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Abstract: The paper presents the concept of operation and methods of using laser trackers in robotics.
So far, a small amount of research on software for sharing and exchanging data with trackers has been
done. As a result of the identified demand, a proprietary application for communication between the
laser tracker and robots, as well as other software, was developed. The developed solution is based
on the software development kit (SDK) provided by Leica and the Python language. The structure
and functioning of the developed software were described in detail. The software meets the goals set
at the beginning of the design process regarding online communication with the tracker and using
the universal, popular TCP/IP standard. The functioning of the developed software was shown in
the paper in a few examples related to manipulating robots and mobile robots. The capabilities of the
developed software were described, as well as the planned work on its development.
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1. Introduction

According to the 2022 IRF (International Federation of Robotics) report, based on 2021
numbers, the still dominant industries in terms of robot applications are electrotechni-
cal/electronics (137,000 robots were installed in production), automotive (119,000 units)
and engineering ones (64,000 units). Based on the 2020 IRF report about the use of industrial
robots [1], the use of robots in machining, deburring, and grinding is growing significantly.
Due to the aforementioned facts, one of the challenges of robotics is to increase the accuracy
and repeatability of industrial robots. This will make it possible to perform advanced
machining or assembly tasks. In certain areas, it will be possible to replace costly CNC
machines. Methods to improve the accuracy and repeatability parameters of robots are
numerous. Improving stiffness, modifying control systems, or using external systems for
measuring and path correction. Using laser trackers is one way to accurately measure
TCP orientation position and online correction for industrial robots. A laser tracker is a
tool that enables various types of geometric measurements in three-dimensional space. It
can be used for automated position control as well as, e.g., for 3D scanning of objects. Its
most important elements are the laser interferometer and the absolute rangefinder. Due
to their accuracy, robotics trackers are used in testing the accuracy and repeatability of
manipulating robots and for their calibration [2–4]. Laser trackers in robotic measurements
are used for a variety of applications. In the paper [5], the authors present an innovative
methodology for measuring the susceptibility of articulated serial robots, and the laser
tracker is used to measure the system’s response.

In paper [6], the laser tracker was used to measure the deflection of the robot end
effector during comparative tests and optimization of the robot position using static and
dynamic stiffness models for various milling scenarios.

The authors of the papers [7,8] ponder how to increase the accuracy of industrial
robots with the help of the Leica Absolute Tracker AT960 (Hexagon, Stockholm, Sweden).
They propose new methods of calibrating robots with tools in their workplace. These
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methods improve positioning accuracy by compensating for the identified parameters. The
accuracy of the robots, along with the reduction in calibration time, are key factors in the
success of robotic production systems.

In paper [9], the authors discuss assembly operations in the aviation industry, which
are time-consuming and require high accuracy. They emphasize that robotic assembly is
a good solution that increases productivity, but they point out that the poor accuracy of
industrial robots limits their use. They propose to improve it by adding an accurate online
3D positioning system, which consists of the KEYENCE LJ-V7200 vision system (Keyence,
Osaka, Japan) and the Leica AT-960 + T-Mac TMC-30B (Hexagon, Stockholm, Sweden)
tracking system.

Paper [10] investigated the ability of a laser tracker to measure the relative position
and orientation between two mobile Stewart platforms simulating the movement of ships
at sea. These ships are exposed to disturbance from waves and have cranes equipped with
active compensation systems on board, which keep the cargo at a certain height from the
seabed.

In paper [11], a laser tracker was used to improve the accuracy of cable-driven par-
allel robots. Inaccuracies are caused by deviations in cable lengths caused by elongation,
elasticity, or creep.

In paper [12], the authors focus on modeling, measuring, and identifying the change
in the kinematic chain of serial articulated industrial robots based on thermomechanical
deformations caused by self-heating caused by drives. The assessment of the change in
the positioning accuracy of the ABB IRB 1600 (ABB Ltd., Zürich, Switzerland) robot was
carried out using a Leica AT960 laser tracker and a FLIR SC640 (FLIR, Wilsonville, OR,
USA) thermal imaging camera.

The authors of the work [13] used a laser tracker to improve the absolute accuracy
of the ABB IRB 1600 industrial robot. They developed an advanced calibration model
that significantly reduced position errors. Similar work was carried out by the authors
of [14], who focused on building calibration systems easily adaptable to each robot type. A
computer system was built to develop and implement a calibration system. Subsequently,
experimental trials were carried out using the IRB2000 robot, which resulted in a large
accuracy improvement. Similar works on calibration and improvement of accuracy were
carried out by researchers [15–18]. The use of trackers in robotics, however, often goes
beyond accuracy testing and calibration. The subject of real-time tracker compensation is
discussed in [19,20].

In paper [19], the authors described the idea of compensation for production systems
by using external metrological systems to compensate machine tools and robots in real-time.
On the other hand, in the article [20], they used direct feedback from the position and
orientation of the end effector with the Leica laser tracker to develop an algorithm that
allowed for moving along paths at a speed of 100 mm/s with an RMS of only 0.11 mm.

The compensation for errors in production processes in the aviation industry is the
subject of article [21]. The authors of that paper show a method of maintaining high
accuracy of robot manipulation by continuously tracking the position and orientation of
the mounted tool while minimizing errors. The study of parameters of industrial robots
with the use of trackers during contact operations is the subject of [22,23]. In paper [22],
researchers evaluate the performance of robots during deburring, grinding, and cutting
operations in terms of quasi-static path accuracy and repeatability. In article [23], the
authors investigate the modal properties of industrial robots during the milling process
using a tracker. The applications of laser trackers in robotics mentioned so far concern
manipulating industrial robots. In the segment of mobile robots, laser trackers are most
often used for calibration or as a position verification tool. Paper [24] presents a method
of autonomous loading, transporting, and unloading large objects using a non-holonomic
mobile manipulator. The Faro Vantage S6 laser tracker was used to calibrate and verify the
operation of the target vision system.
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A tracker for calibrating a six-legged walking robot with an integrated parallel ma-
nipulator was used in [25]. The authors of this work, after applying the proposed tracker
method for validation, identified the kinematic parameters of the entire robot, and the ac-
curacy of the movement of each leg and manipulator was significantly improved. In [26], a
laser tracker was used to track the trajectory of a mobile robot based on linkage suspension.
Using a tracker allowed for the trajectory of the physical prototype of a mobile robot to be
registered and analyzed.

The subject of applications related to recording and sharing data from trackers is
discussed by the authors less often than using them to measure accuracy and repeatability.
Applications are most often created by manufacturers of individual trackers and are used
for metrology. Proprietary software for data sharing and communication with laser trackers
is often created. An example of such a solution was shown by the authors of [27]. They
developed a real-time control system for the position and orientation of industrial robots
using a laser tracker. Via the developed real-time interface, position data is acquired in
millisecond cycles and is used to calculate the current errors of the robot path. The EtherCAT
bus and a dedicated software solution were used for data transmission between the Leica
tracker and the robot controller. Similar research work was presented in articles [28,29]. In
these works, the authors show the software they developed for communication with a laser
tracker, along with examples of applications. The paper [29] shows the most advanced
example of the functioning of an application working behind a PC and communicating
with a robot via KUKA RSI (robot sensor interface). The software runs on a Windows PC
and supports communication with the laser tracker via Ethernet using the FARO SDK for
the laser tracker.

As for other applications of laser trackers, in the paper [30], a laser scanner, alongside a
manipulator and a 3D scanner, was used as part of a system for determining the position of
small assembly points on large-scale components. The authors indicate that the developed
method of a large-scale 3D measurement reduces the maximum and average calibration
error of the measurement system by about 55% at a measurement radius of 7 m. An
analogous use of trackers is presented in the paper [31]. The paper describes the use of
trackers for particle accelerators. Due to their mobility and accuracy, they are used to
determine the position of magnets, which is a critical part of its construction and requires
tolerances of millimeters at distances of tens of meters. The paper [32] describes the use of
multiple trackers forming a trilateration network to improve the accuracy of measuring the
flatness of the surface of a 5 m diameter ring. The effect of the positioning of the trackers,
their number in the network, and differences in the height of the measurement head on the
accuracy of po-measurement were presented. In the case of measuring flatness with two
trackers placed in the center of the ring, whose height difference is 1 m, the measurement
accuracy is ±6 µm.

Laser trackers are used in the construction of devices that require very high-precision
manufacturing. Papers [33] discuss the use of a tracker for the precise positioning of particle
accelerator systems. To increase precision, several trackers can be combined into a single
system, as shown in the example of positioning a high-energy photon source High Energy
Photon Source (HEPS) system [34].

Laser trackers can be used not only to validate the accuracy of the manipulators
themselves. They are also used to determine the accuracy of various calibration instruments
interfacing with industrial robots, such as the case described in the paper [35], where the
authors checked the accuracy of a robot’s TCP automatic self-calibration instrument.

Another interesting use of a laser tracker is the work [36] where the authors proposed
using the tracker to measure the position of the drill stem of a drilling rig. By measuring
the ground part, the authors could estimate the shape of the hole drilled by the rig.

The authors of article [37] developed a method of using a laser tracker to program
paths of industrial robots. While working on this method, it turned out that it would be
useful to develop a universal application that makes tracker data available to various types
of robots. In the solution presented there, the data with the positions measured by the
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tracker was saved on a PC and then loaded from this computer by the robot controller.
The presented solution was not universal and was cumbersome to use. In connection
with the problem described, work was started on the development of an own application
that provides data from the tracker. Software for manipulating robots, mobile robots,
and data transferring to popular software used, among others, in robotics, namely the
Matlab-Simulink package, was designed and developed. The idea behind the tracker and
the developed software will be discussed later. Examples of its applications will also be
presented.

2. Characteristics of the Tracker and the Method of Recording and Sharing the
Measured Parameters

Measuring with a laser tracker is often considered a coordinate measurement method.
It allows for precise measurements of the position of a selected point in three directions
simultaneously. These devices are used in geodesy, scanning large-size objects in 3D, and
automated control in industry. When using a laser tracker (Figure 1), it is necessary to
install a mirror reflecting the laser beam, the so-called sphere-mounted retroreflector (SMR).
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Figure 1. Measuring with a laser tracker.

Research work on the own software was carried out with the use of the Leica AT960
absolute laser tracker. It is a very accurate device that specifies its accuracy as a maximum
permissible error (MPE). The maximum permissible error (MPE) is defined in the ISO
10360-10: 2016 standard as the highest value of the measurement error allowed in the
specification for a given measurement. Table 1 shows the tracker specification according to
ISO 10360-10: 2016, Annex E.

Table 1. The maximum permissible error of the tracker.

Laser Tracker Subsystem Symbol Maximum Permissible Error (MPE)

Interferometer (IFM) eIFM ±0.4 µm + 0.3 µm/m
Absolute laser measurement (ADM) eADM ±10 µm

Parameter R0 (R0) eR0 ±3 µm
Transverse eT ±15 µm + 6 µm/m
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The described tracker and its equipment are part of the industrial robotics laboratory
of the Department of Applied Mechanics, Rzeszow University of Technology. The tracker
and robots located in the laboratory are used to design and program stations dedicated to
aviation industry needs. The tracker was used in the station’s design to control the outlet
guide vanes (OGV) described in [38]. Tracker measurements were useful when designing a
module for geometrical measurements of jet engine blades described in [39]. Geometric
measurements taken with a tracker turned out to be useful during the development of
digital twins for the purposes of training with the use of virtual reality; this subject was
described in [40]. In the mentioned works, the tracker served only as a metrological tool
for measuring the geometry of a robotic station or workpieces. The aforementioned work
related to programming robots using a tracker caused the need to expand the tracker’s
capabilities and develop its software.

The tracker was delivered with two types of software offered by the manufacturer.
The basic tool for operating the Leica tracker is the Leica Tracker Pilot program (Figure 2a).
The program is a graphical interface between the user and the tracker controller. It allows
the user to enter all settings into the tracker, save measurements as text files, and perform
maintenance and calibration. After establishing a connection with the tracker, the pro-
gram displays status information, sensor states, and measurement values of the currently
tracked object.
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The triggering of measurements depends on the selection of one of the 7 measurement
profiles:

• single quick measurement;
• single standard measurement;
• single precise measurement;
• continuous measurement triggered at a constant distance;
• continuous measurement triggered at a specified time;
• measurement triggered by a touch probe;
• measurement triggered by an external signal.

The software allows the user to save the collected measurement data to a CSV file.
In addition, it also has several tools for checking the measuring accuracy of the tracker
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head, reflectors, and measuring probes. Sudden temperature changes, as well as various
mechanical influences, may adversely affect the accuracy of the device. Therefore, in addi-
tion to checking the accuracy of the Tracker Pilot, it is possible to perform a compensation
procedure, which allows for maintaining high accuracy of measurements. The software
does not have any tools for the visualization and processing of collected data.

The second program provided by the tracker manufacturer, called Inspire (Figure 2b),
a metrology program, is used for this purpose. The software allows the user to create
measurement procedures, automating the process of not only data acquisition but also the
processing and generation of measurement reports on their basis. The software automati-
cally connects to the measurement devices and supports all 7 measurement trigger profiles
for the tracker. The great advantage of this software is the ability to define the dimensions of
the shape of the stands for measuring reflectors. Then the software automatically converts
the position of the measured point to the point of contact of the stand with the measured
surface. The bases can come in various shapes depending on their purpose. The simplest
ones are used to measure flat surfaces. More complex shapes make it easier to measure
edges or characteristic points of curved shapes. The software can independently recognize
the measured shape based on the arrangement of measurement points and adjust the
settings for the detected shape. It also allows the user to import CAD files and has tools
to define the relationship between the measurements and the shape pattern. In general,
the software is very user-friendly, with a large set of advanced features that are intuitive to
use. However, it has its limitations. For T-Mac probe measurements, only positions. For
robot-related measurements, recording both position and orientation is very important.

Tracker Pilot software records positions and orientations but does not have any tools
to process this data. A tool designed for measurements used in robotics is the RoboDyn
software, which allows the user to determine the base frame of reference, the tool center
point (TCP), based on measurements from the tracker. The software can also measure the
accuracy of an industrial robot and perform calibration and compensation of its parameters.
In addition, the tracker can work with many other types of software, such as PolyWorks®,
Metrolog X4, DM Works, Silma/X4-iRobot, or RoboDK.

All of the software types mentioned above have their advantages and disadvantages.
Unfortunately, none of them offers convenient and fast online communication with various
types of robots and with the Matlab-Simulink package.

Thus, several possibilities for downloading measurement data from the tracker were
considered:

• reading data from a CSV file;
• using the RTFP-EC accessory to communicate with the tracker via the EtherCat protocol;
• using the tools available in the SDK to communicate with the tracker via TCP/IP

protocol.

Taking measurements and saving the data to a CSV file is possible in both programs
supplied with the tracker, which were described earlier. This approach is convenient for
a small number of individual measurements. Exporting a large series of measurements,
especially continuously triggered measurements, is cumbersome because both programs
we tested do not have formatting capabilities for data export. In addition, such an approach
precludes the use of data for real device control. A solution designed for such applications
is a tracker add-on called RTFP-EC that allows data to be sent over EtherCat protocol at
a frequency of 1 kHz. This is an Ethernet-based communication standard. This protocol
allows for achieving high speeds of information exchange and can be used for communica-
tion in real-time systems [41]. According to studies reported in papers [42–45], EtherCat is
one of the most efficient industrial communication standards available on the market. But
its implementation costs are lower than Profinet or Powerlink [41]. Many platforms used
in robotics, such as the RaspberryPi, support EtherCat, particularly for controlling drives.
The Matlab/Simulink environment also has a set of tools for communication over EtherCat.
Unfortunately, ABB’s robots do not support this communication standard. Therefore, the
authors finally decided to use a simple TCP/IP connection, which will allow ABB’s robot
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controller and other devices and applications that support an Ethernet connection to receive
measurement data. Such a connection transfers data at 50 packets per second [46]. This
means that for serial measurements with a high trigger frequency, data is buffered and
sent every 20 ms, but without maintaining the timing regime. Thus, it is not suitable for
real-time applications. On the other hand, it can be used for robotic metrology processes,
registration of robot trajectories, and correction of low-dynamic motion trajectories.

The requirements that were set for the development of the new software included:

• online communication with the laser tracker;
• use of a popular, universal communication standard;
• possibility to choose the type of tracker measurement;
• possibility of triggering the measurement with a tracker at a defined time or distance;
• the possibility of triggering the measurement by a touch probe or an external signal;
• use of a popular object-oriented programming language that provides access to many

libraries in the form of packages.

Analyzing the available possibilities, it turned out that two leading manufacturers of
laser trackers, namely Leica and Faro, offer their own software development kits (SDK).
Having a Leica tracker, it was decided to use the SDK offered by the manufacturer based on
the NET programming platform. Still, it is also available in other programming languages
(e.g., Python). The API, i.e., the application programming interface provided by the
SDK, has the structure of an object tree. This approach means that the Tracker object is
represented by subobjects containing properties, events, and methods. Their feature is the
availability of events informing about changes in the tracker’s status. The further part of
the paper describes the developed application based on the available SDK and using the
Python language.

3. The Application of the Developed Software in Robotics

The developed application was named LeicaConnector.py. It is a TCP server running
on a PC under Windows. Devices implementing the TCP/IP interface can connect to it.
The server processes the defined TCP frames and performs functions on the tracker based
on the API (Figure 3).
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• Leica device support by microcontrollers with TCP support, industrial robot con-
trollers, mobile robots, or engineering packages, e.g., Matlab-Simulink;

• easy program development by defining subsequent commands available to the client;
• the ability to send the position and orientation (in the case of T-MAC) read by the

Leica device to multiple devices;
• easy integration of measurements from the laser tracker with data from other devices.

The choice of the Python language, in the context of the design requirements set, is
determined by its versatility and universality of use, especially in applications related to
the Internet of Things and data engineering [47]. Due to the available SDK, there was an
opportunity to use, for example, the C# language. However, given that the software runs
on commands, an intuitive direction for its expansion is to integrate further measurement
devices, i.e., a 2D scanner or another Motion Capture type position determination system.
This approach is another point justifying the use of Python, as due to its popularity,
many manufacturers are developing their APIs in it. The described approach of software
development ultimately leads to the creation of a universal tool for the acquisition and
integration of measurement data. Its processing is the domain of data engineering. In
this field, Python is the language of first choice due to the multitude of libraries for data
processing and visualization. This is another argument for choosing Python.

The LeicaConnector.py program is based on a configuration file in which, among
others, the settings of the graphic interface are saved, the client command codes are
assigned to the functions they perform, and the network settings are defined, i.e.,

[TCP]
Ip = 192.168.123.11
Port = 50007
[TRACKER]
Ip = 192.168.123.31

The [TCP] section defines the IP number and port of the server being created, to which
the clients connect. The [TRACKER] section defines the default Leica device IP or the
simulator name, as shown in the section of the configuration file (the line marked in green
is a comment). The LeicaConnector.py interface comprises six sections, identified as A–F in
Figure 4.
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In section A, there is a tracker checkbox. The list of available devices can be updated
by selecting the Discover Tracker button. Connection with the selected device takes place
by selecting the Connect button, and the correctness of the connection is indicated in the
Status field. Section B contains basic information about the configuration of the Tracker,
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related to the selected target and its configuration (ProbeFace and Tips), the measurement
status, and the selected measurement profile. This can be selected by the client by sending
the appropriate command in the form of a data frame with the appropriate code. The
program allows the user to select several profiles:

• Stationary Profile–default profile;
• Continuous Time Profile;
• Continuous Distance Profile;
• Touch Trigger Profile.

In the case of the continuous time and constant distance profile, the configuration
frame has a parameter that defines, respectively, the time interval between measurements
or the change of the distance for which the measurement will be triggered. Although
the default, triggering or ending the measurement is triggered by the client by sending a
frame with a defined code. In section C, buttons allow the user to perform these actions
from the GUI level. The Clear Text button clears the window in section F, where program
logs are placed. Section D contains information about the configuration of the TCP server
being created and the list of clients that are connected to it. The client who connected first
has the right to issue commands. Subsequent customers only receive the measurement
data. Section E is used to select a target and configure it if more than one tip is defined
in the tracker controller. In this section, the user can select a measurement profile. This is
equivalent to executing the appropriate command by the client. In the case of a continuous
time profile and a constant distance, the set interval or distance value results from the value
entered in the Const Profile field. Section F is a window where the logs of the program are
displayed. LeicaConnector.py requires the following:

• Python version 3.8.10;
• Tkinter library;
• Python.NET package.

In the case of communication with a client in the local network, the IP number of the
host should be specified in the IP parameter. Two types of frames are exchanged between
the LeicaConnector.py proxy and the client using a TCP/IP connection.

The first type of frame consists of four fields (Figure 5):

• Command—a field in the signed int (4B) format; the field specifies the frame type
through the code it contains: command frame, confirmation/error frame, or measure-
ment frame;

• param 1—a field with data in the signed int (4B) format, the interpretation of this
parameter depends on the code contained in the command field;

• param 2—a field with data in the signed int (4B) format, the interpretation of this
parameter depends on the code contained in the command field;

• param 3—a field with data in the signed int (4B) format, the interpretation of this
parameter depends on the code contained in the command field.
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A special frame of the first type is the frame with code 210 (Figure 6), the parameters
of which param1-param3 correspond to the coordinates of the measuring point (target).
Their values (returned by the tracker), due to conversions to integers, are scaled by the
constant value of k.
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When the Laser tracker works with T-MAC probes, the orientation of the T-MAC
probe is returned in the form of a quaternion in addition to the position of the point in the
tracker’s coordinate system. In this case, the measuring frame (Figure 7) has code 211, and
its fields are not only positions (x, y, z fields) but also values of the quaternion coefficients
(a, b, c, d) scaled by the constant m.
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The assumed values of the constants are, respectively, k = 1000 and m = 10,000.
Changing them requires modifying the GainPoz and GainRot constants in the configuration
file. The frame codes are three-digit numbers, where:

• 1xy—command codes;
• 2xy—confirmation codes corresponding to the command code. The exception is the

frame with the code 211 (position and orientation data) for the command 210;
• 30y, 3xy—general error codes and command error codes, where x = 1, 2..9, y = 0, 1..9.

The following command codes and the associated confirmation or error codes were
adopted in the developed application:

• 110—measurement start command, runs the startMeasurement function;
• 112—measurement end command, triggers the stopMeasurement function;
• 115—command sets the stationary measurement mode;
• 116—the command sets the measurement profile of the continuous time type;
• 117—the command sets the measurement profile of the fixed distance type;
• 118—the command sets the contact type measurement profile.

The example shows how LeicaConnector.py communicates with the client when using
a stationary measurement profile. It is assumed that the used retroreflector is visible to
the tracker.

1. Client: Connecting to the LeicaConnector.py server
2. Client: Send the frame: [0,0,0,110]
3. LeicaConnector.py: Frame sending: [210,1,000,000,1,523,234,5,432,984] //other customer

activities
4. Client: Send the frame: [110,0,0,0]
5. LeicaConnector.py: Send the frame: [210,1,000,000,1,523,234,5,432,984]

In the example shown, the client sends a frame with code 110, which corresponds to
triggering the measurement in the stationary mode (the default). In response, LeicaCon-
nector.py sends a frame with the code 210, the next fields of which are the coordinates of
the measuring point on the x, y, and z axes. Their values are multiplied by 1000. Hence:
x = 1000, y = 1523.234, z = 5432.984. Then (step 4), the client sends another frame with the
code 110, requesting another measurement in stationary mode. This one is passed in step 5.

The developed application allows for handling possible communication errors, han-
dling various methods of triggering measurements, and measuring in stationary mode
with the T-MAC touch probe. The following part shows the application of the developed
software in robotics.

4. Examples of Applications of the Developed Software

The software presented in this paper was originally developed to communicate with
ABB’s industrial robots. While working on the aforementioned paper [37], an idea emerged
to provide data transmission from a laser tracker. That article concerned using a laser
tracker to program the paths of industrial robots, and there is no need to quote the results
here. It is important that after developing the software, the communication diagram of the
industrial robot laser tracker was modified (Figure 8).
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The introduced modification allows the user to avoid the need to read text files with
data. In addition, data transmission is faster, and the algorithms introduced in the future
to the application will allow for the automatic determination and translation of robot
coordinate systems.

In the further part of the paper, an example of the use of a laser tracker to determine
the position of mobile robots is presented in the example of two constructions: a 4-wheel
mobile robot with mecanum wheels and a 4-leg mobile GO1 robot.

The Department of Applied Mechanics and Robotics has a 4-wheeled mobile Panther
robot manufactured by Husarion, equipped with mecanum wheels. The Raspberry Pi 4
microcomputer with the ROS system, connected via the CAN bus with the STM microcon-
troller implementing the lower control layer, is responsible for high-level control. Moreover,
the robot allows hardware access to motors and encoders and implements the lower control
layer using the rapid design environment based on the dSpace signal processor. This
approach allows for the implementation of research work on traffic control algorithms or
identification of the mathematical model.

In the described example, the Leica laser tracker was used to determine the position
of the mobile robot in relation to the tracker coordinate system during the movement
(Figure 9), which was carried out in the so-called joystick control mode. This feature is ROS-
enabled. Successive positions of the mobile robot, understood as positions related to its
design of the retroreflector, were saved in the Matlab software using the LeicaConector.py
program (Figure 10a). In this case, the laser tracker determined the retroreflector positions
in a time-related trigger mode with an interval of 0.1 s.

In mobile robotics, it is important to measure the position on the XY plane. During
the drive of a 4-wheel mobile robot with mecanum wheels, measurement samples of the
reflector’s position were recorded. For the assumed time interval, the first 130 samples
correspond to 13 s of the motion of the mobile robot. On this basis, the path of the robot’s
characteristic point was determined (Figure 11), related to the retroreflector in the tracker
system.

The experiment in which the laser tracker determined the position of the robot while
moving was carried out in a rectangular corridor. There is a tracker at one of its ends. The
second one was the initial position of the mobile robot, as shown in Figure 11. The length
of the radius vector ∣∣∣→r ∣∣∣ = √x2 + y2 (1)

of the robot’s characteristic point for its initial position in the tracker coordinate system
is approx. 11 m and for the end position its value is approx. 3.3 m. Moreover, it can be
seen from Figures 10b and 11 that the robot’s movement was towards the tracker. The path
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determined by the tracker indicates that the angle between the corridor axis and the OX
axis of the tracker system is determined by the relationship

θ = arccos

 x0∣∣∣→r ∣∣∣
 (2)

where x0 is the coordinate of the robot’s initial position determined in the first measurement;
it is approx. −46.5◦, which is marked in the diagram in Figure 10b.
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Applying a homogeneous transform describing a rotation on a plane having the formxT
yT
1

 =

 cos θ sin θ 0
−sin θ cos θ 0

0 0 1

x
y
1

 (3)

it is possible to determine the path of motion of MRK in the xTyT coordinate system related
to the tracker, whose axis OX is parallel to the corridor axis (Figure 10b). The resulting
trajectory is shown in Figure 12.
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coordinate system.

Figure 12 shows that the 4-wheeled mobile robot with mecanum wheels changed its
position in relation to xT during the movement. Changes in the position along the yT axis
result from imprecise control and skidding of the mecanum wheels.

The example discussed here shows the possibility of using a laser tracker to determine
the position of a mobile robot in relation to the adopted coordinate system. Moreover, the
known time interval between measurement triggers allows for the determination of the
remaining kinematic parameters of the robot. Using the finite difference method, the value
of the velocity vector of the characteristic point of the robot with which the retroreflector
was associated in the xTyT system was determined. Its course is shown in Figure 13. The
waveform shows that the robot movement started before the 2nd second. Velocity values
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remain negative because its projection on the axis is opposite to the axis direction. The
observed changes in the velocity value during the movement are caused by the use of the
joystick control mode.
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The UNITREE 4-legged GO1 robot, shown in Figure 14, is the second structure, the
path of which was determined using a laser tracker.
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Figure 14. UNITREE 4-legged GO1 robot.

The robot weighs 12 kg, and its maximum speed is 4.7 m/s. The design is supported
by the Rasberry pi 4 microcomputer and NVIDIA Nano chips, which are associated with
five cameras. The construction includes a joystick that allows the user to control the robot
and perform predefined movements or select modes, e.g., climbing/descending stairs.
From a programming point of view, it is important that Unitree provides a ROS-based API.
Like the 4-wheeled mobile robot, the GO1 robot moved along the corridor during the tests
(Figure 15). However, in this case, an obstacle with a height of about 77 mm was added. Its
presence is to test the ascending/descending stairs mode.
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Figure 15. Scheme of a measurement experiment for the GO1 robot.

Proceeding analogously to the previous example, the path of the GO1 robot controlled
by a joystick on the xy plane was determined, as shown in Figure 16a. Figure 16b shows
the path in the transformed coordinate system. In this case, the angle θ ≈ 41.5◦.
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Figure 16. The path of the characteristic point of the GO1 robot related to the retroreflector in (a) the
original coordinate system; (b) transformed coordinate system.

The fact that the GO1 robot overcame an obstacle placed in the test environment
can be seen in the z-coordinate (in the system related to the tracker) of the GO1 robot
characteristic point. Its course is shown in Figure 17a. Figure 17b shows the velocity of the
characteristic point of the GO1 robot. The presented example shows the legitimacy of using
the developed application and the laser tracker to record the trajectory of a walking robot.
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5. Discussion

The presented article is primarily of an engineering nature. The solution review
performed was based on our own need for some software to share laser tracker data for
robots. Different methods of performing a literature and solution review can be adopted.
Here, the process was based on searching for applications useful in industrial and mobile
robot research. According to the authors, the available commercial solutions and those
described in the articles proved unsatisfactory and lacked versatility.

The adopted criteria the developed software was to comply with were based on
the preference for using the Matlab package, ABB industrial robots, and Raspberry pi
microcontroller-based mobile solutions. It can be assumed that, for example, in Scilab
software, Kuka robots, and STM family microcontrollers, the criteria could be slightly
different. Due to the need to develop a totally new application, the Python language
and TCP/IP protocol were chosen. The choice made was based on the advantages of the
solutions presented and experience in programming in Python and implementing projects
using the TCP/IP protocol. Competing solutions based on, for example, the C# language
and the EtherCAT standard are possible, but the advantages of the selected solutions
proved decisive for the authors.

The developed and characterized software is in the development stage. It meets the
adopted criteria and performs the main functions. However, it requires adding functions
to expand its capabilities. There is a lack of visualization of measured positions, the
ability to import CAD files, and the recalculation of positions with respect to a coordinate
system other than the tracker has not yet been implemented. A particularly useful feature
will be to recalculate the coordinates of measured points relative to the base system of
an industrial robot. This function will appear in version 2.0 of the software and allow
for the measurement and direct recording of points useful for programming robot paths
or correcting workpiece positions. One of the novelties presented in the article is the
selection and identification of tracker applications in robotics. Among the many possible
applications of trackers, the authors have limited the examples to this field. In addition, for
applications in robotics, the authors formulated specific criteria that the software that shares
data from the tracker should comply with. Performance review, along with the advantages
of programming languages and communication standards possible to use in such a project,
can also be considered a novelty. The software itself is also new, with the characteristics of
its construction and operation. After adding the above-mentioned necessary functions, it
will be made available to Leica and all interested parties, along with the source code for
its use and development. The authors hope that the developed software will be used in
solutions where online robot-tracker laser communication from Leica is necessary.

6. Conclusions

The paper presents the concept of operation and methods of using laser trackers in
robotics. The analysis shows that trackers can be successfully used to track the movement
of mobile robots. They allow for precise measurements of traffic parameters. An interesting
and intensively developed topic is the real-time correction of paths of manipulation robots.
The conducted analysis indicates that the applications of trackers are described very widely;
however, there is no characteristic of work on the development of software for sharing
and exchanging data with trackers. A real-time data exchange tracker is a device that
supports TCP/IP communication allowing for building advanced, very precise solutions
in various fields. The shortcomings in the tools available on the market and our own
demand resulted in developing our own software. The developed solution is based on the
SDK provided by Leica and the Python language. The structure and functioning of the
developed application have been described in detail. The software meets the goals set at
the beginning of the design process regarding online communication with the tracker and
the use of the universal popular TCP/IP standard, thanks to which it enables data transfer
to most devices available on the market; especially industrial PLCs and robot controllers
from various manufacturers. Python, a general-purpose, high-level programming language
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with an extensive library package, allows for adding new functionalities to the application.
As part of further work, it is planned to expand the program with the automatic creation
of coordinate systems and positions measured in relation to them. For applications in
manipulative robotics, adding options related to determining the TCP of the robot with
the use of a tracker, base system, and calibration of selected robots are planned. In the
discussed application, it is planned to add functions related to the correction of TCP online
position based on data from the tracker. The real-time correction will be performed based
on the position of the robot controller and the position of the tracker. For the correction,
it is also planned to use other data sent from the robot in the TCP/IP standard, namely
parameters related to the contact force or the process being carried out.
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