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Abstract: In this paper, an autonomous UCAV air combat maneuvering decision method based
on LSHADE-TSO optimization in a model predictive control framework is proposed, along with
enemy trajectory prediction. First, a sliding window recursive prediction method for multi-step
enemy trajectory prediction using a Bi-LSTM network is proposed. Second, Model Predictive
Control (MPC) theory is introduced, and when combined with enemy trajectory prediction, a UCAV
maneuver decision model based on the MPC framework is proposed. The LSHADE-TSO algorithm
is proposed by combining the LSHADE and TSO algorithms, which overcomes the problem of
traditional sequential quadratic programming falling into local optimum when solving complex
nonlinear models. The LSHADE-TSO-MPC air combat maneuver decision method is then proposed,
which combines the LSHADE-TSO algorithm with the MPC framework and employs the LSHADE-
TSO algorithm as the optimal control sequence solver. To validate the effectiveness of the maneuvering
decision method proposed in this paper, it is tested against the test maneuver and the LSHADE-TSO
decision algorithm, respectively, and the experimental results show that the maneuvering decision
method proposed in this paper can beat the opponent and win the air combat using the same weapons
and flight platform. Finally, to demonstrate that LSHADE-TSO can better exploit the decision-making
ability of the MPC model, LSHADE-TSO is compared to various optimization algorithms based on
the MPC model, and the results show that LSHADE-TSO-MPC can not only help obtain air combat
victory faster but also demonstrates better decision-making ability.

Keywords: maneuvering decision; trajectory prediction; unmanned combat aerial vehicle; model
predictive control framework

1. Introduction

Countries all over the world are accelerating the development of unmanned combat
aerial vehicles (UCAVs) as artificial intelligence technology advances [1]. AlphaDog-
fight, a DARPA-sponsored proximity autonomous intelligent air warfare project in the
United States, exemplifies the most recent application of artificial intelligence in the field of
autonomous air combat [2]. However, the current level of intelligence is insufficient
to meet the actual needs, so UCAV autonomous air warfare has been studied as an
important issue [3,4].

According to the OODA ring [5], decision making is the central component of UCAV
autonomous air combat, serving as the “brain” of the UCAV [6]. Current close air combat
maneuver decision methods are classified into three types [7]: game theory-based ma-
neuver decision methods, artificial intelligence-based maneuver decision methods, and
optimization theory-based methods.

The game theory-based maneuver decision method mainly employs game theory for
air combat maneuver decisions, and it consists mainly of the differential countermeasure
method and the influence diagram method. The differential countermeasure method is
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used to solve bilateral extreme value problems by converting offensive and defensive
countermeasures. In Ref. [8], Lee et al. used a game-theoretic-based minmax algorithm to
select the optimal maneuver command by constructing a score matrix, and the simulation
results showed that it could make fast decisions; discrete maneuvers are used in the library
text, which may result in the maneuvers obtained from the decision not being the globally
optimal maneuver strategy. The influence diagram method uses expert knowledge from
air combat games and is a decision model with a directed acyclic graph representation.
Virtanen et al. [9] describe a multi-stage influence diagram game that simulates maneuver-
ing decisions in one-to-one air combat and determines and achieves a Nash equilibrium
of the dynamic game at each decision segment, but the influence diagram approach is
complex and difficult to satisfy in real time.

Artificial intelligence-based maneuvering decision methods mainly include rule-
based expert system methods and deep neural network-based reinforcement learning
methods, etc. The rule-based expert system approach is an expert system library built ac-
cording to IF-THEN rules, and the corresponding maneuvers are performed when the rules
are met. Fu Li et al. [10] combined expert systems with rolling time-domain optimization,
and used a rolling time-domain optimal control model when the expert system failed,
which can make decisions quickly and effectively, but it is difficult to improve the rule base
establishment of the expert system. Unlike expert systems, deep neural network-based
reinforcement learning methods do not require air combat samples and enable autonomous
air combat maneuvering decisions through self-learning and self-updating. Yang et al. [11]
established a maneuver decision model based on Deep Q Network (DQN) and achieved
autonomous maneuver decisions against enemy close range after phased training, but the
reinforcement learning method has long training time and the effect is difficult to guarantee.
Jiseon et al. [12] use reinforcement learning on multi-UAV target tracking. Their improved
algorithm has the potential to be applied to the multi-UAV air combat problem.

Optimization theory-based methods primarily convert maneuver decision problems
into single-objective or multi-objective optimization problems and solve them using heuris-
tic optimization algorithms. Ruan et al. [13] used the Transfer Learning Pigeon-Inspired
Optimization (TLPIO) algorithm to search for optimal hybrid strategies and verify the
search accuracy of the algorithm using a test function, but the paper does not compare
the algorithm with other heuristics on the maneuver decision problem. It does not show
the advantage of the algorithm for the maneuvering decision problem. Yang et al. [14]
designed an autonomous evasive maneuver decision method for over-the-horizon air
combat, considering both longer off-target distance, less energy consumption, and longer
maneuver duration, and transformed the evasive maneuver problem into a multi-objective
optimization problem. A hierarchical multi-objective evolutionary algorithm (HMOEA) has
been designed to find the approximate Pareto optimal solution of the problem. Simulation
results showed that it can meet the needs of the different evasive tactics of UCAV. However,
this method can only be used for escape, not for attack. Li et al. [15] proposed a multi-
UCAV over-the-horizon cooperative occupancy maneuver decision method, which uses
weapon strike zones and air combat geometry to establish dominance functions for posture
evaluation. The multi-UCAV maneuver decision problem was transformed into a mixed
integer nonlinear programming (MINLP) problem and was solved using an improved
discrete particle swarm optimization (DPSO) algorithm. There is also no comparison of the
effectiveness of different algorithms on the maneuvering decision problem in the paper.

By categorizing the existing researchs, Table 1 was obtained. According to the findings
of the preceding research, it is difficult to find an analytical solution to achieve Nash
equilibrium in the real air combat environment using the maneuvering decision method
based on game theory, and the high computational complexity makes meeting the real-time
requirements difficult. The air combat rules are tough to complete using the artificial
intelligence-based maneuvering method, and the effect of using reinforcement learning
requires a significant amount of training time. The maneuvering decision method based
on optimization theory typically establishes the situation function and solves the control
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variables by the method of situation finding, which easily falls into the local optimum.
Additionally, the decision dimension is low when solved using a heuristic algorithm,
making it difficult to realize its advantages.

Table 1. Overview of close air combat maneuver decision methods.

Maneuver Decision Methods Specific Methods Literature

Game theory-based maneuver
decision methods

Differential countermeasure method [8,16,17]
The influence diagram method [9,18,19]

Artificial intelligence-based maneuver
decision methods

Rule-based expert system methods [9,20,21]
Deep neural network-based reinforcement learning methods [11,22,23]

Optimization theory-based methods Single-objective optimization [13,15,24]
Multi-objective optimization [14,25,26]

Additionally, none of the studies mentioned above used the enemy aircraft’s predicted
trajectory to guide their maneuvering decisions or took into account how they would
situate themselves over a longer period of time. When establishing the objective function,
the next moment’s posture advantage of our aircraft is considered, and the UCAV can
only maintain the posture advantage from time to time, which is easily deceived by the
enemy tactics.

There are various control methods currently available for UAVs, which have been
developed to meet the needs of trajectory tracking [27] and geographic boundary avoid-
ance [28]. However, for the air combat environment, open-loop system control methods
such as model predictive control are still used as the classical control methods [29].

Therefore, this paper adopts a model predictive control framework that combines
trajectory prediction of enemy aircraft with the average of the relative situations of our
aircraft and enemy aircraft at multiple future moments as the objective function. Multiple
steps are taken in one decision, and the first step is used as the input for the next moment,
thus completing the maneuver decision and realizing the utilization of enemy aircraft
trajectory prediction data and the consideration of the long-term situation. Compared
with the existing work, this paper is able to break through the problem that optimization
algorithms for maneuvering decision problems tend to fall into local optimality and uses
the MPC framework to incorporate trajectory prediction into maneuvering decisions. It
aims to obtain air combat victory faster. Most importantly, the paper compares the different
algorithms used for maneuvering decisions. The innovation and main work of this paper
are shown below:

(1) For long-time domain time series data prediction, Bi-LSTM network rolling recursive
prediction theory is introduced, which solves the short time domain for the trajectory
prediction issue.

(2) A model predictive control theory is presented, which combines a target prediction
trajectory with several steps in a single decision, using the control variable from the
first control sequence as the control variable for the next instant. Future dynamics are
incorporated into the objective function using this method.

(3) The LSHADE-TSO algorithm replaces the traditional model predictive control solver,
sequential quadratic programming, which solves the problem of complex nonlinear
models easily falling into local optimum.

(4) Based on a modification of the LSAHDE algorithm, the LSHADE-TSO algorithm is
proposed, and the search accuracy is validated using the CEC2014 test functions.

(5) The superiority of the maneuvering decision method proposed in this paper is demon-
strated by an experimental analysis of air combat countermeasures, and the decision
duration is examined to demonstrate that it can meet real-time demand.

The rest of the paper is organized as follows. Multi-step trajectory prediction based on
a Bi-LSTM network is described in Section 2. Section 3 describes the UCAV maneuvering
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decision model in the MPC framework; it combines the trajectory prediction and MPC
framework for maneuvering decisions. The close air combat situation function is also
presented in Section 3. In Section 4, the LSHADE-TSO algorithm is proposed and tested
by CEC2014 test functions. Section 5 demonstrates simulation results for the comparison
of different maneuvering decision methods and algorithms. Section 6 summarizes the
simulation results and the work in this paper.

2. Multi-Step Trajectory Prediction Based on a Bi-LSTM Network
2.1. Sliding-Window Recursive Prediction

From the literature [30], it is known that the 3D coordinate independent prediction con-
verges faster and has higher accuracy than the overall prediction, so this paper adopts the
single sequence multi-step prediction method to predict the future trajectory of the enemy.

The time series prediction problem is the prediction of unknown future states, but
in one part of the study, the sliding window is constructed using the actual values on the
prediction of the test set [31], which is equivalent to leaking the test set data that must
be predicted in advance, and there is actually a time paradox, so this paper adopts the
method of constructing the sliding window using the predicted values, as shown in the
figure below:

In Figure 1, the whole single variable time series is divided into training set and test
set, and in the training set, the last position of the time window is used as the response
for rolling training. In the test set, the entire test set is set as unknown, and the end of the
training set is used as the input to predict the first datapoint, YPr(1), of the test set, and
then YPr(1) and the end of the training set are reorganized into XPr(2) to predict the next
point, YPr(2). This rolling cycle continues to achieve multi-step prediction of the target
trajectory and output YPr.

Figure 1. Schematic diagram of sliding window recursive prediction.

2.2. Bi-LSTM Network

The gate structure in LSTM includes input gate, output gate, and forgetting gate. They
are calculated as follows.

forgetting gate : Ft = σ(W f g[ht−1, Xt] + b f ) (1)

input gate : it = σ(Wig[ht−1, Xt] + bi) · tanh(Wcg[ht−1, Xt] + bc) (2)

output gate : Ot = σ(Wog[ht−1, Xt] + bo) (3)

ht = Ot·tanh(Ct) (4)
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where, W f , Wi, Wc, and Wo are the coefficient matrix; b f , bi, bc, and bo are the bias matrix;
σ represents a sigmoid activation function; Ft represents the forget gate; it represents the
input gate; Ot represents the output gate; ht−1 represents the output of the previous unit;
and ht represents the output of the current unit. The forgetting gate determines which
historical information needs to be retained, the input gate determines which information is
relevant to add from the current step, and the output gate determines the next hidden state,
which is the one that contains past information and is also used for prediction.

The Bi-LSTM structure is shown in Figure 2. The Bi-LSTM is composed of the same
composition as the LSTM network, but it is trained twice on the input data from left to
right and from right to left [32].

Figure 2. Schematic diagram of Bi-LSTM network structure.

The output at this moment t is:

→
h t = LSTM(xt,

→
h t−1)

←
h t = LSTM(xt,

←
h t−1)

yt = g(W→
h y

→
h t + W→

h y

→
h t + by)

(5)

where
→
h t is the forward output,

←
h t is the reverse output, and yt is the output of the fully

connected layer.

3. UCAV Maneuvering Decision Model in MPC Framework
3.1. MPC Framework

In the presence of disturbances and constraints, model predictive control is a process
control method that uses a system model to predict the future state of the system and
generates a control vector [33]. The control vector minimizes or maximizes an objective
function within the prediction horizon; the first element of the computed control vector
is used as the system input and the rest is discarded at each point in time. This process is
repeated the following moment. The main flow is depicted in Figure 3.
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Figure 3. Schematic diagram of the MPC framework process.

where f (X(t), u(t)) is the system model, denoting the object being controlled, for a
nonlinear system, as shown below.

X(t + 1) = f (X(t), u(t))
X(t) ∈ Ø; u(t) ∈ Γ

(6)

where X(t) is the state variable at time t, u(t) is the control variable at time t, Ø and Γ are
the state variable and control variable range constraints, respectively, and f is the state
transfer function of the system.

In Figure 3, G represents the optimal control sequence solver, J is the optimization
objective function, and the objective function is generally set as follows:

J(ξ(t), U(t)) =
N−1

∑
k = 0

S(X(k|t), u(k|t)) + P(X(N|t)) (7)

where U(t) = [u(0|t), u(1|t), . . . , u(N − 1|t)] T is the input sequence of control variables u
in the future time domain of length N from time t, ξ(t) = [X(1|t), X(2|t), . . . , X(N|t)] T is
the sequence of state quantities under the action of U(t) in the time domain length from
time t, S in the objective function is the ability to track the desired output, and P is the
terminal constraint of the state variables.

Thus, the essence of the nonlinear model predictive control problem is to solve the
following optimization problem with constraints in each time duration.

minormaxJ(ξ(t), U(t))
s.t.X(t + 1) = f (X(t), u(t))

X(t) ∈ χ
u(t) ∈ Γ
X(0) = X0

(8)

where X0 is the initial state constraint.
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Thus, the problem is solved with a feasible solution that can be expressed as
U∗(t) = [u∗(0|t), u∗(1|t), . . . , u∗(N − 1|t)] T , and as time rolls forward, the first con-
trol variable, u∗(0|t) , in the solution sequence is used as input to obtain the state at the
next moment.

Model predictive control is usually handled by converting a nonlinear system into a
linear time-varying system, i.e., biasing the nonlinear system near the equilibrium point and
thus linearizing it, but because the equilibrium point is related to the state quantities and is
therefore a linear time-varying system, its linearized equation of state is shown below.

.
X =

∂ f
∂X

X +
∂ f
∂u

u (9)

After that, the optimized objective function is constructed quadratically and solved by
traditional sequential quadratic programming (SQP) [34]. At the same time, linearizing the
nonlinear model into a linear time-varying model can reduce part of the computational
complexity, but it also causes a certain degree of distortion of the model. In this paper,
instead of linearizing the nonlinear model, the intelligent optimization algorithm is used
to solve the model, taking advantage of its powerful global search capability and fast
convergence ability.

3.2. Decision Model of UCAV Based on MPC Framework
3.2.1. Pseudo Six-Degree-of-Freedom Nonlinear Model

.
x = v cos γ cos ψ
.
y = v cos γ sin ψ
.
h = v sin γ
.
v = δTmax(v,h) cos α−D(v,h,α)

m − g sin γ
.
γ = (L(v,h,α) + δTmax(v,h) sin α) cos µ

mv − g
v cos γ

.
ψ = (L(v,h,α) + δTmax(v,h) sin α) sin µ

mv cos γ.
m = −c

L = 1
2 ρv2SCL, D = 1

2 ρv2SCD

(10)

where g is the acceleration of gravity; (T, D, L) denotes the engine thrust, air resistance, and
lift, respectively; ρ = 1.225e−

h
9300 is the air density; S is the UCAV reference cross-sectional

area; CL and CD denote the lift and drag coefficients, respectively; τ is the fuel consumption
coefficient; and Tmax is the maximum engine thrust.

Control elements: u = [α, µ, δ]T. α, µ, δ indicates the angle of approach, track roll
angle, and throttle setting, respectively.

State elements: X = [x, y, h, v, γ, ψ, m]T . (x, y, h) denotes the coordinates of the UCAV
in the inertial coordinate system; v denotes the UCAV velocity; and γ, ψ, and m denote the
track inclination, track declination, and UCAV mass of the UCAV, respectively.

The subscripts u and t represent UCAV and enemy, respectively. Figure 4 shows the
three-dimensional model.

Figure 4. Schematic diagram of UCAV pseudo-six degrees of freedom model.



Electronics 2022, 11, 3383 8 of 25

In this paper, relevant parameters and aerodynamic data of the F-4 “Ghost” fighter are
used [35] to ensure the authenticity and high reliability of the decisions.

3.2.2. Optimization Objective Function

In this paper, the air combat situation function is used as the objective function. The
air combat situation function is obtained by weighting the angular situation factor, the
distance situation factor, and the energy situation factor. These three situation factors are
established as shown below.

(a) Angular situation factor

Because the third-generation infrared close-in air missile has omnidirectional attack
capability and off-axis launch capability, the UCAV does not need to point its nose at the
enemy aircraft, but only needs the enemy aircraft to be within the missile’s maximum
off-axis angle to lock on and fire the missile. At the same time, traditional close-range air
combat experience suggests that staying behind the 3–9 line of enemy aircraft can provide
a situational advantage. As a result, the angular situation factor is calculated as follows,
taking into account the maximum off-axis launch angle, φMmax, of our aircraft’s close-in
infrared missile, the enemy aircraft entry angle (AA), and the radar antenna crossover
angle (ATA).

ηA =

{
1•(1− π−AA

π ) ATA ≤ φMmax
(1− ATA

π )•(1− π−AA
π ) ATA > φMmax

(11)

(b) distance situation factor

When the UCAV is outside the maximum off-axis launch angle, φMmax, of the enemy’s
missile, the distance posture decision factor value is 1 when the enemy aircraft is within
the range of the UCAV missile. The value decreases when the distance is greater than the
maximum missile launch distance, DMmax, and decreases when the distance is less than
the minimum missile launch distance, DMmin; the value decreases further when the aircraft
is closer to the pursuer. The relationship between the distance posture decision factor and
the distance is reversed when the UCAV is within the maximum off-axis launch angle of
the enemy’s missile.

ηR =



e
D−Dmin

Dmin , AA ≤ π − φRmax&D < DMmin
1, AA ≤ π − φRmax&DMmin ≤ D ≤ DMmax

e
Dmax−D

Dmax , AA ≤ π − φRmax&D > DMmax

e
Dmin

D−Dmin , AA > π − φRmax&D < DMmin
1, AA > π − φRmax&DMmin ≤ D ≤ DMmax

e
DMmax

Dmax−D , ATA > π − φRmax&D > DMmax

(12)

where the missile attack distance solution is determined by the literature [16].{
DMmax = f (vu, vt, ht, AA, ATA, γt)
DMmin = f (vu, vt, ht, AA, ATA, γt)

(13)

(c) energy situation factor

The energy posture factor is used to control the UCAV to maintain relative en-
ergy advantage, thus making it easier to complete large overload maneuvers and gain a
situation advantage.

The energy possessed by the UCAV is defined as follows [36]:

E = H +
V2

2g
(14)
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The energy situation factor established is shown below.

ηE = e
EU−Et

EU + Et
−1 (15)

The air combat situation function is obtained by combining the angular situation
factor, the distance situation factor, and the energy situation factor by a weighting method
as follows:

S = [0.6 0.3 0.1] ∗ [ηA ηR ηE]
T (16)

The situation function is established considering the situation of both sides at a certain
moment, but in the MPC framework, the future situation of the UCAV and the enemy at
multiple moments needs to be considered together. The future state of our aircraft can be
predicted iteratively using a nonlinear model, while the future state of the enemy aircraft is
predicted using the method proposed in Section 2. Therefore, the optimization objective
function is established as follows:

maxJ(ξ(t), U(t)) (17)

J(ξ(t), U(t)) =
N−1

∑
k = 0

S(X(k|t), u(k|t))/N (18)

That is, the objective function is the average of the posture values at the subsequent
N time points, thus incorporating the long-term posture into the objective function while
taking into account the posture at the next moment.

In addition, from the objective function established above, it can be seen that the
independent variable of one decision is U∗(t) = [u∗(0|t), u∗(1|t), . . . , u∗(N − 1|t)] T , and
therefore the independent variable dimension is N × L, where N is the length of the time
domain of the model prediction control settings and L is the control variable dimension.
By expanding the independent variable dimension through the MPC framework, the
advantages of the heuristic algorithm’s high independent variable dimensional objective
optimization can be more effectively exploited.

4. LSHADE-TSO
4.1. Brief Review of LSHADE and TSO

(1) LSHADE

In addition, since 2005, many variants of DE have managed to obtain a position among
the top three algorithms in the CEC competitions in successive years, except for 2013, when
DE obtained the 4th rank. LSHADE was the champion in the 2014 Evolutionary Computing
Conference competition [37]. The basic steps of LSHADE are given below.

Step 1: An initial population, P0, is created as follows:{
xi
∣∣Lj ≤ xi,j ≤ Uj, i = 1, 2, . . . , NP; j = 1, 2, . . . , D

}
(19)

where xi is the ith individual, j represents the jth dimension, and NP is the initial popula-
tion number.

xi,j = Lj + rand(0, 1)(Uj − Lj) (20)

Step 2: The algorithm parameters crossover rate, CR, and scaling factor, F, are set.

CR =

{
0

randni(MCR, 0.1)
if MCR,ri = ⊥

othervise
(21)

In case a value for CRi outside of [0, 1] is generated, it is replaced by the limit value
(0 or 1) closest to the generated value. When Fi > 1, Fi is truncated to 1, and when
Fi ≤ 0, Equation (2) is repeatedly applied to try to generate a valid value. These manners
are according to the procedure for [38].



Electronics 2022, 11, 3383 10 of 25

Step 3: According to current-to-pbest/1 mutation strategy, a mutant vector, vi,g, is
created as follows:

vi,g = xi,g + Fi(x
p
best,g − xi,g) + Fi(xr1,g − x̃r2,g) (22)

where xi,g represents the ith target vector of the gth generation, Fi is the scaling factor of the
ith target vector, xp

best,g is a random p target vector with the best fitness value, and r1 and r2
are random indexes selected from the current population and a combination of the current
population and an external archive, respectively.

Step 4: The trial vector, ui,g, is obtained through replacing some components of the
target vector, xi,g, with the corresponding mutant vector, vi,g.

ui,j,g =

{
vi,j,g if rand < CR or randi(1, D) = j

xi,j,g else
(23)

The randi (1, D) generate a random integer between 0 and D. CR ∈ (0, 1) is the
crossover factor that decides the proportion of replaced components in xi,g.

Step 5: Selection operation: according to the greedy strategy, the individual of next
generation is selected by comparing the trail vector, ui,g, and the target vector, xi,g, in DE.
The selection method is as follows:

xi,g + 1 =

{
ui,g if f (ui) < f (xi)

xi,g else
(24)

Step 6: According to linear population size reducing (LPSR) [37], the population size
is updated by evaluation number.

NPG + 1 = round
[(

NPmin − NPinit

max_nfes

)
· nfes + NPinit

]
(25)

(2) TSO

The LSHADE algorithm uses a single mutation strategy, which leads to the algorithm
falling into local optimum. In this regard, the two foraging search strategies in tuna
swarm optimization (TSO) [39] are introduced into the mutation operation of LSHADE.
The two mutation strategies account for a certain percentage of the population to improve
population diversity and avoid local optimum.

Tuna Swarm Optimization is one of the latest proposed swarm-based global optimiza-
tion algorithms. Its main inspiration comes from two cooperative foraging behaviors of
tuna swarm in the ocean: spiral foraging and parabolic foraging. Its global exploration
ability is better than the exploitation ability.

(1) Spiral foraging
The heuristic algorithm usually performs a global search of the range in the initial

stage of the search to determine the main area of the optimal position, and then performs
an exact local search afterwards. Therefore, as the number of iterations increases, the
target of spiral foraging of TSO gradually changes from random individuals to optimal
individuals, and its probability increases with the amount of iterations. In summary, the
final mathematical model of the spiral foraging strategy is shown below:

vi,g =

 α1 · (xbest,g + β ·
∣∣∣xbest,g − xi,g

∣∣∣) + α2 · xi−1,g, i = 2, 3, . . . , NP

α1 · (xrand,g + β ·
∣∣∣xrand,g − xi,g

∣∣∣) + α2 · xi−1,g, i = 2, 3, . . . , NP

i f rand < t
tmax

i f rand ≥ t
tmax

(26)

(2) Parabolic foraging
To prevent prey from escaping, in addition to forming a spiral line to feed, the swarm

of tuna also forms a parabolic line to feed. While forming a parabolic formation with the
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prey as the reference point, the group of tuna also conducts a search for prey around itself,
both of which are carried out with a 50% probability at the same time. The mathematical
model is shown below:

vi,g =

{
xbest,g + rand · (xbest,g − xi,g) + TF · p2 · (xbest,g − xi,g), if rand < 0.5

TF · p2 · xi,g, if rand ≥ 0.5
(27)

p = (1− t
tmax

)
(t/tmax)

(28)

where TF is a random value of −1 or 1.
Tuna swarms forage cooperatively with the two foraging methods mentioned above,

and each individual randomly chooses one strategy to execute.

4.2. Description of LSHADE-TSO

On the basis of LSHADE, this paper proposes a novel algorithm, called LSHADE-TSO.
It competes the variant strategies in LSHADE with TSO predation strategies through an
adaptive competition mechanism, thus expanding the search range. Meanwhile, strategies
such as cross-factor ranking and top 60% r1 selection are applied to LSHADE to enhance
its convergence ability.

(1) Adaptive competition mechanism

For the variants of LSHADE, the search process is prone to fall into the local optimum
trap due to the single variant strategy. In this regard, this paper proposes an adaptive
competition mechanism, by competing with spiral foraging and parabolic foraging in TSO
through current-to-pbest in LSHADE; population diversity is expanded, thus avoiding
getting trapped in a local optimum. After generating the variance vector, the test vector is
generated by the crossover operation in Equation (22). Each individual x in P will generate
offspring individual u using either LSHADE or TSO. The choice of these two strategies
is achieved through the probability variable P. P is randomly selected from the memory
sequence MP. Thus, more individuals will be gradually assigned to the better performing
algorithms. The memory sequence, MP, is updated in the following way:

MM f ,g + 1 = c•MM f ,g + 1 + (1− c)•∆Alg1 (29)

where c is the learning rate and ∆Alg1 is the improvement rate for each algorithm.

∆Alg1 =
ωAlg1

ωAlg1 + ωAlg2
(30)

ωAlg1 is the summation of differences between old and new fitness values for each
individual belonging to Algorithm 1.

ωAlg1 =
n

∑
i = 1

f (x)− f (u) (31)

where f is the fitness function, x is the old individual, u is the offspring individual, and n is
the number of individuals belonging to Algorithm 1.

(2) Crossover rate sorting mechanism

In order to establish the relationship between CR and the individual fitness values, the
CR sorting mechanism [40] is introduced. Firstly, the CR values are generated by Gaussian
distribution and are then sorted in ascending order. This is shown as follows:

CR′ = sort(CR,′ ascend′) (32)

index = sort( f (x),′ ascend′) (33)
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CR(index) = CR′ (34)

By sorting the CR values, the individuals with better fitness are given a smaller CR,
so their next generation can retain more parts of the parent individuals. Meanwhile, the
poor individuals will be given a larger CR, and a larger proportion of components will be
replaced by the mutated individuals. This helps to improve the exploration efficiency.

(3) Top α r1 selection

In LSHADE-RSP [41], a ranking-based approach was proposed for the selection of r1
and r2. In the JADE algorithm, the selection of the r1 individual is random. To improve
the convergence efficiency of the algorithm, the top α r1 selection strategy is used. The
selection of the r1 is shown as follows:

r1 = floor(1 + α · NP · rand) (35)

where α · NP is the number of candidates for the selection of r1, and rand is a random value
selected in [0, 1]. The individuals with better fitness values will have a greater probability
of being selected. In this way, it is easier to form a difference vector that evolves towards
the current optimal individual and accelerates convergence.

Algorithm 1: LSHADE-TSO algorithm pseudo-code.
Initialise population
µCR = 0.5, µF = 0.8, A = ∅, p = 0.11, Ar = 2.6, NPmin = 50, α = 0.6, H = 6
for g = 1 to gmax do

for i = 1:NP
CRi = randni(MCR, 0.1),Fi = randci(MF, 0.1)

end
CR = sort(CR)

for i = 1:NP
if rand<P

Generate r1, r2, xp
best

vi,g = xi,g + Fi(x
p
best,g − xi,g) + Fi(xr1,g − x̃r2,g)

else
if rand<0.5

generate vi,g According to Equation (26)
else

generate vi,g According to Equation (27)
end

end
if rand < CR or randi(1, D) = j

ui,j,g + 1 = vi,j,g
else

ui,j,g + 1 = xi,j,g
end

CRi
′ =

D
∑

j = 1
bi,j/D, CR = CR′

if f (ui) ≤ f (xi)
xi,G + 1 = ui,G, xi,G → A, CRi → SCR, Fi → SF

else
xi,G + 1 = xi,G

end
end

Update MCR,MF MP, and NP
Update archive size by removing worst solutions
Update population size by removing worst solutions

end
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4.3. Algorithm Performance Verification

In this subsection, we verify the performance of LSHADE-TSO using the CEC2014
single-objective optimization test set presented at the 2014 IEEE Conference on Evolutionary
Computation (2014 IEEE CEC). This paper compares LSHADE-TSO with SPS-LSHADE-
EIG [42], LSAHDE, CPI-JADE [43], TSO, and MPA. LSHADE was the winner of the CEC
2014 competition. SPS-LSHADE-EIG was the second winner of the CEC 2015 competition.
CPI-JADE was proposed in 2016. TSO and MPA were recently proposed in 2021.

The CEC2014 test set contains 30 test functions, which can be divided into four types
according to their different characteristics: F1–F3 for single-peaked functions, F4–F16 for
multi-peaked functions, F17–F22 for mixed functions, and F23–F30 for combined functions;
the definitions and optimal values of these functions can be found in the literature. The
maximum number of evaluations (Maximum Function Evaluations, FEsmax) was set to
D × 10,000, where D denotes the dimension of the problem. This section uses the CEC2014
30D function for testing, so FEsmax is equal to 300,000. The environment for simulation
experiments was an AMD R7 4800 U (1.80 GHz) processor and 16 GB RAM, and the
program was run on the MATLAB 2016b platform. Each algorithm was solved 51 times for
each test function, and the mean and standard deviation were recorded.

In this paper, some of the four types of test functions are selected to demonstrate the
convergence performance of the LSHADE-TSO algorithm. In Figure 5, f(x*) is the minimum
value of the test function. It is clear shown in Figure 5 that the LSHADE-TSO algorithm
converges faster and with greater accuracy in these test functions.

Figure 5. Convergence curves of the four algorithms. * represents the minimum value of the test
function.

Table 2 shows the ranking table of the algorithms obtained from Friedman’s test. There
is no doubt that LSHADE-TSO is ranked first.

Table 2. Friedman test results.

Algorithm LSHADE-TSO SPS-LSHADE-EIG LSHADE CPI-JADE TSO MPA

Rank 1.93 2.35 2.75 3.92 4.32 5.73
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The algorithm ranking radar chart of the six algorithms is shown in Figure 6, and it
can be seen that the LSHADE-TSO algorithm is ranked in the top two in most of the tested
functions, with a few ranked third.

Figure 6. Radar chart of algorithm ranking.

5. Simulation Experiments and Analysis

The aerodynamic parameters are the same for both red and blue, and the control vari-
able limit range for both sides is [αmax, µmax, δmax] = [34o, 180o , 1]T, [αmin, µmin, δmin] = [−15o,−180o , 0.15]T.
Both the UCAV and enemy initial control variables are [α0, µ0, δ0] = [0, 0 , 0.5]T. The
simulation time per step is set to 1 s (second). Both the enemy and the UCAV use the same
vehicle platform, the initial distance between the two aircraft is 14.142 km, and the same
type of infrared close-range air-to-air combat missile is mounted. φMmax is set as 60◦. The
missile attack zone is solved using the method in the literature [44], and the air battle is set
to end when the target remains for 5 s in the missile non-escapable zone. When the altitude
is lower than 1000 m, it is determined that the air combat zone is exceeded, the simulation
ends, and the winner is determined. This air combat simulation has been performed in
many papers [24,36]; only the initial states and situation functions differ.

The initial state settings for the UCAV and enemy aircraft are shown in Table 3.

Table 3. Initial state values of UCAV and enemy.

State x y h v γ Ψ (O ◦) M (kg)

enemy 10,000 10,000 8000 250 0 225 14,680
UCAV 0 0 8000 250 0 45 14,680

5.1. LSHADE-TSO-MPC Maneuver Decision against Trial Maneuver Decision

The trial maneuver decision method is a more advanced maneuver decision method
that has been proposed in recent years, which is characterized by rapid decision making,
and its main method is to divide the control variable gradient so as to form a variety of
optional control variable schemes, from which a maneuver trial is conducted to select a
control volume scheme with the largest situation value. In this paper, the three control vari-
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ables change range is divided into 11 gradients, thus forming 11 × 11 × 11 = 1331 medium
maneuver schemes, whose gradient change values are set as follows:

δ ∈
{

δmin, δmin/2, δmin/4, δmin/8, 0
δmax, δmax/2, δmax/4, δmax/8

}
(36)

α ∈
{

αmin, αmin/2, αmin/4, αmin/8, 0
αmax, αmax/2, αmax/4, αmax/8

}
(37)

µ ∈
{

µmin, µmin/2, µmin/4, µmin/8, 0
µmax, µmax/2, µmax/4, µmax/8

}
(38)

The simulation results are shown below.
Figure 7 depicts the 3D trajectory of the UCAV and the enemy, as well as the predicted

trajectory of the enemy. After 34 s, the enemy aircraft is in our aircraft’s missile inescapable
zone for 5 s continuously within 29–34 s, and our aircraft finally wins the air battle. Figure 7
shows that both the enemy aircraft and our aircraft performed similar maneuvers, first
a right turn followed by a left turn, because our aircraft and the enemy aircraft used the
same attitude function. However, our aircraft uses the enemy aircraft’s online prediction
information via the MPC framework to ultimately win the air combat.

Figure 7. Three-dimensional air combat trajectory and predicted trajectory map.

Figure 8 shows that the accuracy of predicting the trajectory of enemy aircraft decreases
when they perform large maneuvers, such as some fluctuations in enemy aircraft predicted
trajectory during right turns. In Figure 8, the predicted trajectory for the enemy aircraft is
3 s, and the length of one MPC control framework decision is also 3 s.

The graph above depicts the UCAV and enemy maneuver decision factor curves.
Figure 9 shows that the angular situation factor value of our aircraft remains at 1 after
rising in the initial stage, while the angular situation factor value of the enemy aircraft
rises in the initial stage and gradually decreases. Because the enemy and our aircraft start
at the same speed and altitude and perform similar maneuvers, their energy situation
factor curves are similar. Our aircraft’s posture factor curve value continued to rise after
a brief drop and eventually remained at 1, whereas the enemy aircraft’s distance posture
factor value dropped to 0 in the final stage. The main reason for this is that the enemy
is in the UCAV’s missile inescapable zone, and because the distance posture factor is
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coupled with the angular posture factor, the distance posture factor curves of the two
aircraft differ significantly.

Figure 8. Top view of air combat trajectory and predicted trajectory.

Figure 9. Maneuver situation factor change curve. (a) UCAV; (b) enemy.

Figure 10 shows the overall situation value curves of UCAV and enemy. At the
initial moment, the situation values of UCAV and enemy are the same, but after 34 s
of maneuvering, the situation value of the UCAV reaches approximately 0.96, while the
enemy’s situation value drops to approximately 0.56, and finally the UCAV wins the air
battle. The overall situation value of the UCAV is greater than that of the enemy when the
UCAV and the enemy use the same situation function, which shows that the maneuver
decision method of the UCAV has a significant advantage over the enemy.
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Figure 10. Overall situation value change curve. (a) UCAV; (b) enemy.

Figure 11 depicts the UCAV-enemy relative distance and missile inescapable distance
curves. From 29–34 s, the enemy is in the UCAV’s missile inescapable zone for 5 s in
a row, indicating that the UCAV has won the air battle. However, the enemy’s missile
launchable distance is 0 because the enemy’s advance angle is greater than the missile’s
maximum off-axis launch angle, preventing the missile from being launched and resulting
in a 0 launchable distance.

Figure 11. UCAV-enemy relative distance and missile inescapable distance curve. (a) UCAV;
(b) enemy.

Figure 12 shows that the advance angle of the UCAV is less than 60 degrees most
of the time, indicating that the enemy is within the maximum off-axis firing angle of our
missile most of the time, whereas the enemy’s advance angle is continuously less than
120 degrees from the eighths, indicating that the UCAV is continuously outside the maxi-
mum off-axis firing angle of the enemy’s missile.

Figure 12. ATA and AA change curves. (a) UCAV; (b) enemy.
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Figure 13 shows the control variables curves of the UCAV and the enemy. The three
lines from top to bottom represent the throttle, angle of approach and roll angle respectively.
It can be seen that the control volume of the enemy aircraft is strictly on the gradient of the
control volume range division, but our aircraft does not have this constraint in the control
volume range. The control volume is a continuous variable, and the optimal control volume
after discretizing it is likely to be in the gradient interval, which is why it is difficult for the
trial maneuver decision method to beat the optimization algorithm decision method.

Figure 13. Decision process control variable curve. (a) UCAV; (b) enemy.

5.2. LSHADE-TSO-MPC Maneuver Decision against LSHADE-TSO Maneuver Decision

As shown in Figure 14, the three-dimensional trajectory of the UCAV and the enemy
and the predicted trajectory of the enemy lasted for 46 s. Within 41–46 s, the enemy is in
the inescapable missile zone of the UCAV for 5 s. Finally, the UCAV wins the air battle.
As shown in Figure 14, both the UCAV and the enemy perform a left turn maneuver, but
the UCAV performs a larger left turn and then a quick right turn. However, the UCAV
makes a large left turn and then a quick right turn, whereas the enemy aircraft makes a
small left turn followed by a near level flight and then a right turn, giving the UCAV the
first opportunity to win the air battle.

Figure 14. Three-dimensional air combat trajectory and predicted trajectory map.
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Figure 15 shows the top view, from which we can see that the error between the
predicted trajectory and the actual trajectory increases when the enemy performs a large
overload maneuver with a prediction length of 3 s, which is reflected in Figure 15 as the
distance between the green curve and the blue curve increases, showing a “burr” shape. In
Figure 15, the predicted trajectory of the enemy aircraft is 3 s, and the length of one decision
of the MPC framework is also 3 s.

Figure 15. Top view of air combat trajectory and predicted trajectory.

Figure 16 depicts the UCAV and enemy maneuver decision factor curves. Figure 16
shows that the UCAV’s overall angular situation factor curve fluctuates from increasing
to decreasing, then increasing again, and finally remaining at 1. The angular situation
factor curve of the enemy aircraft undergoes a process from increasing and staying at
1 and then decreasing and then increasing again, but finally does not reach 1. The energy
situation factor curves of the enemy and UCAV are similar and fluctuate in a very small
range around 0.6. The distance situation factor of the UCAV factor fluctuates throughout
the 0–30 s, but it increases rapidly after 32 s and eventually reaches 1. The distance situation
factor value of the enemy aircraft decreases rapidly at 29 s and eventually drops to 0.

Figure 16. Maneuver situation factor change curve. (a) UCAV; (b) enemy.
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Figure 17 depicts the curve of UCAV and enemy overall situation value. The graph
shows that the initial value of the overall situation of UCAV and enemy is similar. In
the middle stage, the overall situation value of the enemy is clearly higher than that of
the UCAV, but after 30 s, the overall situation value of UCAV increases rapidly, while the
overall situation value of the enemy aircraft decreases. Finally, the overall situation value
of the UCAV is stable at approximately 0.96, and the overall situation value of the enemy is
stable at approximately 0.62. The UCAV’s situation value is significantly greater than the
enemy’s, and it eventually wins the air combat.

Figure 17. Overall situation value change curve. (a) UCAV; (b) enemy.

Figure 18 depicts the UCAV’s and the enemy’s missile inescapable distance, as well as
the two aircraft’s distance curve. In the 27–30 s time period, the enemy’s advance angle is
less than the maximum missile off-axis launch angle, and the UCAV is within the enemy’s
maximum missile off-axis launch angle. However, because the two aircraft are so far apart
at this point, the UCAV does not enter the enemy’s missile-proof zone. The UCAV then
maneuvers to successfully lasso the enemy into the missile inescapable zone and finally
wins the air battle. From the missile launchable distance curve, the UCAV sacrificed some
situational advantage when both sides were far away to gain a situational advantage when
they were closer, which reflects the foresight of the LSHADE-TSO-MPC machine-dynamic
decision method, which was able to consider the situational advantage at a longer distance,
which has advantages over the optimization algorithm decision method.

Figure 18. UCAV-enemy relative distance and missile inescapable distance curve. (a) UCAV;
(b) enemy.

Figure 19 shows the change curves of the advance angle between our aircraft and the
enemy aircraft. Because the maximum off-axis launch angle of the missile is 60 degrees,
the ATA of our aircraft fluctuates by approximately 60 degrees within 5–28 s, while the
AA fluctuates by approximately 120 degrees. However, after 28 s, the ATA drops, while
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the AA fluctuates still around 120 degrees, and finally our aircraft achieves the air combat
victory condition.

Figure 19. ATA and AA change curves. (a) UCAV; (b) enemy.

The three lines in Figure 20 from top to bottom represent the throttle, angle of approach
and roll angle respectively. The curves of UCAV and enemy control variables shown in
Figure 20 show that the change of angle of attack of the UCAV is more drastic than the
enemy aircraft, and the throttle is not always in the maximum position, indicating that the
UCAV can consider the relationship between speed and situation comprehensively, rather
than just pursuing at maximum throttle and maximum speed.

Figure 20. Decision process control variable curve. (a) UCAV; (b) enemy.

5.3. Comparative Analysis of Different Algorithms Combined with MPC Framework

In the previous subsection we compared the LSHADE-TSO-MPC maneuver decision
with the trial maneuver decision and LSHADE-TSO maneuver decision, and both achieved
air combat victories, but we did not compare LSHADE-TSO-MPC with the rest of the
optimization algorithms combined with the MPC framework. Therefore, this section con-
fronts the maneuver decision methods of different optimization algorithms combined with
the MPC framework with the LSHADE-TSO maneuver decision method. The simulation
results are used to verify the performance of LSHADE-TSO-MPC compared to the rest of
the optimization algorithms combined with the MPC framework.

The following methods are compared in this paper: LSHADE-MPC, TSO-MPC, and
MPA-MPC for performance comparison, with a maximum of 50 iterations and a population
size of 100, and the rest of each for comparison. The algorithm parameters are set as shown
in Table 4. The adversary employs the LSHADE-TSO maneuver decision, and the situation
curves of both sides are obtained as shown in Figure 21. The time used for each maneuver
decision method step are shown in Figure 22.
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Table 4. Algorithm parameter setting table.

Algorithm Name Parameter Setting

LSHADE NPinit = 100, NPmin = 4, rarc = 2.6, p = 0.11, H = 6, MF = 0.5, MCR = 0.5
TSO a = 0.5, z = 0.05
MPA FADs = 0.2, p = 0.5

Figure 21. Overall situation values of four algorithms combined with the MPC framework against
LSHADE-TSO. (a) LSHADE-TSO-MPC; (b) LSHADE-MPC; (c) TSO-MPC; (d) MPA-MPC.

Figure 22. Box plot of algorithm decision time.

In PSO, C1 is the individual learning factor of the particle, C2 is the social learning
factor of the particle, and ω is the inertia factor. In GA, Pc is the crossover probability and
Pm is the variation probability.
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The overall situation value curves of both sides are obtained by combining LSHADE-
MPC, TSO-MPC, and MPA-MPC with the LSHADE-TSO maneuvering decision, as shown
in Figure 21. The results of the confrontation are presented in Table 5. LSHADE-MPC
achieved air combat victory in 52 s. GA-MPC achieved air combat victory in 56 s. At
70 s, the MPA-MPC was defeated by the enemy aircraft. LSHADE-TSO-MPC achieved
air combat victory in 46 s. It is clear that the proposed LSHADE-TSO-MPC has some
advantages over other optimization algorithms combined with the MPC framework, such
as improved search and convergence capabilities.

Table 5. Four algorithms combined with the MPC framework against LSHADE-TSO.

Maneuvering Decision Making Methods Air Battle Results Air Combat Time

LSHADE-TSO-MPC Win 46 s
LSHADE-MPC Win 52 s

TSO-MPC Win 56 s
MPA-MPC Loss 70 s

Figure 22 shows the comparison of the decision time used for the LSHADE-MPC,
MPA-MPC, TSO-MPC, and LSHADE-TSO-MPC maneuver decision methods, where the
average decision time of LSHADE-MPC is 0.1793 s, the average decision time of MPA-MPC
is 0.1949 s, the average decision time of TSO-MPC is 0.1731 s, and the average decision
time of LSHADE-TSO-MPC is 0.2557 s. From the results, the LSHADE-TSO-MPC has a
longer decision time compared to the optimization algorithms in the literature [36], mainly
due to the amount of control in deciding multiple steps in one decision, but it is acceptable
compared to the 1 s decision cycle and can meet the real-time requirements.

6. Conclusions

In this paper, based on the traditional optimization algorithm for UCAV autonomous
air combat maneuver decisions, an improved optimization algorithm is proposed for the
solution of the maneuver decision problem, and the predicted trajectory of enemy aircraft
is used for maneuver decisions in combination with a model predictive control framework.
The method can incorporate future momentary posture into the objective function as well
as expand the independent variable dimension, and more effectively exploit the advantages
of intelligent optimization algorithms in high independent variable dimensional objective
optimization. Using the same aircraft platform and weapon performance, a head-on air
combat confrontation was conducted using the same posture function, and the results
demonstrate that the use of a UCAV can effectively gain air combat advantage and achieve
air combat victory under enemy trajectory prediction combined with model prediction
control conditions. The LSHADE-TSO-MPC proposed in this paper has better decision-
making capability in close air combat compared to other optimization algorithms combined
with an MPC framework and can achieve air combat victory faster.
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