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Abstract: It is widely considered that unlicensed taxis pose a risk to public safety and interfere
with the effective management of traffic. Significant human and material resources are expended
by traffic control departments to locate these vehicles with limited success. This study suggests
a smart, trajectory big data-based approach entitled Trajectory Graph Embedding-based Unlicensed
Taxi Detection (TGE-UTD) to identify suspected unlicensed taxis and address this issue. The model
implementation comprises three stages: first, the Automatic Number Plate Recognition (ANPR) data
are transformed into a trajectory graph; second, a biased random walk is deployed to embed the
trajectory graph; and finally, the set of vehicles similar to the known licensed taxis is obtained as the
set of suspected unlicensed taxis using the cosine similarity of the vehicle embedding vector. Through
precision evaluation and dimension reduction experiments, the performance of the walk model TGE-
UTD is compared to that of the no-walk models Word2Vec and Doc2Vec in detecting large vehicles
and taxis. TGE-UTD is observed to exhibit the best performance among the three models. This study
pioneers the application of machine learning for feature extraction in detecting unlicensed taxis.
The model proposed in the study can be deployed to detect unlicensed taxis; moreover, its application
can be extended to detect other types of vehicles, providing traffic management departments with
supporting vehicle detection information.

Keywords: big data; unlicensed taxi; trajectory graph; graph embedding; automatic number plate
recognition (ANPR) data; machine learning; Node2Vec

1. Introduction

Unlicensed taxis are private vehicles that transport passengers for a fee without formal
operating authorization from the traffic police department. In recent years, unlicensed taxis
have become more prevalent in urban areas. In a survey conducted by Tencent Technology
on users’ experiences with unlicensed taxis, 80% of the nearly 25,000 respondents from
more than 20 provinces reported that they frequently or occasionally ride in unlicensed
taxis [1]. The operation of unlicensed taxis is associated with numerous concerns and
concealed safety risks, such as inconsistent charging standards, deliberate detours, poor
car conditions, insufficient liability safety insurance, and potential criminal risks, which
endanger and harm passengers significantly. In China, the situation of unofficial taxis has
been associated with a serious crime. In the early morning of 6 May 2018, an unlicensed
taxi driver raped and murdered 21-year-old flight attendant Li Mingzhu [2].

It is common practice for traffic police to conduct spot checks for unlicensed taxis by
setting up temporary checkpoints or conducting hot spot searches. However, these schemes
are frequently time- and resource-intensive and have a low detection rate. Moreover,
unlicensed taxis can evade such detection with relative ease. In addition, obtaining evidence
of illegal conduct is difficult because unlicensed taxis are disguised as private vehicles.

Advanced technological devices such as road sensors, intersection cameras, and
vehicle global positioning systems (GPS) have gathered substantial vehicle trajectory data
pertaining to a variety of driving behavior traits. Recently, these trajectory data have been
extensively used to address a variety of urban traffic issues with positive results. The mining
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of vehicle trajectory characteristics from these data and the detection of unlicensed taxis is
a topic of active research. The trajectory data are subdivided into three additional categories:
electronic registration identification (ERI) data [3], GPS data [4], and automatic number
plate recognition (ANPR) data [5]. Only ANPR data do not require installation in moving
vehicles, and they record the entire trajectory of moving vehicles. Due to the fact that ANPR
data collection equipment is frequently installed at road intersections, the data provide
only limited insight into the condition of urban road connectivity. The trajectory data
from ANPR intersection cameras have been utilized extensively in traffic management to
understand vehicle travel behavior and estimate travel time.

Existing models for detecting suspected unlicensed taxis are developed using similar
steps. Step 1: analysis of the trajectory features of taxis and a feature extraction method
is proposed; Step 2: a certain number of taxis and other vehicles are adopted as positive
samples and negative samples from the original data set, the features of these samples are
extracted utilizing the method proposed in Step 1, then a binary classification model is
trained with the extracted features. Section 2.1 provides specific details.

Step 1 is a complex task due to the inefficiency of manually designing feature classifi-
cation and extraction strategies. In practice, there are two types of trajectories for vehicles
primarily involved in traffic: periodic and random. Taxis typically follow random trajecto-
ries, which have characteristics that are difficult to summarize and extract, and are therefore
overlooked by researchers. Step 2 presents a challenge that the task of detecting unlicensed
taxis cannot simply be viewed as a binary classification task. Prior studies utilized a high
ratio of taxis to other vehicles when constructing the training set, whereas the ratio of taxis
to other vehicles in the original data set may be quite low. This method of constructing
the training set exposes the conundrum of uneven sampling of these two types of vehicles,
which makes the binary classification task susceptible to producing incorrect results.

Therefore, this study designs and implements a graph embedding-based unlicensed
taxi detection model, entitled Trajectory Graph Embedding-based Unlicensed Taxi Detec-
tion (TGE-UTD), based on an equal proportion sampling trajectory data set.

This study accomplishes the following:

1. In the TGE-UTD, an ANPR dataset is transformed into a weighted trajectory graph,
and vehicles are added as graph nodes. The graph fully depicts the driving trajectory
and inclination of each vehicle.

2. To collect the trajectory features of each vehicle equally in the TGE-UTD, a biased
random walk trajectory sampling strategy on the map is proposed to augment the
possible vehicle trajectories and obtain the trajectory features of each vehicle.

3. A graph embedding machine learning model is trained according to the sampled
trajectory to obtain the graph embedding vector of each vehicle in the TGE-UTD.
The “similar-vehicle set” is obtained by setting the similarity threshold and comparing
the similarity of vectors. Whereupon, potential unlicensed taxis are located and
evaluated by comparing them to the set of similar vehicles.

In this study, a method is presented for transforming ANPR records into a trajectory
graph, from which vehicle trajectory features are extracted utilizing machine learning,
thereby reducing or even eliminating the need for manually designed feature extraction in
previous studies. In addition, 100,000 vehicles are selected at random from the original data
set to serve as the training set, after which taxis are identified as positive samples and other
vehicles as negative samples. In contrast to the uneven sampling proportion in the training
set that has been a problem in the existing literature, this method can make the proportion
of vehicles in the training set consistent with that in the original data set, offering future
researchers guidance for vehicle dataset sampling. In addition, the performance of three
machine learning methods is compared, and it is demonstrated that TGE-UTD has the
best performance in distinguishing between different types of vehicles, thereby providing
enlightenment for methods regarding machine learning on a trajectory graph in vehicle
detection tasks.
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This study pioneers the application of machine learning for feature extraction in the
detection of unlicensed taxis. Developed to identify unlicensed taxis, this method may also
be applied to a wider range of vehicles.

2. Related Work

This section reviews the relevant literature on unlicensed taxi detection, trajectory
graph construction, and graph embedding.

2.1. Unlicensed Taxi Detection

Previous studies designed vehicle feature extraction methods primarily through man-
ual analysis of vehicle historical trajectories, extracted features from vehicle passing records,
and selected a certain number of positive and negative samples for training binary classifi-
cation models. The methods proposed by previous researchers for identifying unlicensed
taxis are presented in Table 1.

Table 1. Methods for identifying unlicensed taxis.

Model Yuan et al. [6] Wang et al. [7] Tian et al. [8] Chen et al. [9]

Year 2016 2017 2019 2021
Features 128 276 Two types Four types

Positive Samples 6868 800 600 14,965
Negative Samples 3760 3200 400 104,798

Advantages Split special time Expand temporal and
spatial features

Calculate path and
time irregularity

Add features of points
of interest

Disadvantages No spatial features Insufficient spatial features Few feature types No trajectory continuity

Yuan et al. [6] proposed a model for identifying unlicensed taxis that consists of a can-
didate selection model and a candidate refined model. This model counts the frequency
of vehicle passing records and extracts the 128 vehicle classification features on this basis
by leveraging 6868 licensed taxis as positive training samples and 3760 private vehicles
as negative samples; however, it does not take into account the spatial and temporal
characteristics of vehicles.

Wang et al. [7] enhanced the model developed by Yuan et al. [6] by increasing the
number of vehicle classification features to 276 and comparing the effects of various clas-
sification models. This model uses 800 known unlicensed taxis and 3200 private vehicles
as positive and negative samples, respectively. Nonetheless, the spatial characteristics
extracted by the model are insufficient.

Tian et al. [8] proposed using abnormal trajectories and travel time to differentiate
between licensed taxis and private vehicles. The training sets of various sizes containing
training samples ranging from 100 to 1000 are selected, with 40% of the samples being
negative and 60% positive. However, this method proposes only two types of vehicle
classification features: path irregularity and time irregularity.

Chen et al. [9] extended the approach of Tian et al. [8] by incorporating feature analysis
of points of interest of licensed taxis and random forest synthesis of multiple feature points
for classification. In the training set, 14,965 taxis and 104,798 private cars serve as positive
and negative samples, respectively. However, the model cannot differentiate between
random and periodic trajectories because it does not account for the continuity of vehicle
trajectories through intersections.

The preceding studies share a set of common shortcomings, which were introduced
briefly in Section 1 and will be elaborated upon in this section.

Each of these studies conducted a manual analysis of the vehicle trajectory data sets,
summarizing the techniques for extracting vehicle features. For instance, Yuan et al. [6]
analyzed the passing records of vehicles and observed that taxis traveled in different
manners than other vehicles during different time intervals; consequently, they proposed
a method for extracting vehicle characteristics by counting the number of passing records
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during different time intervals. Tian et al. [8] analyzed the spatial and temporal features
of vehicles, identifying the differences between commercial vehicles and non-commercial
vehicles. Thereafter, they devised two formulas to calculate the path and time singularity
of vehicles based on the feature differences. The aforementioned studies proceed by
manually analyzing the trajectory data, then summarizing the vehicle features based on
the knowledge of experts, and finally designing the method for extracting features and
establishing the detection model. The inefficiency of the entire process makes it difficult to
apply the methods proposed in these studies to the detection of other vehicles.

These studies utilize the training set consisting of a certain number of taxis, i.e., the
positive samples, and non-taxi vehicles, i.e., the negative samples, selected from the original
data set based on previous experience. Nonetheless, this type of sampling could expose
the issue of uneven sampling of these two types of vehicles. As an illustration, consider
the research by Chen et al. [9]. The ratio of taxi to non-taxi vehicles in the original data
set is approximately 1 in 100, while in the training set, this ratio is approximately 1 in 7.
The inconsistent ratio of positive samples to negative samples between the training set and
the original data set would result in an unbalanced number of features collected from the two
types of vehicles, making it easy for the binary classification model to differentiate between
positive and negative samples. The taxi detection accuracy calculated by the model is falsely
high. When the model is implemented in practical situations, a large number of private
vehicles may be misidentified as taxis. Therefore, if a certain percentage of taxis are selected
as positive samples, the same percentage of non-taxi vehicles should be selected as negative
samples. If 14,965 taxis are selected as positive samples in the study by Chen et al. [9], then
1,496,500 instead of 104,798 private cars should be selected as negative samples.

In this study, machine learning is adopted, replacing manual data analysis for feature
extraction, and the training set is constructed through random sampling to avoid the issue
of an uneven sample proportion.

2.2. Trajectory Graph Construction

Huang et al. [10], Bogaerts et al. [11], and Hu et al. [12] utilize GPS data to con-
struct trajectory maps and apply them to intelligent transportation’s downstream tasks.
Their contribution consists of matching GPS data to maps. Typically, vehicle trajectory
data are stored in relational databases. Anzum [13] developed a software system that
enables data conversion and synchronization between a relational database and a graph
database by defining nodes and relationships between nodes through manual dragging.
Mueller et al. [14] proposed a simple method for converting dimension tables in relational
databases into entities based on foreign key relations. The number of foreign keys was
employed to transform the fact tables into entity relationships and intermediate entities
in the graph database. Carlos et al. [15] proposed a unified meta-model (U-Schema) to
summarize the logical patterns of diverse databases, such as relational, key-value, colum-
nar, document, and graph, so that the data of diverse databases can be interconverted.
Serin [16] proposed a mapping mode between a relational database and a graph database
for public transportation networks, utilizing stations, routes, and vehicles as basic entities
and station–route and vehicle–distance relationships as intermediate entities, and then
connecting basic entities through intermediate entities to build a graph structure.

The present study develops a method for constructing graphs using ANPR data with
vehicles and vehicle trajectories as the core, factoring in the characteristics of traffic big data
and the requirements of downstream task characteristics.

2.3. Graph Embedding

Four categories comprise the majority of graph embedding models: matrix factoriza-
tion, random walk, auto-encoder, and deep learning. Goyal and Ferrara [17] reviewed
graph embedding and analyzed the time complexity of the methods of the preceding mod-
els. Graph embedding algorithms, whose time complexity is dependent on the edge set size,
cannot be used in practical applications because the edge set size in the trajectory graph
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grows exponentially with time. DeepWalk [18] and Node2vec [19] with the random walk as
the core and the DNGR [20] auto-encoder model are more suitable for these requirements.
DNGR uses the random walk concept to generate the co-occurrence probability matrix from
the graph input. Walk models refer to the aforementioned trajectory graph embedding
models based on a random walk.

Huang et al. [21] proposed a trajectory embedding model that considered the inter-
sections traversed by the vehicle to be words in the language and the vehicle trajectories
to be sentences composed of words. The model employs the Word2Vec method for em-
bedding learning, and the learning-derived intersection vectors are utilized for singular
trajectory detection. Another trajectory embedding model was proposed by Kang et al. [22],
which adopted the Doc2Vec method and added trajectory vectors to the model embedding
learning. The trajectory embedding vectors obtained through learning are used to classify
trajectories. The two models may also be employed for graph embedding, with the trajecto-
ries of a single vehicle constituting a subgraph of the entire trajectory graph. After graph
embedding, the subgraph can express vehicle trajectory characteristics. No-walk models
refer to trajectory graph embedding models without a random walk.

In contrast, the TGP-UTD model proposed in this study is a random walk-based graph
embedding model. Section 4 compares it to the no-walk model employing vehicle detection
and dimension reduction experiments.

3. Methodology

This section describes the datasets employed, the methods for detecting unlicensed taxis
referred to as Trajectory Graph Embedding-based Unlicensed Taxi Detection (TGE-UTD), and
the experimental design.

3.1. Dataset Description

This study utilizes the ANPR trajectory data from the intelligent transportation big
data system in Changsha (a city in the Hunan Province of China), which encompasses the
license plate information of passing vehicles and the time at which they passed through
an intersection. These systems are deployed at intersections and can obtain information
about all vehicles passing through intersections 24 h a day, in contrast to GPS devices,
which are installed on individual vehicles. When a system detects a vehicle passing through
the intersection, it takes a photograph of the vehicle, identifies the license plate and license
plate color, and then transmits this data to the main server through the network. These
systems generate approximately 30 million data points per day from over 700 intersections.
The ANPR data set is not accessible to the public as it contains a large quantity of travel
information involving personal privacy.

Table 2 displays the ANPR records of a vehicle. In the table, “License ” and “Color”
represent, respectively, the license plate and its color. In general, the color of the license plate
is used to differentiate between small cars, large cars (including buses and construction
vehicles), and special vehicles; 0 or 2 represent the blue license plate of small vehicles,
whereas 9 represents the yellow license plate of large vehicles. The combination of the
license and color of a vehicle can represent a unique vehicle. The number of the intersection
where the ANPR equipment installed is denoted by “Intersection ”. A “Timestamp” denotes
the passing time of a vehicle. Therefore, an ANPR record (rANPR) is represented in the
following format:

rANPR = [License, Color, Intersection, Timestamp] (1)
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Table 2. A sample of the ANPR dataset.

License Color Intersection Timestamp

XiangA****3 0 430100****38 2016/04/01 00:48:41
XiangA****3 0 430100****89 2016/04/01 00:55:31
XiangA****3 0 430100****86 2016/04/01 13:39:02
XiangA****3 0 430100****73 2016/04/01 13:41:42
XiangA****5 9 430100****15 2016/04/01 13:42:12

In April 2016 in Changsha, ANPR intersection cameras generated a dataset totaling 41
gigabytes and 170 million records. Errors in license plate recognition were discovered in
the data set and attributed to intersection camera issues involving light, angle, and data
transmission delays.

According to the transportation department’s license issuance policies, licensed taxi
license plates with a color code of 0 or 2 are prefixed with XiangAT and XiangAX (Xiang is
the abbreviation for Hunan Province). Since no rigorous restriction is in place on the use of
XiangAT and XiangAX as license plate prefixes for private vehicles, the distinguishment of
taxis from other vehicles proves challenging based solely on the license plate setting rule.

3.2. Unlicensed Taxi Detection Model

This section describes a method to identify and analyze unlicensed taxis based on
the trajectory graph embedding model. Figure 1 outlines the process of Trajectory Graph
Embedding-based Unlicensed Taxi Detection (TGE-UTD). This process comprises trajectory
processing, biased random walk and graph embedding, and vehicle location and evaluation.

Figure 1. Process of Trajectory Graph Embedding-based Unlicensed Taxi Detection (TGE-UTD).

The trajectory processing part involves the construction of the trajectory graph. The ve-
hicles and intersections are considered nodes of the graph. The vehicle trajectories are
converted into graph edges, and the edge weight is calculated according to the vehicle
passing frequency. The biased random walk and graph embedding part indicate the differ-
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ent transition matrix calculation methods used for various nodes in the trajectory graph.
In the random walk, based on the idea of Node2Vec, the walk weight is adjusted to learn
the vehicle trajectory features in a biased way, and then the word embedding method is
used to train the graph embedding vector to obtain the vehicle embedding vector. In the
vehicle location and evaluation part, the licensed taxi vector is taken as the baseline to find
private cars with high cosine similarity [23] to the baseline vector. The real trajectories
of the private cars found are manually compared with those of licensed taxis. If the two
have a high similarity on the 3D trajectory diagram and a high percentage of common
intersections, the found private cars are finally determined to be suspected unlicensed taxis.

3.2.1. Trajectory Processing

The trajectory of a vehicle (Traj) is determined by multiple records of the same vehicle
according to the vehicle passing time and is represented as follows:

Traj = [I1, I2, I3, . . . , Im] (2)

Im represents the m-th intersection. If the time interval of a vehicle passing through
two intersections exceeds 30 min [24], the vehicle has a parking behavior between the two
intersections. Therefore, the trajectory is split into multiple sub-trajectories containing start
and end points in the 30 min time interval. The resulting multiple sub-trajectories of vehicle
V (TrajsV) are described as follows:

TrajsV = [Traj1, Traj2, Traj3, . . . , Trajn] (3)

Trajn indicates the n-th trajectory. TrajsV is divided into edges forming the trajectory
graph, and each edge contains the corresponding identifier of the passing vehicle. If the
vehicle V travels from Ii to Ij, an edge from node Ii to node Ij (EdgeV

ij ) is added to the
trajectory graph, represented as follows:

EdgeV
ij = (Ii, Ij, V, wV,ij) (4)

If the vehicle travels from Ii to Ij multiple times, then the weight wV,ij is added to the
EdgeV

ij based on the number of passing times. Therefore, the intersection edge set of the
graph (EdgeList) is as follows:

EdgeList = [(I1, I2, w12), (I2, I3, w23), . . .] (5)

Each edge in the set represents the record of all cars passing through the two intersec-
tions, and w is the number of passes. The vehicle is also added to the graph as a node, and
the edge set of vehicle V (EdgeList(V)) is represented as follows:

EdgeList(V) = [(V, Ii, wV,Vi), (Ii, I2, V, wV,i2), (I2, I3, V, wV,23), . . .] (6)

An example of the final trajectory graph is shown in Figure 2. The graph describes
two vehicles, Vehicle A and Vehicle B. Vehicle A has two trajectories, and Vehicle B has one.
The vehicle node directly connects multiple intersection nodes, which are the starting points
of each vehicle trajectory. For example, Vehicle A directly connects I1 and I6, the starting
points of the Vehicle A trajectories. However, multiple directed edges with weights and
vehicle identifiers exist between intersections. For example, there are edges with vehicle
identifiers A_Traj1 and B_Traj1 between I2 and I5. The edge with vehicle identifier A_Traj1
indicates that Vehicle A has a trajectory that goes through I2 and I5 sequentially, while
the edge with vehicle identifier B_Traj1 indicates that Vehicle B has a trajectory that goes
through I2 and I5 sequentially. One trajectory of Vehicle A starts from I1 and goes through
I2 and I5 to the end point I7. One trajectory of Vehicle B starts from I4 and goes through I3,
I2, and I5 to the end point I7. Both trajectories go through I2, I5, and I7. Vehicle A also has
a trajectory that starts at I6 and ends at I7, which is labeled A_Traj2.
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Figure 2. An example of a vehicle trajectory graph.

Based on the graph structure, the intersection transition probability of a vehicle can be
calculated by the edges with specific identifiers between nodes, and that of all vehicles can be
calculated by all edges between nodes, laying a foundation for the subsequent random walk.

3.2.2. Biased Random Walk and Graph Embedding

The traditional random walk model assumes a homogeneous graph. However, the
trajectory graph constructed in this study contains vehicle nodes, intersection nodes, and
edges between nodes marked with vehicle identifiers and is thus a heterogeneous graph.
Therefore, a corresponding random walk strategy is proposed for this heterogeneous graph.
As shown in the “Biased Random Walk and Graph Embedding” part in Figure 1, different
calculation methods of the transition probability matrix are selected for various starting nodes.

The transition probability matrix is calculated by weighted sampling [25]. The inter-
section transition probability matrix shows the transition probability between intersection
nodes, and the sampling weight is the number of times all vehicles pass between the nodes.
The vehicle transition probability matrix indicates the transfer probability of a specified
vehicle between intersection nodes, and the sampling weight is the number of times the
vehicle passes between the nodes.

Parameters p and q are added in this study to control the breadth-first transition and
depth-first transition tendencies based on the walk method of Node2Vec and conducts
a random walk on the trajectory graph in a biased way. When p < 1, the breadth-first
transition probability increases, and then the starting node features increase. When q < 1,
the depth-first transition probability increases, and then the destination node features
increase. Algorithm 1 describes the calculation process of the transition probability matrix.
When the input graph G is the trajectory subgraph GV of the vehicle V, and GV contains only
the trajectory of the vehicle V, the algorithm calculates the vehicle transition probability
matrix of the vehicle V. When the input graph G contains the trajectories of all vehicles,
the algorithm then calculates the intersection transition probability matrix.

The random walk is performed after calculating the walk transition probability matrix
W ′. During this procedure, the scale of the specific experimental data determines the walk
length (wl) and the number of walks (wn). As shown in Algorithm 2, the trajectory graph
G′ and the set of vehicle trajectory subgraphs G′V are considered input. If the starting node
is a vehicle, the vehicle transition probability matrix is used to impose a biased weighted
random walk on GV , and if the starting node is an intersection, the intersection transition
probability matrix is used to impose a biased weighted random walk on graph G. Finally,
the walk model produces the wn random walk trajectories with a length of wl, which are
used as learning samples for node embedding.

Most traditional feature learning models for vehicle trajectories directly use the original
vehicle trajectories, but this study uses the random walk method to find potential vehicle
trajectories. When used, this method increases the number of training samples and balances
the number of trajectories between vehicles, enables TGE-UTD to capture the driving
characteristics of vehicles with random trajectories, and makes TGE-UTD fault-tolerant for
data sets with certain misrecognition records.

The random walk trajectories of each node are used as the training data, and the
skip-gram model in Word2Vec is used to embed each node. TGE-UTD can obtain the
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node embedding vectors of all of the graph nodes, including the vehicle node vectors and
intersection node vectors.

Algorithm 1: Calculation of walk transition probability matrix.

Input: Graph: G = (V, E, W), p, q
Output: Graph with transition probability: G′(V, E, W ′)

1 Function PreprocessTransitionProbability(G, p, q):
2 for edge(s, e) in E do
3 for d in neighbors(G, e) do
4 if s == d then
5 W ′(e, d) = W(e, d)/p
6 else if s in neighbors(G, d) then
7 W ′(e, d) = W(e, d)
8 else
9 W ′(e, d) = W(e, d)/q

10 end
11 end
12 Update W ′ by Normalize (W ′(edge(s, e), neighbors(G, e)))
13 end
14 return G′(V, E, W ′)

Algorithm 2: Random walk in graph.
Input:

Graph: G′ = (V, E, W ′),
Graphs: {G′vehicle} = {(Vvehicle, Evehicle, W ′)},
Walk length: wl,
Walk num: wn

Output: Walks
1 Function TrajectoryGraphWalk(G′, {G′vehicle}, wl, wn):
2 Initialize walks
3 for walk_iter = 1 to wn do
4 for node in V do
5 if node is vehicle then
6 walk = GenerateWalk(G′vehicle=node, node, wl)
7 else
8 walk = GenerateWalk(G′, node, wl)
9 end

10 Append walk to walks
11 end
12 end
13 return walks
14 Function GenerateWalk(G = (V, E, W), Start node u, wl):
15 Initialize walk start by u
16 for walk_step = 1 to wl do
17 current=last node in walk
18 Vnext=neighbors(G, current)
19 I=random.choices(Vnext, W(current, Vnext))
20 Append I to walk
21 end
22 return walk
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3.2.3. Vehicle Location and Evaluation

A licensed taxi with a random trajectory is selected after all vehicle vectors have been
obtained. The cosine similarity between the vectors of the licensed taxis and those of
other vehicles is calculated by Equation (7). Vehicles having a high cosine similarity to the
licensed taxis are found and added to the result set.

Similarity(A, B) =
A · B
‖A‖‖B‖ =

∑n
i=1 Ai × Bi√

∑n
i=1(Ai)

2 ×
√

∑n
i=1(Bi)

2
(7)

In the result set, the known licensed taxis are marked according to the plate setting
rules, and the rest are suspected unlicensed taxis. The detection rate of suspected unlicensed
taxis (DRUT) is calculated by counting the number of known licensed taxis (NLT) and the
number of suspected unlicensed taxis (NUT). The equation is as follows:

DRUT =
NUT

NUT + NLT
(8)

A high DRUT value indicates that there are many suspected unlicensed taxis in the
result set and the detection scope in the vector space is too large; therefore, some private
cars with low similarity are misjudged as suspected unlicensed taxis. A low DRUT value
may indicate that there are no suspected unlicensed taxis or that the detection scope is too
small and only a small number of suspected illegal unlicensed taxis are detected, indicating
that the detection scope should be expanded. This study sets a DRUT maximum threshold
of 10%. It also develops an analysis method to control the detection rate of unlicensed
taxis and improve the accuracy of the screening result of TGE-UTD. RN (100 initially) is
set to control the number of vehicles in the result set and ensure the efficiency of manual
screening. Then, by adjusting RN, a similarity threshold TH (0.8 initially) is set to control
DRUT . When DRUT is too high, TH is increased to make the detection similarity higher
and the detection scope smaller. When DRUT is too low and the similarity in the result set
exceeds TH, RN is increased to expand the detection scope, while TH is unchanged.

Suspected unlicensed taxis should also be screened manually. In this study, according
to the original vehicle trajectories, a 3D trajectory diagram of the vehicles and a common
intersection diagram with intersection traffic volume are constructed to assist in the deter-
mination of suspected unlicensed taxis. When comparing two vehicles, the 3D trajectory
diagram can display the vehicles’ active regions and periods to allow manual verification of
similar parts of their trajectories. The common intersection diagram shows the intersections
passed by each vehicle, the intersections passed by both vehicles, and the traffic volume
at the intersections. In this paper, in order to visually reflect the difference between the
walk model and the no-walk model, t-SNE [26] is used to reduce the vector dimension, and
different types of vehicles and detected unlicensed taxis are classified and colored.

3.3. Experimental Setting
3.3.1. Experimental Dataset Features

There are an estimated 3 million vehicles in Changsha, with approximately 6000 taxis
representing 1/500 of the total. To ensure the viability and efficacy of the experiment,
100,000 vehicles were selected at random from the original data set to serve as the training
data set for the experiment. The total number of trajectories in the data set is 4,144,612,
and the frequency of passing vehicles is 9,498,874. This study did not obtain a specific taxi
information record, and as such, taxis must be manually marked in accordance with the
rules governing license issuance. In the training set, 4443 vehicles with a license plate prefix
of XiangAT or XiangAX and a plate color code of 0 or 2 are marked as taxis, 16,729 vehicles
with a plate color code of 9 are marked as large vehicles, and 78,828 unmarked vehicles
are classified as other vehicles. As there is no rigorous restriction on private cars using the
prefixes XiangAT and XiangAX on their license plates, it is possible that private cars with
such license plate prefixes could be incorrectly identified as taxis. This study added a taxi
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marking rule requiring the number of vehicle passing records to be greater than 100 based
on the experience of the traffic management department in detecting unlicensed taxis and
the fact that the number of commercial vehicle passing records is typically greater than 100.
The number of taxis in the training set was reduced from 4443 to 202 as a consequence of
this rule. Finally, the training set contains 202 taxis, 16,729 large vehicles, and 83,069 other
vehicles. Taxis account for 1/500 of the total. Thereby, the proportion of taxis in the training
set matches the proportion in the original data set.

Figure 3 depicts the characteristics of trajectories and traffic volume in the training set.
The value of trajectory length (represented by the number of intersections passed by the
trajectory) is predominantly distributed below 10 in Figure 3a of the density distribution
diagram for the training set. The density distribution diagram of the number of vehicle
trajectories in the training set is depicted in Figure 3b, and the number of trajectories is
distributed below 200. Figure 3c depicts the traffic volume during various training set
time intervals. The volume distribution is consistent with the volume analysis results of
Chen et al. [9], indicating that the vehicle trajectory features in this paper’s training set
are consistent with previously analyzed trajectory features. Figure 3d portrays the traffic
volume of each intersection in the training set (ranked from highest to lowest), indicating
that approximately 50 intersections in the training set feature a high traffic volume.

(a) (b)

(c) (d)

Figure 3. Characteristics of trajectories and traffic volume in the training set. (a) Density distribution
of trajectory length. (b) Density distribution of the number of trajectories. (c) Traffic volume during
various time intervals. (d) Traffic volume of intersections.

3.3.2. Model Parameters

There are six main parameters in the proposed model TGE-UTD: p, q, wn, wl, dim, and
win. In calculating the transition probability matrix, p and q control the breadth-first and
depth-first transition probabilities of the random walk model. When p < 1, the breadth-first
transition probability increases and the walk focuses on the characteristics of the starting
point of the trajectory; when q < 1, the depth-first transition probability increases and the
walk focuses on the characteristics of the end point of the trajectory. In the walking process,
wl and wn control the walk length and the number of walks, respectively. As shown in
Figure 3a, the trajectory length is distributed between 1 and 10, so wl is set as 10. As shown
in Figure 3b, the trajectory number density is mainly distributed between 1 and 125, so
wn is set at no less than 100. In the TGE-UTD training process, dim and win control the
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embedding vector dimension and the sliding window size of skip-gram, respectively. To
comprehensively represent the relationship between vehicles and intersections, win is set
as 10, and dim is set as 128 by default. Therefore, the parameters to be adjusted in this
experiment are p, q, and wn, as shown in Table 3.

A grid search method [27] is used to select the optimal values of p, q, and wn. When
p = 0.1 or 0.5 and q = 2, the breadth-first transition probability of the walk model increases;
when p = 1 and q = 1, the transition probability of the walk model remains unchanged,
and Node2Vec can be seen as DeepWalk; and when p = 2, q = 0.1 or 0.5, the depth-first
transition probability of the walk model increases. Besides, according to the number of
trajectories distributed below 200 in Figure 3b, wn is set to 100, 200, or 400.

Table 3. Model parameters.

p q wn

0.1 2 100|200|400
0.5 2 100|200|400
1 1 100|200|400
2 0.1 100|200|400
2 0.5 100|200|400

3.3.3. Evaluation Metrics

To evaluate the performance of the vector embedding model, the average precision rate
is used to describe the vector similarity performance of TGE-UTD for different vehicle types.
First, the TopN vehicles with the largest cosine similarity to the Vehicle V are found, and
then the precision rate is calculated according to the number of TopN vehicles of the same
type as V. Finally, the average precision rate of all vehicles of this type (Precisiont,TopN) is
calculated as follows:

Type(V) =


0, V is Private Vehicle

1, V is Licensed Taxi

2, V is Large Vehicle

(9)

Precisiont,TopN = Mean(
Count(Type(Vt,i) == Type(Vj))

TopN
)

Vj ∈ {MostSimilar(Vt,i, TopN)}
(10)

Type(V) is a function to obtain the vehicle type of Vehicle V, t is a given vehicle
type, Vt,i is a vehicle of type t, and MostSimilar(Vt,i, TopN) is a function for finding the
similar-vehicle set of Vt,i, which adds the TopN vehicles with the largest similarity into this
set. TopN = 10, 20, 50, 100 is used in this study.

4. Results and Analysis

In this section, through the precision evaluation and dimension reduction experiments,
the TGE-UTD models proposed in the present study are evaluated and compared with differ-
ent state-of-the-art baselines, Word2Vec and Doc2Vec models, based on entity embedding.

4.1. Training Results

The gensim module of Python 3.7 is used for vehicle vector training, and the average
precision rate of the walk model TGE-UTD and no-walk models Word2Vec and Doc2Vec is
calculated based on the evaluation matrix to characterize the learning ability of the models
for vehicle trajectory features. Grid search is employed to determine the optimal TGE-UTD
model parameters.
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4.1.1. Large Vehicles

Similar to a typical vehicle with a periodic trajectory, the trajectories of large vehicles
are predominantly circular, fixed, and characterized by relatively simple characteristics.
Therefore, the average precision rate of large vehicles is high.

Figure 4 depicts the average precision rate for the walk model TGE-UTD and the
no-walk models Word2Vec and Doc2Vec on the task of detecting large vehicles. The perfor-
mance of TGE-UTD with various parameters is depicted at a magnified scale in the bottom
right corner of each figure. At all TopN value settings, both types of models perform well
with the method for detecting large vehicles, as the average precision rate for all models is
greater than 93%. The performance of TGE-UTD is only marginally inferior to that of the
no-walk models.

(a) (b)

(c) (d)

Figure 4. Average precision rate for three models for large vehicle detection tasks. All the models
perform well at all TopN value settings, with the performance of TGE-UTD only marginally inferior
to that of the no-walk models. For TGE-UTD, the performance when p = 2, q = 0.1, and wn = 400
is marginally superior to that under other parameters. (a) TopN = 10; (b) TopN = 20; (c) TopN = 50;
(d) TopN = 100.

Since no-walk models cannot fully extract the features of vehicles with random trajec-
tories, this study employs the walk model to generate the possible trajectories of vehicles
based on their historical trajectories, thereby enabling the full extraction of the features of
vehicles with random trajectories. However, this method of generating trajectories will
convert a number of vehicles with few trajectories into vehicles with periodic trajectories,
thereby increasing the number of falsely positive samples of vehicles with periodic trajecto-
ries. As a result, for TGE-UTD, the average precision rate of large vehicles with periodic
trajectories is decreased, while the ability to extract features from vehicles with random
trajectories is enhanced.

It appears that the choice of p and q values has little effect on the average precision rate
of large vehicles in TGE-UTD. In grid search, the average precision rate when p = 2 and
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q = 0.1 is only marginally superior to that under other TopN value parameters. In addition,
the performance of TGE-UTD is optimal under all parameters when wn is set to 400.

4.1.2. Licensed Taxis

Taxi trajectories are predominantly low-periodic and random. These trajectories
typically begin and end near commercial districts or transportation hubs. Due to taxi
roaming, taxi routes are typically lengthy and uninterrupted.

Figure 5 illustrates the average precision rate for the walk model TGE-UTD and the
no-walk models Word2Vec and Doc2Vec on the licensed taxi detection task. TGE-UTD
outperforms Doc2Vec significantly. In overall terms, the performance of TGE-UTD is
also superior to that of Word2Vec. Specifically, when wn = 200 and wn = 400, TGE-
UTD performs better than Word2Vec, and their difference is more pronounced when
wn = 400 than when wn = 200; however, when wn = 100, TGE-UTD performs worse
than Word2Vec. This is due to the fact that when wn = 200 or 400, the TGE-UTD model
executes a large number of random walks and generates rich taxi trajectories, including
not only the historical trajectories of taxis, but also the new random trajectories generated
by the model with reference to the history trajectories. These new random trajectories
contain an abundance of potential vehicle characteristics, thereby assisting the model in
extracting vehicle features. When wn = 100, however, the TGE-UTD model generates only
100 walking trajectories for each vehicle, whereas the actual number of taxi trajectories in
the training set is greater than 100. The insufficient number of features extracted by the
model is due to the smaller number of taxi trajectories generated by walking than in the
training set.

(a) (b)

(c) (d)

Figure 5. Average precision rate for three models for licensed taxi detection tasks. Doc2Vec performs
worst among all models. TGE-UTD outperforms Word2Vec when wn = 200 and wn = 400, but
underperforms Word2Vec when wn = 100. For TGE-UTD, the performance under p = 2, q = 0.1,
and wn = 400 is the best across all parameters. (a) TopN = 10; (b) TopN = 20; (c) TopN = 50;
(d) TopN = 100.
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The choice of p and q values appears to have an effect on TGE-UTD. When TopN = 10
or TopN = 20, the model with parameters p = 0.5 and q = 2 achieves the best performance
in a grid search, whereas when TopN = 50 or 100, the model with parameters p = 2 and
q = 0.1 achieves the best performance. In practice, there should be more than 20 taxis
with similar random trajectories; consequently, the results of the average precision rate
when TopN = 50 or TopN = 100 are more credible than when TopN = 10 or TopN = 20.
Consequently, the optimal TGE-UTD parameters for the licensed taxi detection task are
p = 2 and q = 0.1. Moreover, when wn is 400, TGE-UTD has the best performance across
all parameters. The average precision rate of taxis increases significantly as the number of
random walks wn increases.

4.2. Visualization Results

To enhance the set of suspected unlicensed taxis obtained by TGE-UTD, the 3D tra-
jectory diagrams of both the known licensed taxis and the suspected unlicensed taxis
were manually screened. Since the longitude and latitude data of intersections are not
accessible to the public, the layout program heato in the graph drawing tool Graphviz [28]
was employed to visualize a two-dimensional graph of vehicle trajectories. Then, a three-
dimensional plot was constructed on the basis of this graph with the information of the
time at which a vehicle passes through an intersection added in. As shown in Figure 6,
the abscissas and ordinate denote the intersection location obtained by the visualization
process and the applicate denotes the vehicle passing time. Trajectories on various dates
are represented by lines of varying colors, while intersections are represented by dots.
As shown in Figure 6, trajectories on various dates are represented by lines of varying
colors, while intersections are represented by dots. Figure 6a depicts the 3D trajectory
diagram of a licensed taxi (XiangAT**02), whereas Figure 6b depicts the 3D trajectory
diagram of a suspected unlicensed taxi (XiangAJ**55). The trajectories of licensed taxi
are more numerous than those of suspected unlicensed taxi, and the main trajectories of
suspected unlicensed taxi are concentrated around the embedded abscissas 100 to 300 and
the embedded ordinate 0 to 200, which overlap with the trajectories of licensed taxis to
some extent.

(a) (b)

Figure 6. The 3D trajectory plots of a licensed taxi and a suspected unlicensed taxi. The abscissas
and ordinate denote the intersection location and the applicate denotes the vehicle passing time.
(a) XiangAT**02 3D trajectory plot; (b) XiangAJ**55 3D trajectory plot.

Figure 7 depicts the intersection-passing records of a licensed taxi and a suspected
unlicensed taxi. The intersection location denoted by the abscissas and ordinate in this
figure is consistent with that in Figure 6. The dots represent the intersections passed by
each vehicle, the dots with a circle represent the intersections passed by both vehicles,
and the dot color represents the traffic volume of the intersections. Licensed taxis pass
81 intersections, while suspected unlicensed taxis pass 77 intersections. Both types of
vehicles pass 75 intersections, of which 50 are among the top 50 intersections in terms of
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frequency of passage. Therefore, the suspected unlicensed taxi resembles the licensed taxi
in that it primarily traverses intersections in the business district or high-volume traffic
areas. We can therefore conclude that the suspected unlicensed taxi is a taxi that is illegal.

Figure 7. Common intersection plot of a licensed taxi and a suspected unlicensed taxi. The abscissas
and ordinate denote the intersection location. The dots represent the intersections passed by each
vehicle, the dots with a circle represent the intersections passed by both vehicles, the dot color
represents the traffic volume of the intersections and the gradient moving from green (0%) through
yellow (50%) and finally on to red (100%) in the color bar at the lower right corner describes the traffic
volume from low to high.

Figure 8 presents a visualization of vehicle vectors transformed by t-SNE. In Figure 8a,
the vehicle vectors are calculated by Word2Vec, while in Figure 8b, the vehicle vectors are
calculated by TGE-UTD. The closer two nodes are, the more similar they are. The abscissas
and ordinate denote the location of the transformed vehicle vectors. The blue crosses
represent large vehicles, the yellow dots represent intersections, the green dots represent
private cars, the purple inverted triangles represent licensed taxis, and the red pentagons
represent the suspected unlicensed taxis identified by Word2Vec or TGE-UTD.

The boundary between large vehicles and private cars can be explicitly seen in
Figure 8a,b, reflecting that the two models perform well in distinguishing the periodic
trajectory from other trajectories.

TGE-UTD significantly outperforms Word2Vec in extracting the trajectory characteris-
tics of licensed taxis and detecting unlicensed taxis. In Figure 8a, taxis form an independent
community, which is much further away from other communities, indicating that taxi tra-
jectories learned by Word2Vec model have strong uniqueness and feature little randomness.
This result is inconsistent with the actual situation of traffic, where taxis have random
trajectories. Suspected unlicensed taxis, whose embedding vectors share a high cosine
similarity with the vectors of licensed taxis, are dispersed in the private car community,
which should be close to the taxi community and yet is actually far away, indicating that
this model may misjudge these vehicles. The preceding results imply that the model
has a limited capacity for learning vehicles with random trajectories. Comparatively, in
Figure 8b, taxis congregate in the center of the largest private car community, indicating
that private cars and taxis in this community have certain trajectory similarities, whereas
vehicles with random trajectories have rich trajectory characteristics and are therefore likely
to congregate in the center of the private car community. Therefore, this finding suggests
that the vehicle vectors obtained by the TGE-UTD method can reflect the characteristic of
random trajectories of taxis.
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(a) A t-SNE visualization of vehicle vectors in Word2Vec

(b) A t-SNE visualization of vehicle vectors in TGE-UTD (p = 2, q = 0.1, wn = 400)

Figure 8. A t-SNE visualization of vehicle vectors in Word2Vec and TGE-UTD. The abscissas and
ordinate denote the location of the transformed vehicle vectors. In (b), the detected unlicensed taxis
are near the taxi cluster, indicating that the TGE-UTD detection result is convincing, while in (a), the
detected unlicensed taxis are far away from the taxi cluster, indicating that the Word2Vec detection
result might be unconvincing.

5. Conclusions

On the basis of real vehicle trajectory datasets, an unsupervised learning method
for trajectory features is designed to detect suspected unlicensed taxis. The fundamental
concept is to use a random walk to balance the number of vehicle trajectories and increase
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the number of possible trajectories. The average precision rate of the no-walk model and
the walk model in detecting large vehicles and taxis is compared, and it is determined that
the walk model can better learn trajectory features, and the vehicle vectors obtained by
the model can more accurately represent the vehicle trajectory features. The performance
of TGE-UTD under different parameters is addressed, and the optimal parameters are
ascertained. The experimental results demonstrate that TGE-UTD can detect taxis and
private cars with random trajectories and has a high precision rate for detecting large
vehicles with periodic trajectories. Therefore, this study proposes a detection scheme for
suspected unlicensed taxis by which 188 suspected unlicensed taxis are detected in the
experimental data set. A 3D trajectory diagram and a common intersection diagram are
deployed to evaluate the detection results.

Traditional methods for detecting suspect unlicensed taxis rely heavily on the manual
analysis and extraction of suspicious trajectory features by experts. However, the proposed
TGE-UTD can automatically learn trajectory features and successfully accomplish the
detection task. It has the ability to identify suspected unlicensed taxis and other types
of vehicles, and thereby offers a decision-making and information foundation for traffic
management departments.
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