 1.00 (±0.000) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00)
ANN 1.00 (±0.000) 1.00 (±0.000) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00)
KNN 1.00 (±0.000) 1.00 (±0.000) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00)

LR 0.98 (±0.027) 0.96 (±0.027) 1.00 (±0.00) 1.00 (±0.00) 0.98 (±0.027)
RF 0.95 (±0.026) 0.84 (±0.023) 1.00 (±0.00) 1.00 (±0.00) 0.91 (±0.025)

ADB 0.91 (±0.025) 0.80 (±0.022) 0.96 (±0.027) 0.90 (±0.025) 0.85 (±0.024)

To stabilize and improve the prediction results, the ML algorithms were trained again,
but in this case applying the best configuration of hyper parameters found (cf. Table 4). For
the first case, a full recall or sensitivity rate was achieved, while for SVM and RF, values
obtained were 0.98 and 0.97, respectively. In general, the classification results improved for
all algorithms, compared with the initial run without hyper parameters. Thus, for the tree
models, the best configuration was as follows:

• Multi-layer perceptron classifier (activator: ‘relu’, hidden_layer_sizes = (50, 50),
solver = ‘lbfgs’).

• Support Vector Machine (C = 10, random_state = 42).
• Random Forest Classifier (bootstrap = False, n_jobs = −1, random_state = 42).

Table 4. Main classification metrics with hyper-parameters.

Recall Weighted ↓ F1-Score Weighted

ML Algorithm Mean SD Mean SD

ANN 1.0000 ±0.0000 1.0000 ±0.0000
SVM 0.9889 ±0.0222 0.9873 ±0.0254
RF 0.9784 ±0.0265 0.9764 ±0.0291
LR 0.9784 ±0.0265 0.9764 ±0.0291

KNN 0.9673 ±0.0268 0.9873 ±0.0254
ADB 0.8234 ±0.0660 0.8808 ±0.0397
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Finally, in Figures 1 and 2 below, it can be observed the results of applying the
SHAP visual applicability technique on the importance of the features in cognitive state
classification models. In the case of subjects with MCI and HC, the most determinant
variable is the duration of the long-term recognition phase. In the case of people affected
by AD, the most relevant variable is age, followed by educational level and the success rate
in the long-term recognition phase.
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3.3. Participant’s Differences in User Experience of Cognitive Games

Participants expressed their perception about the digital test discussed in this work.
After using each of the three games, they answered a questionnaire following the TAM
model (cf. Table 5). The main results indicate that they liked the tool: 4.55 on average for
the HC group; 4.13 for the MCI and 3.99 for people with AD, in a 5-point Likert scale. As
for the ease of use, the results vary from an average of 4.62 for the HC group to 4.19 for
people affected with AD. Finally, all the cognitive groups indicated that they would use
this test again, with a rating of at least 4.23 out of 5.

Table 5. Participants’ perception about Panoramix.

SUBJECTS’ PERCEPTION
HC (n = 10) MCI (n = 14) AD (n = 6)

Mean (SD) Mean (SD) Mean (SD)

P1. I liked this game very much 4.50 (±0.02) 4.13 (±0.78) 3.99 (±0.48)
P2. I find this game useful to exercise
my memory 4.63 (±0.02) 4.36 (±0.83) 4.06 (±0.49)

P3. I found the instructions clear 4.66 (±0.02) 4.69 (±0.88) 4.20 (±0.51)
P4. I find this game easy to play 4.54 (±0.02) 4.53 (±0.85) 3.84 (±0.46)
P5. I find this game easy to control
using my fingers 4.62 (±0.02) 4.63 (±0.87) 4.19 (±0.51)

P6. This game is good for my memory,
and I would keep using it 4.61 (±0.02) 4.28 (±0.81) 4.23 (±0.51)

Note: SD: standard deviation. TAM Questionnaire perception about Panoramix; all of them based on a 5-point
Likert scale: 1(strongly disagree) to 5 (strongly agree).

4. Discussion

This work studies the ability to identify mild cognitive impairment through the new
version of Panoramix, a three game-based battery to evaluate cognitive impairment in
senior adults, using supervised machine learning techniques. Apart from the reduction
from six to three games keeping the predictive capabilities of the original batteries, games
were updated with improved usability features, cognitive tasks and scalability. This new
version focuses on evaluating the most predictive cognitive areas [33,34] to identify MCI,
such as episodic memory [35–37], semantic memory and procedural memory. To do this,
a new pilot experiment was carried out to assess the predictive capacity of MCI and the
evaluation of the new tool by participating users. A total of 30 individuals completed the
pilot study with a two-fold objective: (1) to validate the predictive capacity of the new
version of the digital test to discriminate healthy people from those suffering from cognitive
impairment and (2) to measure the degree of acceptance by the participants of this new tool.

The sample selected for this cross-sectional study met the established inclusion criteria
(i.e., participants being over 65 years of age, from a semi-urban Galician environment
and having a proactive attitude towards the experience) and no participants opted out or
were excluded due to technological phobia. The pilot’s distribution in terms of age and
educational level (i.e., all participants had primary or secondary education) is within the
parameters of the Galician society, with a slight imbalance in terms of gender by cognitive
class, although balanced overall. The level of sociability and physical exercise stands out,
especially in the group of people affected by AD, 4.50/5 and 4.67/5, respectively. These
aspects were regularly addressed at the cognitive workshops carried out by the AFAGA
association, in accordance with the non-pharmacological recommendations for improving
cognitive reserve. Finally, the assessment used the GDS scale as a golden standard, as
participants were initially classified according to the cut-off scores of this test: the mean
score for controls was 1.00, 2.50 for subjects with MCI, and 3.67 for AD participants.

Firstly, in relation to the predictive ability, classification results provided by three
mainstream machine learning algorithms—LR, RF, SVM, ANN, ADB and KNN—were
analyzed using a 10-fold stratified cross validation procedure [53]. After refinement of the
initial classification results (cf. Table 3) by applying hyper-parameters and maximizing
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the recall weighted rate to stabilize the results (cf. Table 4), best results were obtained
with ANN, SVM and RF, respectively, with weighted recall values >= 0.9784 ± 0.0265 and
F1-score = 0.9764 ± 0.0291, in line with previous supervised classification studies targeting
the detection of cancer [54] and dementia [55]. It should be noted that the remaining
algorithms, LR and RF, performed very similarly. In short, the changes made to the new
version of Panoramix do not compromise its prediction capabilities when compared to
previous validations [31,32]. Thus, these results indicate that Panoramix is a high-quality
tool to predict cognitive impairment, both according to the fraction of relevant instances
that were retrieved (i.e., recall), as well as from the point of view of (the harmonic average
of) precision and sensitivity (i.e., F1).

It should be noted that the XAI techniques used made it possible to visually and
quantitatively evaluate the importance of the different variables/features for the final
classification. In the case of subjects with MCI and HC, the most informative variable is
the duration time of the long-term recognition phase in the Episodix game, which is one
of the most demanding cognitive recall tasks in Panoramix 2.0. In contrast, in the case of
AD-affected individuals, the most informative variable is age, in line with major medical
paradigms of higher prevalence of cognitive impairment the older the age [2], in addition
to the level of education and correct guesses in the long-term recognition phase.

Secondly, in relation to the evaluation of the digital test, the participants expressed
their perception through a questionnaire following the TAM model (cf. Table 5). In general,
this perception was highly positive for all cognitive groups, although it was somewhat
lower for people affected by AD. In general, the acceptance of this test was very good, as
they liked the tool (4.55/5 on average for the HC group; 4.13/5 for MCI’s and 3.99/5 for
people with AD). Another relevant element is the test’s perceived ease of use, as the ratings
varied from 4.62/5 for the HC group to 4.19/5 for people affected with AD. Finally, all
the different cognitive groups indicated that they would use this digital tool again with a
rating of at least 4.23 out of a total of 5. This shows the absence of both rejection attitude, to
the test and the white coat effect, which is described in the case of classic tests.

In relation to the limitations of this study, it is worth mentioning that to achieve more
representative results, a larger sample, including subjects adequately distributed according
to age and gender groups, and involving at least two countries to consider cultural or
linguistic factors, would be necessary. In addition, a larger sample would allow the
acquisition of a larger dataset, which would mitigate the chances of overfitting data, which
were not negligible for the current dataset despite the use of cross validation techniques
to mitigate it. All in all, this paper corroborate the initial results discussed in [23,31],
and also shows that Panoramix is a valid tool to discriminate between MCI, AD and
cognitively-unimpaired individuals by means of an ensemble of ML classifiers [44,46,56]
and performance metrics obtained.

5. Concluding Remarks

Panoramix 2.0, the new version of the Panoramix digital test for the early detection
of MCI consisting of three games instead of six, is confirmed to serve to discriminate
healthy subjects from those with cognitive problems (e.g., MCI or AD) in a non-intrusive,
environmentally friendly and frustration-free environment, which is especially important
for participants with cognitive limitations. By collecting a reduced set of informative
features along a 40-minute playing session, it is possible to correctly discriminate healthy
individuals from subjects experiencing mild cognitive impairment. The analysis is carried
out along a non-invasive and friendly activity, positively perceived by senior adults, in a
way totally transparent to them. This is a promising step in the use of gamified digital tests
in this area. In any case, further research is needed, involving a larger and more diverse
participant sample, to obtain normative data to validate this new neuropsychological
assessment system according to clinical standards.
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