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Abstract: A method is proposed that is focused on reducing the chip area occupied by logic elements
creating the circuit of Mealy finite state machines (FSMs). The proposed method is aimed at FSM
circuits implemented with internal resources of field-programmable gate arrays (FPGA). The required
chip area is estimated by the number of look-up table (LUT) elements in a particular circuit. The
method is based on mutual application of two methods of structural decomposition. The first of
them is based on dividing the set of outputs and using unitary-maximum encoding of collections
of FSM outputs. The second method is based on dividing the set of states by classes of compatible
states. The optimization is achieved by replacing the maximum binary state codes by two-part codes
proposed in this article. Each two-part state code consists of a code of a class including a particular
state and a maximum binary code of this state inside a particular class. The proposed approach leads
to three-level LUT-based Mealy FSM circuits. The first logic level generates three types of partial
functions: unitary encoded outputs, variables encoding collections of outputs, and input memory
functions. Each partial function is represented by a circuit including a single LUT. The LUTs from the
second logic level generate final values of these functions. The LUTs from the third level implement
outputs using collections of outputs. An example of synthesis applying the proposed method is
discussed. The experiments were conducted using standard benchmark FSMs. Their results showed
significant improving of the area occupied by an FSM circuit. The LUT count decreased on average
by 9.49%. The positive side effect of the proposed method was increasing the value of the maximum
operating frequency (on average, by 8.73%). The proposed method is advisable to use if a single-level
LUT-based implementation of the FSM circuit is impossible.

Keywords: Mealy FSM; FPGA; LUT; synthesis; collections of outputs; two-part state codes; unitary-
maximum codes

1. Introduction

In the last few decades, there has been an increasingly profound influence of various
digital systems on all aspects of human activity [1]. This applies primarily to personal
computers, embedded systems, the Internet, and the Internet of Things [2]. All such systems
are built using ultra-large integrated circuits such as ASICs and field-programmable gate
arrays (FPGAs) [3]. Such chips are extremely complex: currently, they include 7–8 billion
transistors [3]. This causes an urgent need to develop efficient computer-aided design
(CAD) methods for implementing digital systems based on such chips. In the case of
FPGA-based systems, technological mapping [4] is performed by industrial CAD systems
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of firms manufacturing particular chips such as Intel (Altera) or AMD (Xilinx: San Jose,
California, U.S. ) [5,6]. These industrial CADs include a limited number of synthesis
methods. However, it is possible to use them together with some external synthesis
methods, where the original structural diagrams of FSM circuits are represented by HDL
models [7]. Our current article is aimed at working out an FSM design method improving
the characteristics of sequential blocks of FPGA-based digital systems. The step of synthesis
is executed by our program tools, whereas the step of technology mapping is executed by
the industrial CAD tool Vivado [8] by AMD (Xilinx).

One of the fundamental models used for representing sequential devices is the model
of the Mealy finite state machine (FSM) [4]. In this paper, we discuss a case when FSM
circuits are implemented using the internal resources of FPGAs [9]. The choice of these
particular VLSI chips is determined by the fact that, now, a huge number of various projects
are implemented using FPGAs [10]. Furthermore, it is clear that FPGAs will dominate logic
design in the next few decades [7].

During the design process of FSM circuits, some optimization problems arise. As a
rule, they are the following: minimizing the chip area occupied by an FSM circuit; reducing
the value of the FSM cycle time (maximizing the operating frequency); minimizing the
power consumption [11].

A digital system may include a number of sequential blocks [1]. The behavior of any
sequential block, consisting of a combinational part and memory, can be represented using
the FSM model. For each digital system, the ratio between the total complexity of processor
units and memory units, on the one hand, and various FSMs, on the other hand, depends
on the features of the system. The larger the proportion of the FSM-based part, the more
important is the reduction in the chip area occupied by the circuits of each FSM. Solving
this problem can lead to several positive effects [2]. Firstly, it can allow expanding the
functionality of the whole system by expanding the functionality of the processor and other
units of the system (since, after optimization of the FSM circuits, additional area will appear).
Secondly, it may be possible to implement the system using less-powerful FPGA chips.
Thirdly, a reduction in the area of the circuit leads to a decrease in power consumption,
which is especially important for autonomous and mobile systems. In all these cases,
the competitiveness of the designed digital system in relation to similar concurrent projects
increases. All of the above shows the importance and necessity of optimizing the circuits of
FSMs that are part of digital systems. Obviously, this area reduction is expedient as long as
the performance of the optimized block remains within the specified limits [2].

In this paper, we discuss the case when FSM circuits are implemented using look-up
table (LUT) elements [12]. The following internal resources are used for implementing FSM
circuits: LUTs, flip-flops, synchronization tree, dedicated multiplexers, programmable inter-
connections, and input–outputs [12]. If an FSM circuit is implemented with these resources,
then the occupied chip area is estimated as the number of LUTs (LUT count) [13]. As shown
in [11], the reduction of the LUT count also reduces the power consumption. However, the
area reduction can degrade the FSM’s performance [14]. This degradation is an overhead of
area reduction. In this paper, we propose a method that leads to simultaneously reducing
the area with a slight increase in the FSM maximum operating frequency (compared to
equivalent FSM circuits based on encoding of collections of outputs (COs) [11].

The main scientific novelty of our article is associated with the development of a new
type of state code, called two-part codes. The first part contains the code for some class of
the set of FSM states. The second part contains the code of state as an element of this class.
Such an approach allows simultaneously reducing the number of LUTs in the FSM circuit
and increasing its performance.

The main contribution of this paper is a novel method improving both the LUT counts
and the performance of the FPGA-based circuits of Mealy FSMs. The improvement is
associated with reducing the number of literals in Boolean functions representing an FSM
circuit. A further decrease in the number of elements is associated with the proposed
modification of the method of unitary-binary maximum encoding of output collections.
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This modification allows using the resources of a single LUT to generate two outputs.
The proposed method belongs to the methods of structural decomposition [11]. The results
of the experiments showed that the proposed approach improves two characteristics of FSM
circuits (LUT count and maximum operating frequency) as compared to the FSM circuits
based on the maximum binary encoding of both states and collections of outputs [11].

The rest of the paper is organized as follows. Section 2 includes the basic information
connected with the LUT-based Mealy FSM design. The state-of-the-art is analyzed in
Section 3. Section 4 shows the main idea of the proposed approach. We show a synthesis
example based on the proposed method in Section 5. The experimental results conducted
with standard benchmarks are analyzed in Section 6. Finally, the article ends with a
short conclusion.

In the further text, we use many notations. To facilitate understanding of the proposed
method, we placed the main notation in Table 1.

Table 1. The main notation.

SS = {s1, . . . , sG} The set of FSM states.

SI = {i1, . . . , iU} The set of FSM inputs.

SO = {o1, . . . , oW} The set of FSM outputs.

G The number of states.

U The number of inputs.

W The number of outputs.

R The number of state variables.

SSV = {v1, . . . , vR} The set of state variables.

SM = {D1, . . . , DR} The set of input memory functions.

SCO = {CO1, . . . , COQ} The set of collections of outputs.

K(COq) The code of collection of outputs.

ILUT The number of LUT inputs.

A( fn) The number of arguments for a Boolean function fn.

RCO The number of variables for encoding of collections of outputs.

SOV = {b1, . . . , bRCO} The set of variables encoding the collections of outputs.

PS = {CP1, . . . , CPK} The set of classes of compatible states.

PC(sg) The partial code of a state.

RS
The number of variables encoding states inside the classes of compati-
ble states.

K The number of classes of compatible states.

RC The number of variables encoding classes of compatible states.

TP(sg) The two-part code of a state.

RTP The number of bits in the two-part state codes.

2. Basics of Mealy FSM Design with LUTs

In many cases, either a state transition graph (STG) or a state transition table (STT) is
used to represent the behavior of the Mealy FSM [15]. Using these forms, the three following
sets can be derived: a set of states SS = {s1, . . . , sG}, a set of inputs SI = {i1, . . . , iU}, and a
set of outputs SO = {o1, . . . , oW}. Therefore, an FSM has G states, U inputs, and W outputs.
In the case of STG, its vertices correspond to states, and arcs correspond to interstate
transitions. Above each arc, there are written FSM inputs causing a particular transition
and outputs associated with this transition [15]. An STT represents an STG as a list of
transitions, where each line corresponds to a particular transition. Therefore, if there are H
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arcs in an STG, then there are H lines in a corresponding STT. For example, some FSM A0
is represented by an STG shown in Figure 1.

S1

S3

i1/o
1
o2

i1 /o
2 o

3

-/o3o4

i1i2/o2o4

i1/
o4

i1i2/o2o3

S2

Figure 1. State transition graph of Mealy FSM Ex1.

FSM Ex1 is characterized by sets SS = {s1, s2, s3}, SI = {i1, i2}, and SO = {o1, . . . , o4}.
Therefore, there are G = 3, U = 2, and W = 4. There are H = 6 arcs in this graph. Each arc is
represented by a single line of Table 2.

Table 2. State transition table of Mealy FSM Ex1.

CS ST In Out h

s1 s2 i1 o1o2 1
s1 i1i2 o2o3 2
s3 i1 i2 o2o4 3

s2 s1 i1 o4 4
s3 i1 o2o3 5

s3 s1 1 o3o4 6

The transformation of the STG (Figure 1) into the STT (Table 2) is executed in a trivial
way. Obviously, it is possible to transform any STT into the corresponding STG.

To design an FSM circuit, each state sg ∈ SS is represented by a binary code SC(sg).
This is performed during the step of state assignment [15]. In the case of maximum binary
(MB) state assignment, state codes consist of R0 bits:

R0 = dlog2 Ge. (1)

Formula (1) determines a minimum possible number of state variables.
In a common case, the states are encoded using state variables from the set SSV =

{v1, . . . , vR}. Each bit of SC(sg) corresponds to a flip-flop. These flip-flops are combined
into a code state register (RG). Very often, the RG consists of D flip-flops [4].

The maximum number of state code bits (ROH) is used in the case of one-hot (OH)
state assignment. The value of ROH is determined as

ROH = G. (2)

The flip-flops are controlled by input memory functions (IMFs), a pulse of initialization
Start, and a pulse of synchronization Clock. The IMFs form a set SM = {D1, . . . , DR}.
The value of R depends on the state assignment method used. It could be either R0 or ROH
or some intermediate value. To load a code of the initial state s1 ∈ SS into the RG, the pulse
Start is used. The IMFs determine a code of the next state. This code is loaded into the RG
using the pulse Clock.
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A Mealy FSM logic circuit consists of a combinational part and memory [4]. The mem-
ory is represented by the RG. The combinational part is represented by the following
systems of Boolean functions (SBFs) [15]:

SM = F1(SSV, SI); (3)

SO = F2(SSV, SI). (4)

The systems (3) and (4) determine a structural diagram of Mealy FSM A1 (Figure 2).

Combinational 

part

Memory
Start

Clock

SI

SO

SSV

SM

Figure 2. Structural diagram of Mealy FSM A1.

The combinational part (Figure 2) implements SBFs (3) and (4). It is represented by a
network of particular logic elements. The FSM memory is the register RG. The RG includes
R master–slave flip-flops controlled by pulses Start and Clock.

The SBFs (3) and (4) are constructed using an FSM direct structure table (DST) [2].
To create a DST, it is convenient to transform the initial STG into the STT. An STT includes
five columns [16]. A current state is shown in a column CS; a column ST includes a state of
transition; an input signal Ih is shown in a column In; a column Out includes a collection of
outputs (CO) Oh; h is a number of interstate transitions (h ∈ {1, . . . , H}). The transformation
of an STG into an equivalent STT is executed in a trivial way [16]. A DST includes all
columns of a particular STT and three additional columns [15]. These additional columns
are [16]: codes of the current state and the state of transition and the symbols of IMFs equal
to 1 to load the next code into the RG.

The design method depends significantly on the properties of the logic elements used.
In the case of LUT-based FSMs, an FSM circuit is implemented as a network of configurable
logic blocks (CLBs). Each CLB includes LUTs, programmable flip-flops, and dedicated
multiplexers. The resulting network is created using a programmable routing matrix [3].
Our paper targets FPGAs produced by Xilinx [12]. A peculiarity of their CLBs is the
reconfigurability of the LUTs: the number of LUT inputs can be changed using dedicated
multiplexers. There is some basic LUT having ILUT = 6 inputs. Using multiplexers allows
creating LUTs having either 7 or 8 inputs. These resulting LUTs have approximately the
same performance as the basic LUTs [17].

The second peculiarity of AMD Xilinx FPGAs is the ability to share the resources of
the basic LUT to implement two functions that depend on the same arguments. Therefore,
a basic LUT is “split” by two LUTs having ILUT − 1 inputs. We denote these two LUTs as a
shared LUT (SLUT).

In the LUT-based FSMs, the RG is distributed among flip-flops of CLBs implementing
SBF (3). Therefore, the RG is hidden inside the CLBs. This gives the structural diagram of
LUT-based Mealy FSM A1 shown in Figure 3.
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SSV

SI

Start

ClockCPO CPSV

SO

Figure 3. Structural diagram of LUT-based Mealy FSM A1.

A block CPSV includes the hidden distributed register RG. The pulses Start and
Clock control the operation of the RG. The LUTs of CPSV generate IMFs (3) entering the
informational inputs of D flip-flops. As a result, the state variables vr ∈ SSV are generated.
The block CPO generates outputs ow ∈ O represented by (4).

Each Boolean function fn ∈ SM∪SO depends on A( fn) arguments (n ∈ {1, . . . , R + W}).
Our analysis shows that for some FSMs from the library [18], the value of A( fn) is around
20. However the number of LUT inputs (ILUT) is very small [3]. Therefore, the following
condition can take place:

A( fn) > ILUT . (5)

If the condition (5) holds, then some serious problems can arise [4,11]. First of all,
there is more than a single LUT in a circuit corresponding to a function that satisfies the
condition (5). This increases both the number of logic levels and the number of intercon-
nections inside this circuit. In turn, this increases both the propagation time and consumed
power compared to an equivalent single-level circuit. Therefore, the fulfillment of the
condition (5) has a significant negative effect on the quality of the LUT-based FSM circuit.

3. Related Works

If the condition (5) holds for some function, then the various methods of functional
decomposition (FD) [4] are used for executing the step of technology mapping for a corre-
sponding circuit. The decomposed function fn ∈ SM ∪ SO is represented by a composition
of partial functions. The logic circuit for each partial function includes only a single LUT.
These LUTs are connected to create a final circuit.

The methods of functional decomposition are discussed in many books and papers,
for example in [4,14,19–22]. The FD is a very powerful tool used in the process of technology
mapping [4]. If the condition (5) holds, then such a function is broken down into smaller
and smaller components. The decomposition is terminated when each component is
represented by an SOP having no more than ILUT arguments. The main drawback of
FD-based FSM design is the multi-level nature of the produced circuits. In multi-level
circuits, it is quite possible that the same inputs iu ∈ SI appear on several logic levels. This
results in FSM circuits with “spaghetti-type” interconnections.

If the condition (5) is violated, then there are exactly R + W LUTs in an FSM circuit.
Otherwise, an FSM circuit is represented by R+W + |ψ| functions, where ψ is a set of partial
functions obtained in the process of decomposition. The partial functions are components
of functions fn ∈ SM ∪ SO.

The negative effects of FD-based FSM circuits are well known [11]. They are connected
with “spaghetti-type” interconnections typical for such circuits. For modern nanoelectron-
ics, as mentioned in [23], “. . . wire delay has come to dominate logic delay”. Therefore,
FD-based FSM circuits are much slower than their single-level counterparts. Furthermore,
the interconnections are responsible for up to 70% of total power consumption [23]. Due to
this, the FD-based FSM circuits consume more power than their single-level counterparts.

To improve the characteristics of FSM circuits, the interconnection system should
be improved. This can be performed, for example, by reducing the number of literals in
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the sum-of-products (SOPs) representing functions fn ∈ SM ∪ SO. This reducing can be
achieved by a proper state assignment [24].

One of the best state assignment algorithms is JEDI [25]. Its main approach for
optimization is the following. If for states si, sj ∈ SS, transitions depend on the same inputs
ig ∈ SI, then these states have adjacent codes. Therefore, the codes for such states are
combined in generalized cubes having 2r vertices (r ∈ {1, . . . , R}). Due to this, JEDI reduces
the number of literals in the SOPs of (3) and (4). This positive effect can lead to reducing the
numbers of LUTs and their levels and interconnections in the corresponding FSM circuits.
Therefore, applying JEDI can reduce the LUT count, cycle time, and power consumption of
an FSM circuit.

The following conclusion can be made from the analysis of the works [4,26,27]: there
is no state assignment approach that is the best for any FSM and for any logic elements
used. Depending on the peculiarities of a particular FSM and the logic elements imple-
menting its circuit, the same state assignment method can either improve or degrade some
characteristics of the FSM circuit. For example, the maximum binary state assignment
produces an FSM circuit with higher power consumption than for circuits based on either
Gray or Johnson codes [28]. Next example, if an FSM has many unconditional transitions,
then the sequential state assignment optimizes the area better than other state assignment
methods [29].

The paper [26] showed the results of a comparison of FSM circuits based on the MB
and OH state codes. As follows from [26], the OH state assignment allows improving
the circuit characteristics for FSMs with G > 16. However, as shown in [4], the circuit
characteristics strongly depend on the number of FSM inputs. Moreover, they depend
on the number of inputs determining transitions from different states. As shown in [27],
if there is U > 10, then the maximum binary state codes give better results compared to
OH-based FSMs.

Therefore, the best state assignment method does not exist. This fact stimulates the
development of new state encoding methods. The more choice a designer has, the higher
the probability of finding a method that is most suitable for a particular FSM and available
logic elements. One of the possible state assignment methods is suggested in this article.
We discuss it in the following section.

The problems of optimizing the characteristics of FSM circuits are discussed in many
works, such as, for example, [30–35]. An analysis of these and many other works allowed
us to draw the following conclusion. As a rule, reducing the number of LUTs in the circuit
leads to performance degradation. If an attempt is made to improve performance, then
this is accompanied by LUT count growth. It is possible to reduce the value of the area–
time product [13]. However, as before, the improvement of one characteristic leads to the
deterioration of the other. Therefore, it would be desirable to propose a method that would
simultaneously improve both the LUT count and the performance (the time of cycle) of the
FPGA-based FSM circuit.

To optimize a LUT-based FSM circuit, it is necessary to eliminate the direct dependence
of outputs and IMFs on FSM inputs iu ∈ SI. This can be performed using the methods
of structural decomposition [11]. The elimination of this dependence can be achieved by
introducing some new functions fi ∈ ψ. They depend on inputs and/or state variables.
To optimize an FSM circuit, the following condition should take place:

|ψ| �W + R. (6)

Each system of new functions has unique sets of input and output variables. Each
such system determines a separate LUT-based block with its unique systems of input and
output variables. If the condition (5) holds, then the total number of LUTs implementing
functions fi ∈ ψ is significantly less than their total number in the combinational part of an
equivalent FSM A1 (Figure 3). The functions fi ∈ ψ are used as arguments of functions (2)
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and (3). The total number of LUTs in an FSM circuit is significantly less than it is for the
equivalent FSM A1, if the following condition holds:

|ψ| � U + R. (7)

A survey of methods of structural decomposition can be found in [11]. One of the
known methods of structural decomposition is a method of encoding of collections of out-
puts [11]. The collections COq (q ∈ {1, . . . , Q}) are generated during interstate transitions.
They create a set SCO = {CO1, . . . , COQ}. The q-th CO is encoded by the maximum binary
code K(COq). The bit width of the code K(COq) is determined as

RCO = dlog2 Qe. (8)

The COs are encoded using additional variables br ∈ SOV = {b1, . . . , bRCO}.
If the COs are encoded, then the system (4) is represented using two new systems:

SOV = SOV(SSV, SI); (9)

SO = SO(SOV). (10)

Using SBFs (3), (9), and (10) leads to Mealy FSM A2. Its structural diagram is shown
in Figure 4.

SSV

SI

Start

ClockCPCO SPSV

SCO

CPO

SO

Figure 4. Structural diagram of Mealy FSM A2.

In FSM A2, the block of state variables SPSV implements SBF (3). Next, these functions
enter the hidden RG. The block CPCO implements SBF (9). As a result, the codes of the
COs are created. These codes enter the block CPO, which implements SBF (10).

The following conditions determine the best case for using the model A2 [36]:

A(br) ≤ ILUT (br ∈ {b1, . . . , bRCO}); (11)

RCO ≤ ILUT . (12)

If (11) takes place, then there are exactly RCO LUTs in the circuit of the CPCO. This
circuit is single-level. If (12) holds, then there are no more than W LUTs in the circuit of the
CPO. The number of LUTs in the CPO may be less than W if some of the functions (10) are
represented by only one variable br ∈ SOV.

If the conditions (11) or (12) are violated, then the corresponding circuits have more
than a single level of LUTs. In this case, it is necessary to apply FD-based methods for
implementing these blocks (with all the ensuing negative consequences).

Summarizing this analysis, the following can be noted. All known state encoding
methods do not exclude using various methods of functional decomposition to obtain
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the final FSM circuit. As a result, they often lead to multilevel FSM circuits having many
drawbacks (an increase in the propagation time and consumed power). Mostly, these
drawbacks are connected with the spaghetti-type nature of interconnections inherent
in FD-based circuits. Furthermore, the existence of the spaghetti-type interconnections
significantly complicates the technology mapping process. The main challenge is to propose
a state assignment method that allows the regularization of interconnections. The method
proposed in our article can be considered as one of the possible answers to this challenge.

In this paper, we propose a method allowing the improvement of the circuit charac-
teristics for LUT-based Mealy FSM A2. We discuss the situation when: (1) the conditions
(11) and (12) are violated and (2) the condition (5) holds for the function (3). To optimize
the circuit of the CPO, we propose to use a modification of the known method of mixed
encoding of COs [36]. To optimize the circuits of other blocks, we propose a method of
two-part state assignment.

4. Main Idea of Proposed Method

To reduce the LUT count in combinational circuits implementing SBFs (3) and (9),
we propose to design an FSM circuit using an approach similar to the one used in [24].
However, we propose a new type of state codes, which should replace the rather wide
twofold codes used in [24]. We name these codes two-part state codes (TPCs).

To use TPCs, it is necessary to create a partition PS = {CP1, . . . , CPK} of the set SS by
classes of compatible states CPk ∈ PS. Each class CPk ∈ PS defines a set SIk ⊆ SI including
inputs iu ∈ SI determining transitions from states sg ∈ CPk. There are Uk elements in the
set SIk ⊆ SI. There are Gk states in the k-th class of PS. These states can be encoded by
partial codes PC(sg) having Rk bits:

Rk = dlog2 Gke. (13)

It is enough RS = max(R1, . . . , RK) variables to encode states inside any class CPk ∈ PS.
Therefore, the same variables are used to encode states as elements of different classes
CPk ∈ PS.

The partition should include the minimum possible number of classes, each of which
satisfies the condition

Uk + Rk ≤ ILUT . (14)

This problem can be solved using the approach from [36]. To distinguish the classes
CPk ∈ PS, they should be encoded by class codes CC(CPk). These codes have RC bits:

RC = dlog2 Ke. (15)

To encode classes, we use class variables from the set SV2 = {v1, . . . , vRC}. To encode
states sg ∈ CPk, state variables from the set SV1 = {vRC+1, . . . , vRC+RS} are used. These
variables create a set SV = SV1 ∪ SV2. Therefore, the two-part code TP(sg) includes RTP
bits, where

RTP = RC + RS. (16)

The two-part code TP(sg) is represented as a concatenation of codes CC(CPk) and
PC(sg) where sg ∈ CPk. If symbol “*” stands for the sign of concatenation, then the code
TP(sg) is represented as

TP(sg) = CC(CPk) ∗ PC(sg). (17)

To use SLUTs in the circuit of CPO, we propose to represent the set of outputs as two
non-overlapping sets. The set SOoh includes outputs represented as (4). Therefore, these
outputs are represented by unitary codes. The set SOmb consists of outputs represented
as (10). Therefore, its elements are encoded by maximum binary codes. Now, the outputs
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are encoded by unitary-maximum (UM) codes. Here, we used the idea from [36], but we
modified this approach. We propose to form the set SOoh in a way to fulfill the condition:

RCO = ILUT − 1. (18)

Now, each class CPk ∈ PS determines the four following sets: (1) a partial set of inputs
SIk ⊆ SI; (2) a partial set of outputs SOk

oh ⊆ SO; (3) a partial set of outputs SOk
mb ⊆ SO;

(4) a partial set of IMFs SMk ⊆ SM. The partial sets of outputs include FSM outputs
generated during transitions from the states sg ∈ CPk. The set SMk ⊆ SM includes the
IMFs necessary to load the two-part state codes of the state of transitions.

The partial functions are represented by the following SBFs:

SOk
oh = F3(SV1, SIk); (19)

SOk
mb = F4(SV1, SIk); (20)

SMk = F5(SV1, SIk). (21)

We propose to use the method from [37] to represent some outputs as single literal
functions. These outputs form a set SO1

mb. The remaining outputs form a set SO2
mb =

SOmb/SO1
mb. Using partial functions (19)–(21) gives the following SBFs:

SOoh = F6(SV2, SO1
oh, . . . , SOK

oh); (22)

SOV = F7(SV2, SO1, . . . , SOK); (23)

SV = F8(SV2, SM1, . . . , SMK). (24)

To generate outputs ow ∈ SO2
mb, it is necessary to construct the functions:

SO2
mb = F9(SOV). (25)

If the condition (18) holds, then these outputs can be combined in pairs. Each pair is
implemented by a SLUT.

The SBFs (19)–(25) are the base for designing the FSM A3 proposed in this article. Its
structural diagram is shown in Figure 5.
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Figure 5. Structural diagram of Mealy FSM A3.

The structural diagram of FSM A3 includes three levels of logic blocks. Each of them
is implemented using LUT-based CLBs. A block CPFk (k ∈ {1, . . . , K}) implements SBFs
(19)–(21). They represent the first logic level of the FSM circuit. This level is responsible
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for generating partial functions of outputs and IMFs. A block CPO1 generates SBFs (22)
and (23). This block can be implemented using multiplexers created from basic LUTs
and dedicated multiplexers of CLBs [17]. In this case, the multiplexer control inputs are
connected with the class variables vr ∈ SV2, whereas the data inputs are connected with
wires corresponding to partial functions. In the best case, some outputs are represented
as single literal functions ow ∈ SO1

mb. A block CM implements SBF (24). Its circuit is
implemented in the same way as it is for CPO1. This block includes a hidden register
controlled by pulses Start and Clock. The blocks CPO1 and CM represent the second logic
level. Finally, the third logic level is represented by a block CPO2. This block generates
outputs ow ∈ SO2

mb represented by SBF (25).
As shown from our analysis of the benchmarks [18], the following relation holds for

equivalent FSMs A2 and A3:
R0 ≤ RTP ≤ R0 + 1. (26)

Therefore, the replacement of model A2 FSM by A3 FSM does not lead to a significant
difference in the number of state variables.

Only basic LUTs are used for implementing the second-level circuits if the following
condition takes place:

RC + K ≤ ILUT . (27)

If either the relation RC + K = ILUT + 1 or RC + K = ILUT + 2 is true, then it is enough
to have a single CLB to implement functions (19)–(21). In this case, there is only a single
level of CLBs in the second-level circuits of FSM A3. If the relation RC + K > ILUT + 2 takes
place, then the circuits of CPO1 and the CM are multi-level.

In this paper, we propose a design method for LUT-based FSMs A3. We assumed
that the STG is an initial form of FSM representation. The proposed method includes the
following steps:

1. Constructing a state transition table using the initial STG.
2. Dividing outputs by classes SOoh and SOmb.
3. Creating and encoding of collections of outputs COq ⊆ SOmb.
4. Creating SBF (25) representing CPO2.
5. Constructing the partition PS with a minimum value of K.
6. Encoding of FSM states sg ∈ SS by two-part codes TP(sg).
7. Creating tables of blocks CPF1–CPFK.
8. Constructing SBFs (19)–(21) representing blocks CPF1–CPFK.
9. Creating tables for blocks CPO1 and CM.
10. Constructing SBFs (22)–(24) representing blocks CPO1 and CM.
11. Implementing the LUT-based circuit of P2F FSM.

The outcome of Step 2 has a significant impact on the number of LUTs (and hence, the
occupied chip area) in the blocks CPO1 and CPO2. The construction of the set SOoh must be
performed in such a way as to allow using one LUT to implement two FSM outputs. This
leads to reducing the LUT count in the circuit of CPO2. Furthermore, it is very important
to minimize the cardinality number of the set SOoh to reduce the number of LUTs in the
circuit of CPO1. Step 2 can be executed using the method from [24]. The outcome of Step 3
determines the area occupied by the circuit of CPO2. The encoding of the COs should be
performed in a way minimizing the number of literals in SBF (25). This allows minimizing
the number of interconnections (and hence, the occupied chip area) between the blocks
CPO1 and CPO2. Step 3 is executed using the method from [37]. The outcome of Step 5 has
a significant effect on the area occupied by the second-level blocks. The resulting partition
should have the minimum possible number of classes. To solve this problem, the greedy
algorithm [36] could be used. This approach minimizes the value of K, which in turn,
makes it possible to satisfy the condition (27). The last step is executed using standard
CAD tools such as Vivado [8] or Quartus [38].



Electronics 2022, 11, 3389 12 of 24

5. Example of Synthesis

We discuss a case when CLBs having LUTs with SL = 5 inputs are used for implement-
ing the FSM circuit. We start the synthesis process using an STG (Figure 6) representing
Mealy FSM Ex2.
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Figure 6. State transition graph of Mealy FSM Ex2.

Step 1. Transformation of an STG into an STT is performed in a trivial way. Starting
from STG (Figure 6), we can obtain the STT of FSM Ex2 (Table 3). Table 3 has H = 20 rows.
Each row corresponds to an arc of an STG (Figure 6).

Table 3. State transition table of FSM Ex2.

s ST In Out h

s1 s2 i1 o3o5o6o9 1
s3 i1i3 o1o6 2
s5 i1 i3 o6 3

s2 s2 i2 o1o2o3 4
s3 i2i5 o3o4o6 5
s6 i2 i5 o2o7 6

s3 s5 i3 o4o6 7
s6 i3 o3o9 8

s4 s3 i1 o1o4o6 9
s5 i1 o1 10

s5 s7 1 o6 11

s6 s6 i3i4 o1o4 12
s4 i3i4 o1o4o8 13
s1 i3 o2o3 14

s7 s8 i5i6 o2o4o6 15
s1 i5i6 – 16
s4 i5 o1o7 17

s8 s8 i2 o2o3o6 18
s4 i2i6 o2o7 19
s7 i2 i6 o3o9 20
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Using Table 3, we can derive the following sets: SS = {s1, . . . , s8}, SI = {i1, . . . , i6},
and SO = {o1, . . . , o9}. This gives G = 8, U = 6, and W = 9.

Step 2. During transitions from states of Ex2, there are generated Q = 18 collections of
outputs. They are represented in the column “Initial” of Table 4.

Table 4. Initial and transformed collections of outputs.

Initial Transformed

CO q CO q

o3o5o6o9 2 o3o5o9 1

o1o6 3 o1 2

o6 4 – 3

o1o2o3 5 o1o2o3 4

o3o4o6 6 o3o4 5

o2o7 7 o2o7 6

o4o8 8 o4o8 7

o3o9 9 o3o9 8

o1o4o6 10 o1o4 9

o1 11 o1 2

o1o4 12 o1o4 9

o1o4o8 13 o1o4o8 10

o2o3 14 o2o3 11

o2o4o6 15 o2o4 12

o1o7 16 o1o7 13

o2o3o6 17 o2o3 11

Using (8) gives RC = 5. The condition (12) takes place, as well as the relation
RC = ILUT . This means we cannot use SLUTs to implement the block CPO2. Therefore, it
makes sense to use unitary-maximum encoding of the COs.

Step 3. Using the approach from [36] gives the sets SOoh = {o6} and SOmb = {o1,
. . . , o5, o7, o8, o9}. There are Q = 13 transformed COs shown in the column “Transformed”
of Table 4.

Now, using (8) gives RC = 4. Applying the encoding method from [37], we can obtain
the codes of the COs shown in Figure 7.

b1b2

b3b4 00 01 11 10

00

01

11

10

CO3 CO8 CO1CO7

CO2 ∗ ∗CO10

CO13 CO4 ∗CO9

CO6 CO11 CO5CO12

Figure 7. Codes of the COs for FSM Ex2.
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Step 4. As follows from Figure 2, the COs are encoded using the elements of the set
SOV = {b1, . . . , b4}. Using the Karnaugh map (Figure 7) and the distribution of the outputs
among the COs shown in Table 4, it is possible to create the following SBF:

o1 = b4; o2 = b1b2b4 ∨ b2b3 b4; o3 = b2;

o4 = b2b4 ∨ b1b3 ∨ b1b2; o5 = b1b2b3; (28)

o7 = b1 b2b3; o8 = b1b2 b3 o9 = b2b3.

This SBF corresponds to SBF (10). It is a base for implementing the circuit of CPO2.
As follows from (28), the outputs are represented by the following sets: SOoh = {o6},
SO1

mb = {o1, o3}, and SO2
mb = {o2, o4, o5, o7, o8, o9}. The outputs from the first two sets are

generated by CPO1. The outputs ow ∈ SO2
mb are generated by CPO2. The circuit of CPO2 is

implemented using Boolean formulae from (28).
Step 5. Using the method proposed in [36], we can obtain the partition PS =

{CP1, CP2} where CP1 = {s1, s3, s4, s6} and CP2 = {s2, s5, s7, s8}. The class CP1 ∈ PS
determines the following partial sets: SI1 = {i1, i3, i4}, SO1

oh = {o6}, SOV1 = SOV.
The class CP2 ∈ PS determines the following partial sets: SI2 = {i2, i5, i6}, SO2

oh = {o6},
SOV2 = SOV.

Step 6. In the discussed case, there is K = 2. Using (15) gives RC = 1 and SV2 = {v1}.
Each class of PS includes four states. Using (13) gives R1 = R2 = 2. Therefore, to encode
states, it is enough RS = 2 variables creating the set SV1 = {v2, v3}. Let us use the following
approach to encode the classes: the smaller the class index (k), the smaller the decimal
value of this class code is. The same approach is used for encoding of the states. In the case
of Ex2, this approach gives the two-part state codes shown in Figure 8.

v2v3

v1 00 01 11 10

0

1

s1 s3 s6s4

s2 s5 s8s7

K(CP1)

K(CP2)

Figure 8. Two-part state codes for FSM Ex2.

Each row of the Karnaugh map (Figure 8) contains a class of PSs. The variable v1 create
class codes CC(PCk), which are the following: CC(PC1) = 0, CC(PC2) = 1. Each column
of the Karnaugh map (Figure 8) includes identical partial state codes PC(sg). These codes
are created by variables v2, v3. The following codes can be found: PC(s1) = PC(s2) = 00,
PC(s3) = PC(s5) = 01, PC(s4) = PC(s7) = 10, and PC(s6) = PC(s8) = 11. Therefore,
for example, the two-part code of s3 ∈ IS is equal to 001, whereas the two-part code of
s5 ∈ IS is equal to 101.

Step 7. Using information from the STT (Table 3), the state codes, the codes of the COs,
make it possible to create tables of blocks CPF1–CPF2. The table of CPFk reflects interstate
transitions from states sg ∈ CPk. The h-th row of this table shows a transition 〈CS, ST〉,
where a current state is encoded in the partial code PC(CS) and a state of transition is
represented by its two-part code FC(ST). The input signals are shown in the column Ink,
the outputs represented by unitary codes shown in the column Ok

oh, the variables bk
r ∈ SOV

shown in Outk, and the partial IMFs shown in the column Mk(h ∈ {1, . . . , Hk}).
In the discussed case, Table 5 represents CPF1 and Table 6 represents the CPF2. The fol-

lowing relation takes place: H1 = H2 = 10.
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Table 5. Table of block CPF1.

CS PC(CS) ST FC(ST) In1 O1
oh Out1 M1 h

s1 00 s2 100 i1 o6 b1b2 D1 1
s3 001 i1i3 o6 b4 D3 2
s5 101 i1 i3 o6 – D1D3 3

s3 01 s6 011 i3 – b1 D2D3 4
s5 101 i3 – b2 D1D3 5

s4 10 s3 001 i1 o6 b1b3b4 D3 6
s5 101 i1 – b4 D1D3 7

s6 11 s6 011 i3i4 – b1b3b4 D2D3 8
s4 010 i3i4 – b1b4 D2 9
s1 000 i3 – b2b3 – 10

Table 6. Table of block CPF2.

CS PC(CS) ST FC(ST) In2 O2
oh Out2 M2 h

s2 00 s2 100 i2 – b2b3b4 D1 1
s3 001 i2i5 o6 b1b2b3 D3 2
s6 011 i2 i5 – b3 D2D3 3

s5 01 s7 110 1 o6 – D1D2 4

s7 10 s8 111 i5i6 – b1b3 D1D2D3 5
s1 000 i5i6 – – – 6
s4 010 i5 – b3b4 D2 7

s8 11 s8 111 i2 o6 b2b3 D1D2D3 8
s4 010 i2i6 – b3 D2 9
s7 110 i2 i6 – b2 D1D2 10

Step 8. The tables of CPF1–CPF2 were used to derive the systems (19)–(21). The sum-
of-products of these functions consist of product terms created as conjunctions of state
variables v2, v3 ∈ SV1 and inputs iu ∈ SIk(k ∈ {1, 2}).

D1
1 = v2 v3i1 ∨ b2 b3 ∨ v2v3 i1 = f1(v2, v3, i1, i3);

D1
2 = f2(v2, v3, i1, i4); (29)

D1
3 = f3(v2, v3, i1, i3, i4).

b1
1 = f4(v2, v3, i1, i3, i4);

b1
2 = f5(v2, v3, i1, i3);

b1
3 = f6(v2, v3, i1, i3, i4); (30)

b1
4 = f7(v2, v3, i1, i3, i4);

o1
6 = f8(v2, v3, i1).

The following SBFs are derived from Table 6:

D2
1 = f9(v2, v3, i2, i5, i6);

D2
2 = f10(v2, v3, i2, i5, i6); (31)

D2
3 = f11(v2, v3, i2, i5, i6).
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b2
1 = f12(v2, v3, i2, i5, i6);

b2
2 = f13(v2, v3, i2, i5, i6);

b2
3 = f14(v2, v3, i2, i5, i6); (32)

b2
4 = f15(v2, v3, i2, i5);

o2
6 = f16(v2, v3, i2, i5).

Each function from (29)–(32) is represented as some fn. In brackets, there are shown
arguments used as literals in a particular SOP, for example, the partial function D1

1 = f1;
it depends on four arguments (v2, v3, i1, i3). We need these data to understand which
functions can be implemented by a SLUT.

Step 9. The tables of CPO1 and the CM are organized in the same order. They include
columns “Function” and conjunctions of class variables for the classes CP1, . . . , CPK. In the
discussed case, there are two single-literal conjunctions (v1, v1). If a particular partial
function is generated by CPFk, then there is 1 at the intersection of a row with this function
and the column corresponding to this block. Otherwise, these intersections are marked
by 0. In the discussed case, Table 7 represents the block CPO1 and Table 8 represents the
block CM.

Table 7. Table of block CPO1.

Function v1 v1

o6 1 1

b1 1 1

b2 1 1

b3 1 1

b4 1 1

Table 8. Table of block CM.

Function v1 v1

D1 1 1

D2 1 1

D3 1 1

Step 10. The table of CPO1 is a base for deriving SBFs (22) and (23). The table of the
CM is used to derive SBF (24). In the discussed case, SBF (33) represents the circuit of CPO1
and SBF (34) represents the block CM:

o6 = v1o1
6 ∨ v1o2

6;

b1 = v1b1
1 ∨ v1b2

1;

b2 = v1b1
2 ∨ v1b2

2; (33)

b3 = v2b1
3 ∨ v1b2

3;

b4 = v1b1
4 ∨ v1b2

4.

D1 = v1D1
1 ∨ v1D2

1;

D2 = v1D1
2 ∨ v1D2

2; (34)

D3 = v1D1
3 ∨ v1D2

3.

Step 11. To implement the circuit of FSM Ex2, it is necessary to map SBFs (28)–(34)
into LUTs having ILUT = 5. Each of these functions is represented by a single-LUT circuit.
However, some functions can share the same basic LUT. There are 8 partial functions
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generated by CPF1 and 8 partial functions generated by CPF2. CPO1 generates 5 functions,
whereas 3 functions are implemented by the CM. The block CPO2 generates six functions.
Therefore, the circuit of FSM Ex2 is represented by 30 functions. However, there are 25 LUTs
in this circuit (Figure 9).
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Figure 9. Logic circuit of FSM Ex2.

In this circuit, seven basic LUTs (LUT1–LUT7) implement partial functions (29) and
(30). As follows from (30), functions o1

6 and b1
2 share the same four arguments. Therefore,

they are implemented using SLUT1. Furthermore, functions o2
6 and b2

4 can be implemented
by a shared LUT. This is SLUT8. Therefore, the circuit of CPF2 contains seven LUTs
implementing SBFs (31) and (32). This means there are 14 LUTs on the first level of the logic
circuit of FSM Ex2.

The elements LUT15–LUT19 implement SBF (33). The elements LUT20–LUT22 imple-
ment SBF (34). This means that there are 5 LUTs in the circuit of CPO1 and 3 LUTs in the
circuit of the CM. In total, there are eight LUTs on the second level of the logic circuit of
FSM Ex2.

The analysis of SBF (28) shows that three pairs of functions can be implemented using
shared LUTs. These pairs are the following: 〈o2, o4〉, 〈o5, o7〉, and 〈o8, o9〉. Therefore, there
are three SLUTs on the third level of the logic circuit of FSM Ex2.

Therefore, in the discussed case, using unitary-maximum encoding of outputs allows
reducing the number of LUTs on the third logic level. Furthermore, using shared LUTs
leads to reducing the number of LUTs on the first logic level. Due to this, the number of
basic LUTs is less than the number of generated functions.

To obtain the LUT-based circuit of FSM Ex2, each LUT should be represented by a
truth table [15]. This can be performed in a trivial way, so we do not discuss this step for
our example. Next, it is necessary to use some industrial CAD tools to execute a step of
technology mapping [4].

The considered example is rather simple. It is intended to illustrate the main features
of the proposed method. The next section shows the experimental results that allowed
evaluating the effectiveness of the proposed method.

6. Experimental Results

To compare the LUT counts and maximum operating frequencies of FSM circuits
based on various known state encoding methods and circuits of FSMs produced with the
proposed method, we conducted some experiments. Their results are shown in this section.
As a base for comparison, we used such methods as: (1) Auto of Vivado [8] (as a method of
maximum binary state assignment); (2) One-hot of Vivado [8] (as an example of OH-state
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assignment); (3) JEDI of SIS [25] (it is one of the best state assignment algorithms [4]).
Furthermore, we used FSMs A2 [36] as the object for comparison.

To conduct the experiments, we used standard benchmarks from the library LGSynth93 [18].
This library includes 48 benchmarks. The format KISS2 [15] was used for representing
benchmark FSMs. These benchmarks have a wide range of such characteristics, such as
numbers of states, inputs, and outputs. This library is used by different researchers to
compare FSM circuits based on various design methods [14,23,39]. Table 9 has a list of the
benchmarks and their main characteristics. The last column of this table includes the values
of U + R0 (the summation results for the number of FSM inputs and minimum number
of state variables). We used the data from this column to choose benchmarks where our
method can be applied.

Table 9. Characteristics of benchmarks from LGSynth93 [18].

Benchmark U W H G U + R0

bbara 4 2 60 10 8

bbsse 7 7 56 16 11

bbtas 2 2 24 6 5

beecount 3 4 28 7 6

cse 7 7 91 16 11

dk14 3 5 56 7 6

dk15 3 5 32 4 5

dk16 2 3 108 27 7

dk17 2 3 32 8 5

dk27 1 2 14 7 4

dk512 1 3 15 15 5

donfile 2 1 96 24 7

ex2 2 2 72 19 7

ex3 2 2 36 10 6

ex4 6 9 21 14 10

ex5 2 2 32 9 6

ex6 5 8 34 8 8

ex7 2 2 36 10 6

keyb 7 7 170 19 12

lion 2 1 11 4 4

lion9 2 1 25 9 6

mark1 5 16 22 15 9

mc 3 5 10 4 5

modulo12 1 1 24 12 5

opus 5 6 22 10 9

s27 4 1 34 6 7

s298 3 6 1096 218 11

s386 7 7 64 13 11

s8 4 1 20 5 7

shiftreg 1 1 16 8 4

sse 7 7 56 16 11
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We conducted the experiments using the FPGA chip from the Virtex-7 family (ILUT = 6).
The chip is a part of the VC709 Evaluation Platform (xc7vx690tffg1761-2) [40]. The step of
technology mapping was executed by the industrial CAD tool Vivado v2019.1 (64-bit) [41].
The Vivado reports were used to create the tables with the results of the experiments.

In the resulting tables, we show experimental results for 15 of 48 benchmarks [18].
We can explain this choice by the following. If the condition (5) is violated, then there are
exactly R0 + W LUTs in the circuit of Mealy FSM A1. This circuit includes only a single
logic level. Therefore, if the condition (5) is violated, then the LUT-based circuit of Mealy
FSM A1 has the best characteristics of the LUT count (it has a minimum value), operating
frequency (it has a maximum value), and power consumption (it has a minimum value).
Of course, the further optimization of such a circuit makes no sense.

Our previous research [24,36] showed that the methods of SD can improve the charac-
teristics of LUT-based FSM circuits if the following condition holds:

U + R0 > 2ILUT . (35)

In the platform used, there was ILUT = 6 (for basic LUTs). Therefore, it makes sense to
check the efficiency of the proposed method using benchmarks for which the condition
U + R0 > 12 holds. The experimental results are shown in Table 10 (LUT count) and
Table 11 (maximum operating frequency, MHz).

There are the following columns in Tables 10 and 11: BFSM (benchmark FSM); A1 −
MB (results of experiments for FSMs with maximum binary state codes); A1 −OH (results
of experiments for FSMs with one-hot state codes); A1 − JEDI (results of experiments
for FSMs with JEDI-based codes); A2 (results of experiments for FSMs with encoding of
COs); A3 (results of experiments for FSMs proposed in this paper); U + R0. The results of
the summation of values from the corresponding columns are shown in the row “Total”.
The row “Percentage” includes the percentage of summarized characteristics of investigated
FSM circuits, respectively, to FSM A3.

Table 10. Results of experiments (LUT count).

BFSM A1 − MB A1 − OH A1 − JEDI A2 A3 U + R0

ex1 70 74 53 46 42 16

kirkman 42 58 39 37 33 18

planet 131 131 88 85 80 14

planet1 131 131 88 85 80 14

pma 94 94 86 82 76 14

s1 65 99 61 59 57 14

s1488 124 131 108 99 89 15

s1494 126 132 110 96 87 15

s1a 49 81 43 46 44 15

s510 48 48 32 33 28 27

s820 88 82 68 62 52 25

s832 80 79 62 60 54 25

sand 132 132 114 110 98 18

styr 93 120 81 78 74 16

tma 45 39 39 37 33 13

Total 1318 1431 1072 1015 927

Percentage, % 142.18 154.37 115.64 109.49 100.00
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As follows from Table 10, the application of the proposed approach led to FSM circuits
with fewer LUTs than in the LUT-based circuits produced by other investigated methods.
Our approach provides the following gain compared to equivalent other FSMs: (1) 42.18%
compared with A1 − MB FSMs, (2) 54.37% compared with A1 −OH FSMs, (3) 15.64%
compared with A1 − JEDI FSMs, and (4) 9.49% compared with A2-based FSMs.

Let us remind that this gain was obtained for the benchmarks [18], the technology
mapping algorithms of Vivado, and the internal resources of the Virtex-7 family. How-
ever, we think that our approach always leads to circuits with better characteristics if the
conditions (5) and (12) are violated, whereas the conditions (18) and (27) take place. We can
explain why this is the best case for replacing the model A2 by the proposed model A3:

1. If some of the functions fn ∈ SOV ∪ SM satisfy the condition (5), then these functions
should be broken down using various FD methods. This increases the number of
partial functions. In turn, this increases the numbers of LUTs and their levels in the
resulting FSM circuit. In this case, using our approach can help to avoid implementing
multi-level circuits.

2. If (12) is violated, then the block CPO1 cannot be implemented by a single-level
LUT-based circuit. This has the same consequences, as noted above. Therefore, it is
necessary to represent some outputs in the unitary form.

3. If the condition (18) holds, then it is possible to use shared LUTs in the circuit of CPO2.
Obviously, this reduces the number of LUTs in CPO2 compared with |SO2

mb|.
4. If the condition (27) holds, then each function generated by CPO1 is represented by a

single LUT. In this case, there are exactly |SOoh|+ RCO LUTs in the circuit of CPO1.

Table 11. Results of experiments (maximum operating frequency, MHz).

BFSM A1 − MB A1 − OH A1 − JEDI A2 A3 U + R0

ex1 150.94 139.76 176.87 192.12 216.42 16

kirkman 141.38 154.00 156.68 177.24 192.23 18

planet 132.71 132.71 187.14 211.42 226.83 14

planet1 132.71 132.71 187.14 211.42 226.83 14

pma 146.18 146.18 169.83 193.16 209.41 14

s1 146.41 135.85 157.16 182.46 198.24 14

s1488 138.50 131.94 157.18 187.44 208.26 15

s1494 149.39 145.75 164.34 193.57 216.32 15

s1a 153.37 176.40 169.17 198.31 220.12 15

s510 177.65 177.65 181.42 187.43 190.21 27

s820 152.00 153.16 176.58 181.21 192.36 25

s832 145.71 153.23 173.78 182.27 190.54 25

sand 115.97 115.97 126.82 142.48 166.42 18

styr 137.61 129.92 145.64 172.11 190.28 16

tma 163.88 147.80 164.14 182.29 221.08 13

Total 2184.41 2173.03 2493.89 2794.93 3065.55

Percentage, % 71.26 70.89 81.35 91.17 100

As follows from Table 11, our method makes it possible to obtain LUT-based FSM
circuits with a bit higher value of maximum operating frequency than it is for all other
investigated methods. If the condition (35) holds, then using the proposed model of Mealy
FSM gives the following gain in the maximum operating frequency: (1) 28.74% compared
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with A1 −MB FSMs, (2) 29.11% compared with A1 −OH FSMs, (3) 18.65% compared with
A1 − JEDI FSMs, and (4) 8.83% compared with A2-based FSMs.

Note that the gain decreases as the value U + R0 increases. For example, for the
benchmark tma (U + R0 = 13), moving from model A2 to model A3 gives a 21.4% increase
in frequency. However, for the benchmark s510 (U + R0 = 27), moving from model A2 to
model A3 gives only a 1.5% increase in frequency. We believe that this phenomenon is due
to the fact that, as the value of U + R0 increases, the difference in the number of logical
levels between equivalent A2- and A3-based FSMs decreases. This is connected with the
violation of the condition (27) for rather complex FSMs (such as s510).

In the experiments, we used the FPGA chip of the Virtex 7 family. All chips of
this family included LUTs having ILUT = 6 inputs [6]. An FSM designer cannot change
this value. Obviously, the number of LUT inputs has a huge impact on the efficiency of
the methods used for implementing digital circuits. Let us discuss the influence of this
parameter on the characteristics of FSM circuits synthesized using the proposed method.

The more inputs a LUT has, the more likely it is that: (1) the circuits of each block
will be single-level and (2) two output signals can be generated by a single LUT of CPO2
(this leads to a decrease in this block area). The more inputs a LUT has, the fewer elements
must be removed from the set of FSM outputs to satisfy the condition (12). This leads to
reducing the LUT number in the circuit of CPO1. In turn, a decrease in the number of
LUT inputs leads to a violation of the conditions (18) and (27). As a result, the number of
classes (K) for the partition of the set SS grows. This leads to such negative consequences as:
(1) an increase in the number of blocks of the first level of the circuit (that is, its area grows)
and (2) the growth in the number of logic levels in the circuits of CPO1 and CPO2. As a
result, the number of interconnections increases, as well as the power consumption and
the FSM cycle time. Thus, an increase in the number of inputs improves the characteristics
of the circuit and a decrease in the number of inputs leads to the degradation of these
characteristics. Unfortunately, the FSM designer cannot choose the number of LUT inputs,
since this parameter is hard-coded by the LUT architecture used in each defined family [12].

The conducted experiments showed that reducing the FSM circuit area with a simul-
taneous increase in FSM performance is the main advantage of our method in relation to
other investigated methods. This advantage begins to manifest itself, starting with the
situation when the total number of FSM inputs (U) and state variables (R0) is at least twice
the number of LUT inputs. This means that the proposed method could be used if the
condition (35) holds. Of course, the proposed method has some limitations. If the number
of partition classes of the set of states exceeds the number of LUT inputs, then the circuits of
both blocks CPO1 and CPO2 become multilevel. This leads to an increase in the number of
interconnects, which in turn negatively affects the speed and area of the circuit. The second
limitation is related to splitting the set of FSM outputs. If the number of outputs to be
removed is significant, then this leads to a sharp increase in the area occupied by the circuit
of CPO1. In this case, the reduction in the area of the block CPO2 may be insufficient, that
is the total area of the blocks CPO1 and CPO2 will be greater than the area of the block
CPO of the equivalent FSM A2. As can be seen from the research results (Tables 10 and 11),
such problems did not arise for the benchmarks used, although these benchmarks are quite
complex. If such problems arise, then the proposed method may not be appropriate.

7. Conclusions

The reduction of the chip area occupied by an FSM circuit is one of the basic problems
associated with FPGA-based design. In the case of LUT-based FSMs, the chip area is
proportional to the number of LUTs in a particular circuit (LUT count of a circuit). This
can be performed by decreasing the number of literals in the SOPs of Boolean functions
representing an FSM circuit. In this paper, we propose to solve this problem by using two
methods of structural decomposition (unitary-maximum binary representation of outputs
and two-part state codes).
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The proposed method is aimed at improving the area characteristics of LUT-based
Mealy FSMs with encoding of the collections of outputs [36]. These FSMs are characterized
by three-level logic circuits. If the number of arguments in Boolean functions representing
an FSM circuit exceeds the number of basic LUT inputs, then the number of levels can
be greatly increased. We propose to avoid such a phenomenon due to using methods of
structural decomposition.

Simultaneous use of unitary-maximum codes of the outputs and two-part state codes
allows improving the characteristics of LUT-based FSM circuits based on maximum encod-
ing of both collections of outputs and FSM states. As a result, for rather complex FSMs, two
of their basic characteristics are improved. Compared to FSMs A2, the proposed approach
improves the LUT count (on average, by 9.49%) and maximum operating frequency (on
average, by 8.73%).

Therefore, for rather complex FSMs, the proposed approach allows improving the
LUT count and maximum operating frequency. We think the proposed design method can
be successfully used in implementing FPGA-based Mealy FSM circuits.

The proposed approach can be used to optimize LUT-based FSM circuits based on any
structural decomposition method. Obviously, in each specific case, the proposed method
should be modified taking into account the features of the initial models of FSM used. This
determines the direction of our further research. In addition, we plan to use the two-part
state assignment to optimize circuits of LUT-based Moore FSMs.
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Abbreviations
The following abbreviations are used in this manuscript:

CLB configurable logic block
CO collection of outputs
DST direct structure table
FD functional decomposition
FPGA field-programmable gate array
FSM finite state machine
IMF input memory function
LUT look-up table
MB maximum binary
OH one-hot
RG state code register
SBF systems of Boolean functions
SD structural decomposition
STG state transition graph
STT state transition table
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