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Abstract: This paper offers a solution to challenge navigation in the indoor environment by making
use of the existing infrastructure. Estimating pedestrian trajectory using pedestrian dead reckoning
(PDR) and WiFi is a very popular technique. However, cumulative errors and mismatching are major
problems in PDR and WiFi fingerprint matching, respectively. PDR and pedestrian heading are used
as the state transition equation, and the step length and WiFi matching results are used as observation
equations. A federated particle filter (FPF) based on the principle of information sharing is proposed
to fusion PDR and WiFi, which improves pedestrian navigation accuracy. The experimental results
show that the average positioning accuracy is 0.94 m and 1.5 m, respectively.

Keywords: PDR; WiFi; a indoor navigation algorithm; a federated particle filter

1. Introduction

Using smartphones for navigation is becoming more popular. In the indoor environ-
ment, the received satellite signals are greatly attenuated by buildings, which makes it
very weak and unable to provide navigation services. To develop reliable indoor naviga-
tion technology, many researchers have conducted in-depth research on it [1,2]. Indoor
navigation technology is mainly divided into two categories: the first is to set anchor
points in advance in the navigation area and use anchor signals for navigation, which is
called infrastructure-based navigation technology; the other is to collect navigation sig-
nals directly for navigation, which is called infrastructure-free navigation technology. For
larger areas such as railway stations and commercial squares, the infrastructure-based
navigation scheme requires a lot of hardware costs, which directly restricts the scope of
application. Considering the low cost, infrastructure-free navigation solutions are getting
more attention.

Integrating the acceleration and angular velocity with time, the inertial navigation
system obtains the velocity and position. However, for the cheap MEMS inertial sensor,
long-time integration easily leads to wrong position estimation. One solution is to use PDR
to estimate the pedestrian position in two-dimensional space. Cumulative errors including
the step length error and the heading drift error are the main problems. Lingxiang Zheng et
al. used the Pythagorean Theorem to estimate pedestrian step length [3]. Li et al. used both
the walking frequency and the variance of accelerometer signals to estimate the pedestrian
step length [4]. Chen et al. used a hybrid step length model to improve the accuracy [5].
Kang, Wonho et al. used magnetometers and gyroscopes to estimate the direction of
pedestrians [6]. Although these methods alleviate the accumulated error to a certain extent,
the position error becomes larger as the navigation time increases.

Using WiFi for navigation utilizes existing access points (APs), which reduces the
financial burden on developers and consumers. WiFi navigation technologies are mainly
divided into the wireless attenuation model and the fingerprint matching model [7–9]. The
wireless attenuation model makes use of the attenuation characteristics of the wireless
signal in the indoor environment, which estimates the position of pedestrians according
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to the received signal strength (RSS). The wireless attenuation model needs to estimate
the model parameters in advance. However, the indoor environment is complex and
changeable, so the fixed model parameters are easy to increase the pedestrian position
error. The fingerprint matching model estimates the location of pedestrians according to
the similarity of fingerprints in different stages. It is divided into the offline phase and the
online phase. The fingerprint signal is collected in the offline phase to construct the WiFi
reference fingerprint database. The WiFi signal is collected and measured in the online
phase. The collected fingerprint signal is used to search similar fingerprints in the reference
database. The fingerprint matching model does not need to set parameters in advance and
has high robustness.

Many works in the literature have studied the application of particle filters in the field
of indoor navigation. Combined with map information, Yu et al. proposed an auxiliary
particle filter, which sets the particle weight to zero when the particle crosses the wall [10].
Chen et al. proposed a chicken particle filter, which alleviates the particle impoverishment
problem and improves particle diversity [11]. Inspired by the above works in the literature,
this paper proposes FPF to fuse PDR and WiFi. PDR and pedestrian heading are used as
the state transition equations. Pedestrian step length and WiFi matching results are used as
the observation equations. Based on the information sharing mechanism, FPF improves
the indoor navigation accuracy.

The rest of the work is organized as follows: the second part presents the related
work; the third part introduces the indoor navigation algorithm; the fourth part shows the
experimental results; the fifth part is a summary.

2. Related Work

Many works of literature have conducted in-depth studies on cumulative error. Con-
sidering the short static time of foot landing during pedestrian walking, Eric Foxlin used
the foot landing time as the observation measurement of the extended Kalman filter to
reduce the cumulative error of PDR [12]. John Elwell et al. used a zero attitude update
(ZARU) to reduce attitude error [13]. A.R. Jimé nez et al. integrated zero velocity updates
(ZUPT), ZARU, and heading drift reduction (HDR) into the extended Kalman filter to
further reduce the error [14]. Although these methods slow down the rate of accumulated
error, the error becomes larger as the walking time increases. In view of the fact that most
of the current building structures are rectangular, Johann Borenstein et al. used the binary
controller to automatically adjust the pedestrian direction deviation [15]. This method is
suitable for rectangular structure buildings, which limits the scope of application.

Many works of literature have conducted in-depth research on WiFi fingerprint match-
ing. Paramvir Bahl et al. proposed a RADAR WiFi fingerprint matching system, which
achieved 3–5 m positioning accuracy [16]. The radar system is only suitable for indoor
open environments, and its positioning accuracy cannot meet the needs of indoor complex
environment navigation. Chen et al. proposed an indoor localization system using the
weighted least squares [17]. The system directly uses the WiFi fingerprint matching results
to participate in the weighted least squares, ignoring the influence of abnormal matching
results. Li et al. proposed a profile-based wireless fingerprinting method, which miti-
gates positioning ambiguity [18]. However, profile fingerprints contain more noise, which
may increase fingerprint mismatches. Cao et al. proposed a universal WiFi fingerprint
localization method based on machine learning and sample differences [19]. Its algorithm
consumes a lot of computing resources. Li et al. proposed an improved WiFi/PDR inte-
grated positioning and navigation system using an adaptive and robust filter to improve
the accuracy of indoor positioning for location-based services [20]. Li et al. proposed a
constrained Kalman filtering positioning method that combines the WiFi fingerprint with
PDR [21]. Wang et al. proposed an adaptive indoor positioning method using multisource
information fusion combing WiFi/Magnetic Matching/PDR [22]. The Kalman filter and its
various variants are only suitable for linear navigation systems and Gaussian noise.
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3. Algorithm Description

Figure 1 shows the structure of the indoor navigation algorithm. The smartphone
collects acceleration and angular velocity. When zero velocity point is detected, ZUPT is
triggered. An Extended Kalman filter (EKF) is used to estimate noise error. The step length
and heading are estimated from the acceleration and angular velocity. PDR is used to
estimate the pedestrian position. The collected WiFi signal is matched with the fingerprint
from the reference database. The weighted K nearest neighbor (WKNN) is used to estimate
the pedestrian position. Finally, FPF is proposed to improve the indoor navigation accuracy.

Heading

Step length

PDR

Pedestrian trajectory

FPF

The gait-based DR

A  fusion algorithm

WiFi

The online 

phase

The offline 

phase

WiFi 

fingerprint 

database

MD-DTW

WKNN

WiFi matching

Angular velocityAcceleration

ZUPT

EKF

Figure 1. The structure of the indoor navigation algorithm.

3.1. The Gait-Based PDR
3.1.1. EKF

In the PDR module, EKF is a very important technology, which mainly uses the
characteristic of ZUPT to reduce cumulative error. When zero velocity is detected, ZUPT is
triggered. The EKF works to eliminate noise. The EKF system equation reads

δXk = Fk−1δXk−1 + ωk−1 (1)

δZk = HkδXk + νk (2)

where δXk =
[
rz, vz, Sroll , Spitch, Syaw, εvz , εroll , εpitch, εyaw

]T

k
is a 9-element state vector at the

k-th epoch; rz and vz represent the vertical displacement and vertical velocity, respectively.
Sroll , Spitch, and Syaw represent the attitude angles; εvz represents the bias of the vertical
velocity; εroll , εpitch, and εyaw represent the biases of the attitude angle; Fk−1 represents the
state transition matrix; Hk represents the observation matrix; ωk−1 and νk represent the
state transition noise and the observation noise, respectively.

3.1.2. Step Length

When walking, the vertical displacement of the user has an approximate periodicity.
Step length is estimated by using the periodic characteristics. The vertical displacement is
obtained by double integral vertical acceleration.
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SVD =
∫ t2

t1

∫ t2

t1
az(t)dtdt (3)

where t1 and t2 represent the beginning and ending times, respectively; and SVD represents
the vertical displacement. According to the inverted pendulum model, the pedestrian step
length is calculated as follows

DSL = 2
√

L2 − (L− SVD)2 (4)

where DSL represents the step length; L represents the distance between the smartphone
and the ground.

3.1.3. Heading

Quaternion vectors are updated by gyroscope readings. The direction cosine matrix
is then updated by the quaternion vector. The attitude angle based on the directional
cosine matrix is obtained. When the gyroscope acquires the triaxial angular velocity, the
triaxial angular increment is calculated. The quaternion vector (qk+1 = [q1, q2, q3, q4]) at

the (k + 1) − th epoch is qk+1 =

[
I cos ∆θk

2 + ∆Θ sin
∆θk

2
∆θk

]
qk, where I represents a 3 iden-

tity matrix; ∆θk represents the angle increment; ∆Θ represents skew symmetric matrix
of angular increments. The direction cosine matrix calculated based on the quaternion

vector is Cn
b =

 q2
1 − q2

2 − q2
3 + q2

4 2q1q2 − 2q3q4 2q1q3 + 2q2q4
2q1q2 + 2q3q4 −q2

1 + q2
2 − q2

3 + q2
4 2q2q3 − 2q1q4

2q1q3 − 2q2q4 2q2q3 + 2q1q4 −q2
1 − q2

2 + q2
3 + q2

4

. The atti-

tude angle [ϑ, φ, ϕ] based on the direction cosine matrix is ϑ = tan−1 −Cn
b (3,1)√

(Cn
b (3,2))2+(Cn

b (3,3))2 ,

φ = tan−1 Cn
b (3,2)

Cn
b (3,3) , ϕ = tan−1 Cn

b (2,1)
Cn

b (1,1) , where ϑ, φ and ϕ are called pitch, roll and yaw,
respectively.

3.1.4. PDR

With direction, step length, and position at the previous epoch, PDR estimates the
user’s position. [

xk+1
yk+1

]
=

[
xk
yk

]
+ DSL

[
cos ϕ
sin ϕ

]
(5)

where
[

xk
yk

]
denotes the pedestrian position at the k epoch; DSL and ϕ denote the pedes-

trian step length and heading.

3.2. WiFi Fingerprint Matching

The fingerprint database <location, RSS> is constructed during the offline phase. To
reduce the time and labor costs, the walk-survey approach combining the landmarks and a
constant-speed assumption is used [23]. During the offline phase, firstly, the spatial location
of the navigation area is measured, and then the fingerprint is collected. The spatial position
and the corresponding fingerprint are stored in the database. The following is the WiFi
fingerprint of the j− th reference point.

FWi =
{

posi, (maci,1, RSSi,1), (maci,2, RSSi,2),
(
maci,j, RSSi,j

)
, · · · , (maci,m, RSSi,m)

}
(6)

where posi represnets the i− th reference points’s cooordinate; maci,j and RSSi,j represent
the media access control address and RSS of the j− th AP at the i − th reference point,
respectively; and m represents the number of available APs at the i− th reference point.

During the online phase, the WiFi fingerprint is matched with the fingerprints in the
reference database. The position corresponding to the most similar fingerprint is usually
taken as the location of pedestrians. There are a variety of matching methods [18]. WiFi
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fingerprint matching algorithm uses multi-dimensional dynamic time warping algorithm,
as shown in the Algorithm 1.

Algorithm 1 Multi-dimensional dynamic time warping for WiFi fingerprint matching

Input: The WiFi signal R with length n during the online phase and the WiFi fingerprint
signal Rdb with length m during the offline phase.
1. for i = 1 to n do
2. for j = 1 to m do
3. d(i, j) = ∑K

k=1(R(k, i)−Rdb(k, j)2.
4. End
5. End
6.D(1, 1) = d(1, 1).
7. for k = 2 to n do
8. D(k, 1) = d(k, 1) + D(k− 1, 1).
9. for i = 2 to m do
10. D(1, i) = d(1, i) + D(1, i− 1).
11. D(k, i) = d(k, i) + min([D(k− 1, i), D(k− 1, i− 1), D(k, i− 1)]).
12. End
13. End
14.Output: The WiFi fingerprint distance D.

Based on the weighted average of the k selected reference locations with the minimum
Euclidean distance, the WKNN approach is used. The WiFi matching results is calculated as[

x̂
ŷ

]
=

k

∑
i=1

ci
C

[
xi
yi

]
(7)

where ci = 1/Di, C = ∑k
i=1 ci;

[
xi
yi

]
represents the position of the i− th selected reference

point;
[

x̂
ŷ

]
represents the estimated position.

3.3. FPF

The Federated Kalman filter is an effective filtering technique in linear systems affected
by Gaussian noise. In nonlinear systems affected by Gaussian noise, an EKF or an unscented
Kalman filter is used to obtain global state estimates. However, errors are introduced in
the linearization process, which leads to filter divergence in the worst case. Therefore, it is
necessary to apply FPF to nonlinear non-Gaussian systems.

In FPF, the reference system is directly output to the main filter on the one hand, and
output to each sub-filter as a measurement value on the other hand. The output of each
subsystem is only given to the corresponding sub-filter. Each sub-filter obtains a local
estimate X̂i and its covariance matrix Pi through particle filtering according to the state
equation and measurement equation, and then sends it to the main filter and the estimated
value of the main filter for fusion to obtain the global optimal estimate. In addition, after
each filtering stage is completed, the global filter feeds back the results Xg, Pg to each
sub-filter and the main filter according to the principle of information conservation. It
can be seen from the algorithm principle and process of PF that the PF filtering process
obtains the posterior distribution of the state quantity, thereby obtaining the mean and
variance information of the state quantity. The algorithm implementation process of FPF is
as follows

Step 1 Initialize particles and their corresponding weights.

Step 2 Information distribution process. FPF distributes the combined system initial value
information to each local filter.
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X̂i = X̂g (8)

Pi = β−1
i Pg (9)

Pm = β−1
m Pg (10)

Qi = β−1
i Qg (11)

Qm = β−1
m Qg (12)

where βi and βm represent the sub-filter information distribution coefficient and the
main filter distribution coefficient, respectively, and satisfies ∑N

i=1 βi + βm = 1; Pi
and Pm represent the estimated sub-filter covariance and the estimated main filter
covariance, respectively, and satisfies ∑N

i=1 P−1
i + P−1

m = P−1
g ; Qi and Qm repesent the

sub-filter system noise covariance and the main system noise covariance, respectively,
and satisfies ∑N

i=1 Q−1
i + Q−1

m = Q−1
g .

Step 3 Each sub-filter filters based on its own equation of state. When k ≥ 1,

1. Extract N samples
{

xi
k, i = 1, 2, ..., N

}
from the importance density function

q(xi
k|x

i
k−1) = N(xi

k; x̂i
k, Pi

k).
2. Calculate the weight of each particle ωi = ωi

k−1 p(zk|xi
k)

3. Normalized particle weights ω̃i
k =

ωi
k

∑N
i=1 ωi

k

4. Resample particles to get a new set of samples {xi
k ∼ N(xi

k; x̂i
k, Pi

k), i = 1, 2, . . . , N}
5. Make a status update. The state and variance information is calculated according

to the particles and their corresponding weights x̂k = ∑N
i=1 ω̂i

kxi
k and Pk =

∑N
i=1 ω̂i

k(x̂k − xi
k)(x̂k − xi

k)
T .

Step 4 Perform global information fusion. After obtaining the local estimation of each
sub-filter and the estimation of the main filter, the global state filter value and vari-
ance estimation value are obtained x̂g(k) = Pg(k)∑N

i=1(P
−1
i (k)x̂i(k)) and Pg(k) =(

∑N
i=1 P−1

i (k)
)−1

.

Step 5 After obtaining the global state and variance estimation information, the local filters
are allocated and reset according to the information allocation principle based on the
formula in Step 2.

Step 6 Let k = k + 1, go back to Step 3 and repeat the above steps.

3.4. PDR/WiFi-Based FPF Integrated Navigation System Model

Based on the Monte Carlo method, particle filter (PF) uses a particle set to represent
probability, which is used in any form of the state-space model. The core idea is to express
its distribution by extracting random state particles from a posteriori probability. The state
equation is expressed as follows [24]

Xk = f (Xk−1, Wk−1) (13)

where Xk represents the state at the k-th epoch; Wk−1 is the process noise of the system.
When the system noise conforms to zero mean and Q variance, the Gaussian distribution is
expressed as

Wk−1 ∼ N(0, Q) (14)

It is assumed that the noise with heading change obeys the Gaussian distribution of
zero mean. Combined with PDR, the state equation is written as [25]
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Xk =

 Hk
xk
yk

 =

 Hk−1
xk−1
yk−1

+

 ∆H
SLk cos(Hk)
SLk sin(Hk)

+

 WH,k−1
Wx,k−1
Wy,k−1

 (15)

where Hk represents the pedestrian heading at the k-th epoch, respectively; [xk, yk]
T rep-

resents the pedestrian position at the k-th epoch; 4H represents the change of heading;[
WH,k−1, Wx,k−1, Wy,k−1

]T
represents the Gaussian noise of heading and pedestrian posi-

tion, respectively.
It is a common technique to use fingerprints for indoor navigation [26,27]. The

sequential fingerprint matching algorithm is introduced in reference [18]. Combined
with the WiFi positioning results and step length, the observation equations are written
as follows

Z1,k = DSL + vSL (16)

Z2,k =

[
xwi f i
ywi f i

]
+

[
vx
vy

]
(17)

where vSL represents the step length noise with zero mean and R1 variance; [xwi f i, ywi f i]
T

represents the WiFi matching results; [υx, υy]T represents the corresponding observation
noise with zero mean and R2 variance.

After the production of new particles, the posterior distribution of system state is
written as [24]

p(X0:k | Z1:k) ∝ p(X0:k−1 | Z1:k−1)p(Zk | Xk)p(Xk | Xk−1) (18)

It is difficult to solve the analytical solution of the posterior distribution. Instead
of solving the analytical solution, the approximate solution has been well developed. A
large number of particles are used to approximate a posteriori distribution. To deal with
the problem of a posteriori distribution in sampling, a resampling technique is proposed.
Importance distribution is defined as

q(X0:k | Z1:k) = q(X0:k−1 | Z1:k−1)q(Xk | X0:k−1, Z1:k) (19)

The recursive importance weight of each generation of particles is calculated as [24]

ωi
k ∝ ωi

k−1

p
(
Zk | Xi

k
)

p
(

Xi
k | Xi

k−1

)
q
(

Xi
k | Xi

0:k−1, Z1:k

) (20)

The effective particle weights are updated as

ωi
k =

p
(
Xi

0:k | Z1:k
)

q
(
Xi

0:k | Z1:k
)

=
1

(2π)m/2|R| 12
e−[Z

∗−h(X̂k)]
T

R−1[Z∗−h(X̂k)]
(21)

where m represents the dimension of the observation equation; Z∗ = Z1 or Z2 and h(X̂k)
represent observations and estimated observations, respectively; R represents the Gaussian
noise of the observation equation.

Normalize the particle weights as follows

ω̃i
k =

ωi
k

∑N
i=1 ωi

k

(22)
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After obtaining each subfilter estimate, the value of the global state filter is

X̂g(k) = Pg(k)
N

∑
i=1

(P−1
i (k)X̂i(k)) (23)

Pg(k) =

(
N

∑
i=1

P−1
i (k)

)−1

(24)

4. Experimental Results
4.1. Experimental Preparation

As shown in Figure 2, two typical indoor navigation scenarios are selected to be tested.
According to the recommendations of the international standard ISO/IEC 18305 [28], the
real reference points on the ground need sufficient density and these points are random. We
set the distance between the two adjacent reference points to 3 to 10 m. The real reference
points on the ground are measured by a laser rangefinder. A smartphone Honor 50 is used
to construct a WiFi fingerprint database in the offline phase. A smartphones Nexus 5X is
used to collect acceleration, angular velocity, and WiFi in the online phase. Smartphone
modes include calling, dangling, handheld, and pocketed. In the offline phase, the surveyor
collects WiFi signals to build a reference fingerprint database. In the online phase, the
measured WiFi is used to match with the reference fingerprint. The corresponding position
of the most similar fingerprint is taken as the fingerprint matching result. Table 1 shows
the process noise covariance Q, the step length measurement noise covariance R1, and the
position measurement noise covariance R2.

Figure 2. Experimental scenarios.

Table 1. Parameters setting.

Parameters Q R1 R2

Values
 0.1 0 0

0 0.1 0
0 0 0.1

 1
[

1 0
0 1

]

4.2. WiFi Distribution

Figure 3 shows the WiFi distribution in the test scenario. The red line on the xy plane
represents the true trajectory of the pedestrian. The value of the z-axis represents the
number of APs. As can be seen from the figure, the number of WiFi APs is abundant
enough to be used for fingerprint matching.
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Figure 3. WiFi distribution. (a) An Laboratory. (b) An Office Building.

4.3. Walking Experiment in an Laboratory

An adult male holding a smartphone walks in a predefined indoor area at a normal
walking speed. Figures 4–8 show the navigation trajectories, position errors and cumulative
distribution functions (CDFs) for PDR, WiFi, and FPF. Table 2 shows the Average Error (AE),
Root Mean Square Error (RMSE), Maximum Error (ME), and Circular Error Probability
(CEP), respectively. Compared to PDR and WiFi, FPF reduces errors by as follows: (a) for
AE: 87.74% and 19.57%, respectively; (b) for RMSE: 87.36% and 23.81%, respectively; (c)
for ME: 86.98% and 36.53%; (d) CEP of 75%: 86.08% and 18.97%; and (e) for CEP of 95%:
87.05% and 35.96%. The longer the walking time, the greater the deviation of PDR is. There
is mismatching in WiFi fingerprint matching, which is mainly due to the multi-channel
effect and reflection effect. Based on the information sharing mechanism, FPF effectively
integrates PDR and WiFi, reducing position errors.
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Figure 4. Navigation trajectories for PDR. (a) Calling mode. (b) Dangling mode. (c) Handheld mode.
(d) pocketed mode.
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Figure 5. Navigation trajectories for WiFi. (a) Calling mode. (b) Dangling mode. (c) Handheld mode.
(d) Pocketed mode.
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Figure 6. Navigation trajectories for FPF. (a) Calling mode. (b) Dangling mode. (c) Handheld mode.
(d) pocketed mode.
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Figure 7. Position errors with different modes. (a) Position errors with calling mode. (b) Position errors
with dangling mode. (c) Position errors with handheld mode. (d) Position errors with pocketed mode.
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Figure 8. CDFs of errors with different modes. (a) CDFs of errors with calling mode. (b) CDFs
of errors with dangling mode. (c) CDFs of errors with handheld mode. (d) CDFs of errors with
pocketed mode.
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Table 2. Position errors for PDR, WiFi and FPF (m).

Motion
Modes Algorithms AE RMSE ME CEP of 75% CEP of 95%

Calling mode PDR 3.7 4.17 7.05 4.88 7.02
WiFi 0.85 0.99 1.87 1.19 1.82
FPF 0.63 0.71 1.14 0.93 1.12

Dangling
mode PDR 7.76 8.58 17.25 9.09 17.22

WiFi 1.14 1.35 2.47 1.74 2.42
FPF 0.97 1.1 1.63 1.38 1.62

Handheld
mode PDR 14.78 16.81 26.19 20.44 26.12

WiFi 1.36 1.46 2.26 1.79 2.22
FPF 0.89 1.06 2.06 1.44 2.02

Pocketed
mode PDR 4.26 4.61 7.42 5.18 7.42

WiFi 1.3 1.87 5.28 2.08 5.22
FPF 1.25 1.45 2.71 1.76 2.72

General PDR 7.63 8.54 14.48 9.9 14.45
WiFi 1.16 1.42 2.97 1.7 2.92
FPF 0.94 1.08 1.89 1.38 1.87

Walking Experiment in an Office Building

PF used WiFi results as the observation equation. Hu proposed an adaptive particle
filter (APF) to estimate indoor pedestrian locations [29]. APF used the difference between
PDR and WiFi results as the observation equation. Figures 9–14 show the navigation
trajectories, position errors and CDFs for PDR, PF, APF, and FPF. Table 3 shows AE, RMSE,
ME, and CEP, respectively. Compared to PDR, PF and APF, FPF reduces errors by as
follows: (a) for AE: 93.99%, 20.21%, and 56.71%, reespctively; (b) for RMSE: 93.7%, 18.91%,
and 58.62%, respectively; (c) for ME: 93.92%, 13.09%, and 66.08%, respectively; (d) for
CEP of 75%: 93.59%, 22.01%, and 51.79%, respectively; and (e) for CEP of 95%: 93.05%,
17.67%, and 60.59%, respectively. After introducing the step length observation equation,
FPF effectively improves the pedestrian location estimation.

Table 3. Position errors for PDR, PF, APF, and FPF (m).

Motion
Modes Algorithms AE RMSE ME CEP of 75% CEP of 95%

Calling mode PDR 16.26 18.89 43.36 22.31 32.07
PF 1.49 1.82 3.8 2.13 3.37

APF 2.18 2.54 4.86 3.13 4.83
FPF 1.18 1.45 2.84 1.86 2.77

Dangling
mode PDR 22.67 26.48 55.95 32.13 42.67

PF 2.57 3.13 6.2 3.73 5.87
APF 2.64 3.23 7.04 4.03 6.27
FPF 2.01 2.53 5.73 2.93 4.67

Handheld
mode PDR 42.62 50.82 110.29 57.93 91.27

PF 1.66 1.92 3.73 2.23 3.47
APF 5.9 8.55 26.32 7.23 18.67
FPF 1.12 1.32 2.96 1.53 2.47

Pocketed
mode PDR 18.3 22.3 55.77 24.13 41.87

PF 1.8 2.33 4.83 3.13 4.83
APF 3.14 3.71 9.34 3.76 6.87
FPF 1.69 2.16 4.6 2.43 4.53

General PDR 24.96 29.62 66.34 34.13 51.97
PF 1.88 2.3 4.64 2.81 4.39

APF 3.47 4.51 11.89 4.54 9.16
FPF 1.5 1.87 4.03 2.19 3.61
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Figure 9. Navigation trajectories for PDR. (a) Calling mode. (b) Dangling mode. (c) Handheld mode.
(d) pocketed mode.
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Figure 10. Navigation trajectories for PF. (a) Calling mode. (b) Dangling mode. (c) Handheld mode.
(d) pocketed mode.
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Figure 11. Navigation trajectories for APF. (a) Calling mode. (b) Dangling mode. (c) Handheld mode.
(d) Pocketed mode.
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Figure 12. Navigation trajectories for FPF. (a) Calling mode. (b) Dangling mode. (c) Handheld mode.
(d) pocketed mode.
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Figure 13. Position errors with different modes. (a) Position errors with calling mode. (b) Position errors
with dangling mode. (c) Position errors with handheld mode. (d) Position errors with pocketed mode.
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Figure 14. CDFs of errors with different modes. (a) CDFs of errors with calling mode. (b) CDFs of errors
with dangling mode. (c) CDFs of errors with handheld mode. (d) CDFs of errors with pocketed mode.
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5. Conclusions

Aiming at the cumulative error of PDR and the mismatching of WiFi fingerprints,
this paper takes the step length and WiFi matching results as observation equations, and
proposes FPF. The experimental results show that the average positioning accuracy of
FPF is 0.94 m and 1.5 m. One of the advantages of this algorithm is that it does not need
to deploy additional infrastructure and provides a low-cost and high-precision indoor
navigation and positioning scheme.

However, when the positioning area is large, the construction and maintenance of the
WiFi fingerprint database take time and effort. How to reduce the burden of building and
maintaining a fingerprint database is a topic worthy of further research. PF has a large
amount of calculation, which has certain requirements for the hardware of the smartphone.
How to reduce the computational complexity of PF is another topic worth studying. The
algorithm proposed in this paper needs to be tested in more experimental scenarios.
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Abbreviations
The following abbreviations are used in this manuscript:

APs Access points
INS Inertial navigation system
RSS Received signal strength
PDR Pedestrian dead reckoning
ZARU Zero attitude update
ZUPT Zero update
HDR Heading drift reduction
EKF Extended Kalman filter
DE Differential evolution
DPF Differential particle filter
PF Particle filter
RMSEs Root mean square errors
APF Auxiliary particle filter
CDF Cumulative distribution function

References
1. Xu, Y.; Cao, J.; Shmaliy, Y. S.; Zhuang, Y. Distributed Kalman filter for UWB/INS integrated pedestrian localization under colored

measurement noise. Satell. Navig. 2021, 2, 22. [CrossRef]
2. El-Sheimy, N.; Li, Y. Indoor navigation: State of the art and future trends. Satell. Navig. 2021, 2, 7. [CrossRef]
3. Zheng, L.; Wu, Z.; Zhou, W.; Weng, S.; Zheng, H. A smartphone based hand-held indoor positioning system. In Frontier Computing;

Hung, J.C., Yen, N.Y., Li, K.-C., Eds.; Springer: Singapore, 2016; pp. 639–650.
4. Li, Y.; Zhuang, Y.; Lan, H.; Zhang, P.; Niu, X.; El-Sheimy, N. Self-contained indoor pedestrian navigation using smartphone

sensors and magnetic features. IEEE Sens. J. 2016, 16, 7173–7182. [CrossRef]
5. Chen, J.; Ou, G.; Peng, A.; Zheng, L.; Shi, J. An INS/floor-plan indoor localization system using the firefly particle filter. ISPRS Int.

J. Geo-Inf. 2018, 7, 324. [CrossRef]
6. Kang, W.; Han, Y. SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization. IEEE Sens. J. 2014, 15,

2906–2916. [CrossRef]

http://doi.org/10.1186/s43020-021-00053-z
http://dx.doi.org/10.1186/s43020-021-00041-3
http://dx.doi.org/10.1109/JSEN.2016.2591824
http://dx.doi.org/10.3390/ijgi7080324
http://dx.doi.org/10.1109/JSEN.2014.2382568


Electronics 2022, 11, 3387 17 of 17

7. Bargshady, N.; Garza, G.; Pahlavan, K. Precise Tracking of Things via Hybrid 3-D Fingerprint Database and Kernel Method
Particle Filter. IEEE Sens. J. 2016, 16, 8963–8971. [CrossRef]

8. Wang, G.; Chen, H.; Li, Y.; Jin, M. On received-signal-strength based localization with unknown transmit power and path loss
exponent. IEEE Wirel. Commun. Lett. 2012, 16, 536–539. [CrossRef]

9. Huang, Q.; Zhang, Y.; Ge, Z.; Lu, C. Refining Wi-Fi based indoor localization with Li-Fi assisted model calibration in smart
buildings. In Proceedings of the 2016 International Conference on Computing in Civil and Building Engineering, Osaka, Japan,
6–8 July 2016; pp. 1–8.

10. Yu, C.; Lan, H.; Liu, Z.; El-Sheimy, N.; Yu, F. Indoor Map Aiding/map Matching Smartphone Navigation Using Auxiliary Particle
Filter. In Proceedings of the 2016 China Satellite Navigation Conference (CSNC); Springer: Singapore, 2016.

11. Chen, J.; Song, S.; Gong, Y.; Zhang, S. An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the
chicken particle filter. In Proceedings of the China Satellite Navigation Conference (CSNC), Changsha, China, 18–20 May 2016.

12. Foxlin, E. Pedestrian Tracking with Shoe-mounted Inertial Sensors. IEEE Comput. Graph. 2005, 25, 38–46. [CrossRef]
13. Elwell, J. Inertial Navigation for the Urban Warrior. In Proceedings of the Digitization of the Battlespace IV, Orlando, FL, USA, 9

July 1999.
14. Jiménez, A.R.; Seco, F.; Prieto, J.C.; Guevara, J. Indoor Pedestrian Navigation Using an INS/EKF Framework for Yaw Drift

Reduction and a Foot-mounted IMU. In Proceedings of the 2010 7th Workshop on Positioning, Navigation and Communication,
Dresden, Germany, 11–12 March 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 135–143.

15. Borenstein, J.; Ojeda, L. Heuristic Drift Elimination for Personnel Tracking Systems. J. Navig. 2010, 63, 591. [CrossRef]
16. Bahl, P.; Padmanabhan, V.N. RADAR: An in-building RF-based user location and tracking system. In Proceedings of the IEEE

INFOCOM 2000 Conference on Computer Communications, Tel Aviv, Israel, 26–30 March 2000; IEEE: Piscataway, NJ, USA, 2000.
17. Chen, J.; Ou, G.; Peng, A.; Zheng, L.; Shi, J.; An INS/WiFi indoor localization system based on the Weighted Least Squares. IEEE

Sens. 2005, 18, 1458. [CrossRef]
18. Li, Y.; Zhuang, Y.; Lan, H.; Niu, X.; El-Sheimy, N. A profile-matching method for wireless positioning. IEEE Commun. Lett. 2016,

20, 2514–2517. [CrossRef]
19. Cao, X.; Zhuang, Y.; Yang, X.; Sun, X.; Wang, X. A universal Wi-Fi fingerprint localization method based on machine learning and

sample differences. Satell. Navig. 2021, 2, 27. [CrossRef]
20. Li, Z.; Liu, C.; Gao, J.; Li, X. An improved WiFi/PDR integrated system using an adaptive and robust filter for indoor localization.

ISPRS Int. J. Geo-Inf. 2016, 5, 224. [CrossRef]
21. Sun, M.; Wang, Y.; Xu, S.; Cao, H.; Si, M. Indoor Positioning Integrating PDR/Geomagnetic Positioning Based on the Genetic-

Particle Filter. Appl. Sci. 2020, 10, 668. [CrossRef]
22. Wang, Z.; Yang, Z.; Wang, Z. An Adaptive Indoor Positioning Method Using Multisource Information Fusion Combing Wi-

Fi/MM/PDR. IEEE Sens. J. 2022, 22, 6010–6018. [CrossRef]
23. Li, Y.; Zhuang, Y.; Lan, H.; Zhang, P.; Niu, X.; El-Sheimy, N. WiFi-aided magnetic matching for indoor navigation with consumer

portable devices. Micromachines 2015, 6, 747–764. [CrossRef]
24. Yin, S.; Zhu, X. Intelligent Particle Filter and Its Application to Fault Detection of Nonlinear System. IEEE Trans. Ind. Electron.

2015, 62, 3852–3861. [CrossRef]
25. Xie, H.; Gu, T.; Tao, X.; Ye, H.; Lu, J. A Reliability-augmented Particle Filter for Magnetic Fingerprinting Based Indoor Localization

on Smartphone. IEEE Trans. Mob. Comput. 2015, 14, 1877–1892. [CrossRef]
26. Fang, S.H.; Lin, T.N. A Dynamic System Approach for Radio Location Fingerprinting in Wireless Local Area Networks. IEEE

Trans. Commun. 2010, 58, 1020–1025. [CrossRef]
27. Khalajmehrabadi, A.; Gatsis, N.; Akopian, D. Modern WLAN Fingerprinting Indoor Positioning Methods and Deployment

Challenges. IEEE Comput. Surv. Tutor. 2017, 19, 1974–2002. [CrossRef]
28. ISO/IEC 18305. Information Technology—Real Time Locating Systems—Test and Evaluation of Localization and Tracking

Systems. 2016. Available online: https://www.iso.org/standard/62090.html (accessed on 19 October 2022).
29. Hu, Y.; Peng, A.; Tang, B.; Xu, H. An Indoor Navigation Algorithm Using Multi-Dimensional Euclidean Distance and an Adaptive

Particle Filter. Sensors 2021, 21, 8228. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/JSEN.2016.2616758
http://dx.doi.org/10.1109/WCL.2012.072012.120428
http://dx.doi.org/10.1109/MCG.2005.140
http://dx.doi.org/10.1017/S0373463310000184
http://dx.doi.org/10.3390/s18051458
http://dx.doi.org/10.1109/LCOMM.2016.2608351
http://dx.doi.org/10.1186/s43020-021-00058-8
http://dx.doi.org/10.3390/ijgi5120224
http://dx.doi.org/10.3390/app10020668
http://dx.doi.org/10.1109/JSEN.2022.3147309
http://dx.doi.org/10.3390/mi6060747
http://dx.doi.org/10.1109/TIE.2015.2399396
http://dx.doi.org/10.1109/TMC.2015.2480064
http://dx.doi.org/10.1109/TCOMM.2010.04.090080
http://dx.doi.org/10.1109/COMST.2017.2671454
https://www.iso.org/standard/62090.html
http://dx.doi.org/10.3390/s21248228
http://www.ncbi.nlm.nih.gov/pubmed/34960322

	Introduction
	Related Work
	Algorithm Description
	The Gait-Based PDR
	EKF
	Step Length
	Heading
	PDR

	WiFi Fingerprint Matching
	FPF
	PDR/WiFi-Based FPF Integrated Navigation System Model

	Experimental Results
	Experimental Preparation
	WiFi Distribution
	Walking Experiment in an Laboratory

	Conclusions
	References

