
Citation: Li, H.; Wen, L.; Liu, Y.; Shen,

Y. More than Meets One Core: An

Energy-Aware Cost Optimization in

Dynamic Multi-Core Processor

Server Consolidation for Cloud Data

Center. Electronics 2022, 11, 3377.

https://doi.org/10.3390/

electronics11203377

Academic Editor: Jordi Guitart

Received: 29 September 2022

Accepted: 18 October 2022

Published: 19 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

More than Meets One Core: An Energy-Aware Cost
Optimization in Dynamic Multi-Core Processor Server
Consolidation for Cloud Data Center
Huixi Li 1,2, Langyi Wen 1, Yinghui Liu 3 and Yongluo Shen 1,2,*

1 School of Information Science, Guangdong University of Finance and Economics, Guangzhou 510320, China
2 Guangdong Intelligent Business Engineering Technology Research Center, Guangdong University of Finance

and Economics, Guangzhou 510320, China
3 School of Chinese Language and Literature, Nanjing Xiaozhuang University, Nanjing 211171, China
* Correspondence: sylkyo@gdufe.edu.cn

Abstract: The massive number of users has brought severe challenges in managing cloud data centers
(CDCs) composed of multi-core processor that host cloud service providers. Guaranteeing the quality
of service (QoS) of multiple users as well as reducing the operating costs of CDCs are major problems
that need to be solved. To solve these problems, this paper establishes a cost model based on multi-
core hosts in CDCs, which comprehensively consider the hosts’ energy costs, virtual machine (VM)
migration costs, and service level agreement violation (SLAV) penalty costs. To optimize the goal,
we design the following solution. We employ a DAE-based filter to preprocess the VM historical
workload and use an SRU-based method to predict the computing resource usage of the VMs in
future periods. Based on the predicted results, we trigger VM migrations before the hosts move
into the overloaded state to reduce the occurrence of SLAV. A multi-core-aware heuristic algorithm
is proposed to solve the placement problem. Simulations driven by the VM real workload dataset
validate the effectiveness of our proposed method. Compared with the existing baseline methods,
our proposed method reduces the total operating cost by 20.9~34.4%.

Keywords: cloud computing; multi-core processor; server consolidation; VM migration; SLAV;
energy consumption

1. Introduction

The world is entering a post-coronavirus era. Since countries and multinational
cooperative organizations still have not formed a unified, reliable, and effective means
of epidemic prevention, a local epidemic that could break out at any time brings a high
risk of spreading to the world. This situation has forced people to further embrace cloud
computing, migrating much of their economic, social, and personal activities online. For
example, about 82% of Hong Kong businesses plan to maintain remote work in the post-
COVID-19 era [1]. This trend has brought opportunities for cloud computing, as well as
management pressure. According to estimates, the current compound annual growth rate
of the Hong Kong data center market value is 12.6%, which means that the value will reach
HKD 4.12 billion by 2026 [2]. The increase in market value means that practitioners need
more cost investment.

Increasing the resource rate of cloud data centers (CDCs) is one of the most effective
means to reduce management costs, but there is a conflict between reducing costs and
the performance that cloud service customers receive. To improve resource usage, virtual
machines (VMs) or containers assigned to users must be highly concentrated on physical
hosts. However, a high degree of centralization brings a high degree of resource competition.
When the competition is too intense, the host may be overloaded, thereby reducing the
performance and user experience of VMs. To ensure the user experience, service level

Electronics 2022, 11, 3377. https://doi.org/10.3390/electronics11203377 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11203377
https://doi.org/10.3390/electronics11203377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11203377
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11203377?type=check_update&version=2

Electronics 2022, 11, 3377 2 of 25

agreements (SLAs) are used to quantitatively describe the corresponding quality of service
(QoS). If the SLA cannot be maintained, the QoS is threatened, a and SLA violation (SLAV)
is generated. When a SLAV appears, cloud service providers (CSPs) need to provide
compensation to users as punishment for failing to meet user performance requirements.
Currently, server consolidation is used to dynamically adjust the load balance between
hosts in a CDC. Server consolidation periodically checks the load of hosts in the cluster and
initiates VM migration to achieve load balancing, thereby maintaining a balance between
resource utilization and performance.

Multiple works designing server consolidation solutions assume that the physical host
is equipped with a single-core CPU, and multi-core processors have long been popular in
personal entertainment, scientific research, and data centers. A CPU package consists of
multiple dies, and each die encapsulates multiple cores. Due to the involvement of inter-
core communication, inter-die communication, and other CPU components, the power
consumption of a multi-core CPU is much higher than that calculated by the single-core
CPU power consumption model. Therefore, the server consolidation model based on a
single-core processor cannot accurately describe the user’s energy demand. In addition,
CSPs need to provide additional overhead to maintain VM migration in server consolidation
and possible SLAV compensation. In this paper, we establish a server consolidation cost
model based on the use of multi-core processor memory resources, VM migration, and
SLAV compensation and propose corresponding solutions to achieve a balance between
cost and performance. Our contributions are as follows:

(A) We formally define a host power consumption model based on multi-core CPU and
memory resource usage and describe the cost of VM migration and SLAV on this basis.
After proposing the cost model, we give the corresponding optimization problem.

(B) A denoise autoencoder-based filter is used to denoise the VM workload trace. Subse-
quently, we use the SRU-based RNN method to predict the workload of VMs. Based
on the predicted results, a host load detection strategy is proposed that considers both
current and future load conditions.

(C) To minimize the total cost of server consolidation, we propose a VM selection strategy
and a VM placement algorithm. These methods take into account the scheduling and
placement of VMs between different cores of the same CPU and between different
CPUs of different hosts, as well as the current and future requirements of VMs for
different resources.

(D) We conduct simulations to evaluate the performance of our proposed solution MMCC.
The simulations’ results indicate that MMCC can reduce host energy consumption by
10~43.9%, SLAV cost by 33.5~51.7%, and total cost by 20.9~34.4% compared to the
baseline methods.

The remainder of the paper is organized as follows. In Section 2, we survey the related
work. In Section 3, we formalize the cost model and define the corresponding optimization
problem. In Section 4, we propose a heuristic algorithm to solve this problem. In Section 5,
we evaluate the performance of our proposed method using trace-driven simulations based
on real VM workloads. In Section 6, we include the paper and discuss future works.

2. Related Work

In this section, we survey the CDC cost model related to server consolidation and the
corresponding solutions.

2.1. Server Consolidation Cost Models

Based on single-core CPU usage or performance, a large number of works on server
consolidation proposed host energy models [3–12]. Nagadevi et al. [13] proposed a VM
placement algorithm based on multi-core processors, but they did not consider factors
related to dynamic consolidation, energy consumption, and cost throughout the data center
life cycle. The above work also did not consider the energy consumption of the processor
at the die level and the chip level.

Electronics 2022, 11, 3377 3 of 25

In addition, the composition of a host’s energy consumption is not only related to the
CPU factor. Therefore, several works have proposed multi-resource utilization-oriented
host energy models [14–19]. However, these models only consider the energy consump-
tion when the host acts as an independent object and do not consider the additional
energy consumption of the VM migration due to the increase of the host load during
server consolidation.

To ensure user performance and service quality, Buyya et al. [20] proposed a CPU-based
SLAV calculation method, which was widely adopted in many subsequent works [21–29].
However, the quality of service (QoS) of users when using VMs cannot be measured only by
CPU performance, and SLAV must involve the use of multiple resources.

2.2. Server Consolidation Solutions

Buyya et al. [20] first proposed the classic four-step server consolidation solution.
The first step is host load detection, which picks out overloaded and underloaded hosts
in the cluster. The second step is VM selection for overloaded hosts. In order to reduce
the host load and the occurrences of SLAV, suitable VMs are selected and added into a
VM migration list. The third step is VM placement, which selects the suitable destination
hosts for all objects in the VM migration list. After VM placement, underloaded hosts
are handled. By migrating all the VMs on the underloaded host to other suitable hosts as
much as possible and shutting down or switching these underloaded hosts to an energy-
saving state, the host energy cost of the CDC can be further reduced. At present, most of
the specific execution strategies for solving server consolidation are heuristic. Based on
multiple resource constraints, Li et al. [30] proposed a server consolidation method that not
only reduces energy consumption but also ensures QoS, but this method only guarantees
the QoS of the users in terms of CPU usage. YADAV et al. [25] mainly considered the
network overhead and proposed an adaptive host overloaded detection method and VM
selection algorithm. Sayadnavard et al. [31] proposed a server consolidation method based
on multiple resource constraints, but the optimization goal is to minimize the number
of hosts used by the VM placement, and it ignores other types of costs. Yuan et al. [32]
used the culture multiple-ant-colony algorithm to solve the server consolidation problem
without SLAV constraints.

None of the models proposed in the above works simultaneously consider the costs
associated with multi-resource usage, multi-core processors, multi-resource SLAV, and
VM migration.

3. Cost Model and Problem Description

In this section, we first formally describe the multi-core processor-based cost model in
server consolidation of CDC and then formulate a problem description based on this.

3.1. Cost Model

In CDC, the cost related to server consolidation mainly involves hosts, VM migrations,
and SLAV compensation.

Before giving a specific cost model, we first describe the time and objects of the
entire system. There are N heterogeneous hosts in the CDC, forming the host set H =
h1, h2, · · · , hN . The total amount of resources that a host hi can provide is marked as a scalar
Ci = (ccpu

i , cmem
i), where ccpu

i and cmem
i are the total amount of CPU and memory resources,

respectively. The CPU is multi-core; hence we have ccpu
i = (ccore1

i , ccore2
i , · · · , c

corecni
i), where

cni is the number of cores in the processor on hi. Generally speaking, we make ccore1
i =

ccore2
i = · · · = c

corecni
i , where c

corecni
i is the total amount of computing resources that each core

can provide. There are M VMs running on these hosts, forming a VM set V = v1, v2, · · · , vM.
When a user makes a VM vj request, the submitted resource requirements are marked
as scalar Di = (dcpu

j , dmem
j), where dcpu

j and dmem
j are the total requirements of vj for CPU

and memory, respectively. We assume that each VM is a single-core task; that is, only the
computing resources of a single core can be used by a certain VM.

Electronics 2022, 11, 3377 4 of 25

The life cycle of a CDC [0, LT] is divided into L small and equal-length consecutive
time segments t1, t2, . . . , tL, and each time segment has a length of T. In a certain time
segment tk, if a host hi is in working state, λi,k = 1, otherwise λi,k = 0. At this time, the
amount that the host can provide for each resource is Ri,k = (rcpu

i,k , rmem
i,k), where rcpu

i,k =

(rcore1
i,k , rcore2

i,k , · · · , r
corecni
i,k), where r

corecni
i,k is the amount of resources that the cni-th core can

provide in tk. In tk, the amount of resources demanded by the VM vj is denoted as
Sj,k = (scpu

j,k , smem
j,k).

We summarize the total cost of a CDC for a given lifetime by analyzing the performance
of each computing device in each time slice. In general, in addition to the operating cost
of the hosts, it is also necessary to consider the cost of VM migration during each server
consolidation and the penalty caused by the occurrences of SLAV. We will discuss them
separately in the following summaries.

Host Cost Model

Given a host hi, its running cost Chi
is mainly related to the electricity charge EP and

its power phi ,t at a given time t, namely:

Chi
= EP×

∫ TL

0
phi ,tdt. (1)

It should be noted that if hi is powered off or in a power-saving state, its power
consumption is negligible, so it will not incur any electricity-related costs. The analysis [33]
of VM traces in the Alibaba CDC shows that the demand for CPU and memory resources of
VMs far exceeds that of disk and network I/O. In this paper, we consider that the power of
a host is related to the CPU, memory, and other basic components (motherboard, network
card, disk, etc.). We also consider the power consumption of basic components to be a fixed
value, so the power consumption of CPU and memory is discussed below.

• CPU power model

Buyya et al. [20] leveraged a single-core-based host power model in server consoli-
dation; that is, the power of the CPU is related to its only core. Modern processors are
multi-core architectures. Multiple cores are packaged on multiple CPU dies. The general
architecture of a multi-core CPU is shown in Figure 1.

Figure 1. The general architecture of a multi-core CPU.

The total power consumption of the processor involves chip-level mandatory com-
ponents, cores, die-level mandatory components, communication between cores, and
communication between dies. In addition, modern processors employ energy-efficient
mechanisms (such as Intel’s SpeedStep) to optimize the power consumption of the CPU,

Electronics 2022, 11, 3377 5 of 25

which means that the power consumption of the CPU is not linearly related to its usage.
We describe the power description of a given CPU at a given moment as:

Pcpu = (1− r)× (Pcm + Pdies + Pinterdie), (2)

where r is the energy-efficient factor, Pcm is the power consumption of chip-level mandatory
components, Pdies is the power consumption of dies, and Pinterdie is the power consumption
of inter-die communication. Next, we give the models of the above factors and energy
consumption, respectively. In the case of not using an energy-efficient mechanism, the
actual power when the n cores of the processor perform calculations at the same time is
Pact:

Pact = Pcm + Pdies + Pinterdie. (3)

In addition, we denote the total power of all cores as:

Pcores =
n

∑
k=1

Pk
core, (4)

where Pk
core is the power consumption of the k-th core when other cores are idle and it is

computing alone.
Basmadjian et al. [34] performed experiments to analyze the power consumption of

chip-level mandatory components such as voltage regulators for:

Pcm = Pcores − Pact = s(v, f), (5)

where s is the capacitance function, v is the voltage, and f is the frequency.

s(v, f) = ce× v2 × f , (6)

where ce is the effective capacitance [35].
Communication between dies occurs when cores on different dies access data at the

same memory address. The power consumption of inter-die communication is:

Pinterdie =
|d|−1

∑
j=1|dj∈D

ce× v2
j × f j, (7)

where vj and f j are the voltage and frequency of the corresponding cores on diej, dj is the
set of active cores on the j-th die, and D is the set of dies related to communication, and
they are:

D = {dj|dj 6= ∅}, (8)

dj = {corei,j|u(corei,j) > 0}, (9)

where corei,j is the i-th core on the j-th die, u(corei,j) is the current utilization of corei,j,
i ∈ [1, nj], and nj is the total number of cores on the j-th die. We also have:

vj = max{vcorei,j |u(corei,j) > 0}, (10)

vj = max{ fcorei,j |u(corei,j) > 0}. (11)

Equations (10) and (11) show that when there is only one active core on the j-th die, vj
and f j of the j-th die are the voltage and frequency of the core.

The power of a single die can be described as:

Pj
die = Pj

md + Pj
cores + Pj

o f f , (12)

Electronics 2022, 11, 3377 6 of 25

where Pj
md is the power consumption of die-level mandatory components, Pj

cores is the

power consumption of nj constituent cores, and Pj
o f f is the power consumption of off-chip

caches. We leverage Equation (5) to model Pj
md.

Inter-core communication occurs between multiple cores on a single die j. Therefore,
the core-level power consumption model is:

Pj
cores = Pj

dc + Pj
intercore, (13)

where Pj
dc is the power consumption of all active cores on j-th die, and Pj

intercore is the
inter-core communication power consumption between the active cores.

The power consumption of a single core corei,j is described as:

Pj
corei,j = P

corei,j
exc + Pon, (14)

where P
corei,j
exc and Pon are the power consumptions of exclusive components (e.g.ALU) and

on-chip caches of corei,j, respectively. Based on the model in [20], we consider that P
corei,j
exc is

linearly related to the utilization of the core, therefore:

P
corei,j
exc = P

corei,j
max ×

u(corei,j)

100
, (15)

where P
corei,j
max is the power consumption of corei,j at the maximum utilization, which can be

calculated by the model in Equation (5).
The power consumption of on-chip caches is:

Pon =
s

∑
i=1

PLi , (16)

where s is the number of the on-chip caches, PLi is the power consumption of on-chip cache
Li, which can be calculated by the model in Equation (5).

Hence, the power consumption of all active cores on the j-th die is:

Pj
dc =

nj

∑
i=1|corei,j∈dj

Pcorei,j . (17)

By dynamically adjusting voltage and frequency and turning off temporarily unused
components, the energy-efficient mechanism can effectively optimize processor power
consumption. This part of the power consumption reduction is mainly affected by three
factors: (1) components and communication between cores, (2) changes in the frequency of
a single core, and (3) the number of cores. Here we define the three factors.

The first factor is
α = 1− Pact

Pcores
. (18)

The second factor is
β =

α

f
, (19)

where f is the given frequency. For a multi-core processor, we have:

f = average{ fcorei,j |corei,j ∈ di,j, j ∈ [1, m]}, (20)

where m is the number of dies.

Electronics 2022, 11, 3377 7 of 25

The third factor is

γ =

α

k
, k ≥ 2,

0, otherwise,
(21)

where k = ∑m
j=1 |dj| is the total number of all active cores on the processor.

Based on Equations (18), (19), and (21), we obtain the power reduction factor:

r = α + β + γ. (22)

Based on the above analysis, the processor power consumption Pcpu of a given host
can be obtained. For the host hi, the power consumption of its processor at a certain time t
is denoted as Pcpu

i,t . It can be said that Pcpu
i,t is a function of the current utilization of each

core on the processor.

• Memory power model

In all current public data traces of a VM, workload records in the CDC provide the
memory usage of monitored objects within a certain period of time. Therefore, the current
footprint umem

i,t of the memory is used to estimate the power consumption Pmem
i,t of the host

hi at a given time t:
Pmem

i,t = Pmem
idle,i + αmem

i × umem
i,t , (23)

where Pmem
idle,i is the memory power consumption when hi is idle, and αmem

i is the memory
power factor. According to the analysis by Esfandiarpoor et al. [27], when αmem

i = 0.3W/GB,
the power consumption of a DDR memory system can be estimated more accurately.

In summary, we obtain the total power of host hi:

Phi ,t = Pcpu
i,t + Pmem

i,t + Pbase
i,t (24)

Combining Equation (24) into Equation (1), we obtain the energy consumption cost CH
of all hosts. We divide the life cycle of the CDC into multiple time segments and analyze
the energy consumption separately in each time segment. Then, we have:

CH = EP×
L

∑
k=1

∫ T

0
λi,k × Phi ,tdt. (25)

3.2. VM Migration Cost

We assume that at the beginning of each time segment, the CDC performs server
consolidation to achieve the balance between the CSP’s cost and the user’s performance.
VM migration is an important part of server consolidation. In a cluster composed of
multi-core processor hosts, there are two types of VM migrations. The first is the inter-core
migration on the same host, and the second is the inter-host migration between different
hosts. Inter-core migration occurs when the core where the VMs are located is overloaded,
and other cores of the same processor have sufficient computing resources. The VM
migrates from one core of the processor to another core in a very short period of time
through inter-core or inter-die communication. The inter-core migration does not involve
memory, and the main impact is the hit rate of the processor cache. Therefore, the energy
overhead of inter-core migration is negligible.

Next, we discuss the energy cost of inter-host migration. We use live migration
technology to migrate VMs between different hosts. During live migration of a VM, the
memory data of the VM is transmitted. Although VMs generate dirty pages during live
migration, the research [28] indicates that the energy consumption of a VM live migration is
positively related to the memory size of that VM. Therefore, we can assume that the larger
the VM memory size is , the longer the migration time and the more energy consumption
will be.

Electronics 2022, 11, 3377 8 of 25

When migrating a VM vj from host hi to another host h′i, we assume that hi reserves
enough resources to support the migration of vj, and hi′ also reserves enough resources to
run vj. Buyya et al. [20] assumed that a VM would consume an extra 10% CPU usage to
maintain the migration. In this paper, we extend this assumption to the memory resource
usage of VM migration. In addition, we assume that the CDC deploys an exclusive network
for VM migrations. We denote the size of the dedicated migration bandwidth of hi as
MIG_NETi. The total cost of VM migrations in a given life cycle is denoted as Cmig. Cmig is
described as:

Cmig =
L

∑
k=1

(Cmig_cpu
k + Cmig_mem

k), (26)

where Cmig_cpu
k and Cmig_mem

k are the migration costs caused by CPU and memory in tk,
respectively.

Cmig_mem
k is calculated as:

Cmig_mem
k =

N

∑
i=1

M

∑
j=1

[EP×
∫ tmig

j,k

t=0
(γj,i,xi ,i′ ,xi′ ,k

× Pmig_mem
j,k)dk], (27)

where γj,i,xi ,i′ ,xi′ ,k
is a 0-1 indicator, Pmig_mem

j,k is the power consumption generated by mi-

grating the memory data of vj, and tmig
j,k is the time spent migrating vj. If VM vj needs to

be migrated from the xi-th core of the processor of the host hi to the xi′ -th core of another
host hi′ , then γj,i,xi ,i′ ,xi′ ,k

= 1; otherwise γj,i,xi ,i′ ,xi′ ,k
= 0. Since VM memory is the main data

transferred during migration, we have:

tmig
j,k =

smem
j,k

mig_bwi,k
, (28)

where mig_bwi,k is the migration bandwidth size assigned to vj. We consider that the
migration bandwidth is evenly assigned to every migrated VM within tk on hi. Hence, for
a given source host hi and a destination host hi′ , we obtain:

mig_bwi,k =
MIG_NETi

∑N
i=1 ∑M

j=1 ∑N
i′=1 γj,i,xi ,i′ ,xi′ ,k

, (29)

then we have

tmig
j,k =

smem
j,k ×∑N

i=1 ∑M
j=1 ∑N

i′=1 γj,i,xi ,i′ ,xi′ ,k

mig_bwi,k ×MIG_NETi
. (30)

After this, we substitute Equation (30) into Equation (27). We let pvmem
j,k be the memory

power of vj within tk, and the memory migration cost of vj is 0.1× pvmem
j,k = 0.1× αmem

i ×
smem

j,k .

Next, we discuss Cmig_cpu
k . We assume here that the power consumption gener-

ated by a host in a CDC is mainly used to keep the VM running. Since the processor
power consumption Pcpu

i,k is related to its respective core in the current utilization (c
corecni
i −

rcore1
i , c

corecni
i − rcore2

i , · · · , c
corecni
i − r

corecni
i), it can be written as Pcpu

i,k (c
corecni
i − rcore1

i,k , c
corecni
i −

rcore2
i,k , · · · ,

c
corecni
i − r

corecni
i,k). For a given core on the processor corex, where x ∈ [1, cni], if a VM

needs to be migrated to another host at this time, its CPU utilization umig_corex
i,k is:

umig_corex
i,k = ccorex

i − rcorex
i,k + 0.1×

M

∑
j=1

(γj,i,xi ,i′ ,xi′ ,k
× scpu

j,k). (31)

Electronics 2022, 11, 3377 9 of 25

Hence, the power consumption of host hi during inter-host migration is:

(Pcpu
i,k)′ = Pcpu

i,k (umig_core1
i,k , · · · , u

mig_corecni
i,k). (32)

Then, we combine Equation (32) into Equation (2). We denote the updated host energy
consumption cost CH as C′H .

SLAV Penalty Cost

In a CDC, to guarantee user QoS, CSPs must provide SLAV compensation to rel-
evant users in some form. This part of the overhead needs to be included in the cost
consideration of the CDC. In this paper, we extend the single-core CPU SLAV definition
by Buyya et al. [20] to multi-core CPU and memory. They are denoted as SLAVcpu and
SLAVmem, respectively.

For the processor, it is considered overloaded only if all its cores are overloaded.
Hence, we have

SLAVcpu =
1
N

N

∑
i=1

Ts,cpu
i

Ta,cpu
i

× 1
M

M

∑
j=1

L

∑
k=1

udd,cpu
i,k

sr,cpu
i,k

, (33)

where Ts,cpu
i is CPU SLAV duration caused by all cores overloaded on hi, Ta,cpu

i is the total

working duration of the host, and dd,cpu
i is the size of the unsatisfied CPU resource demand

as a result of vj migration in tk.
Likewise, we propose the formal definition of SLAVmem:

SLAVmem =
1
N

N

∑
i=1

Ts,mem
i

Ta,mem
i

× 1
M

M

∑
j=1

L

∑
k=1

udd,mem
i,k

sr,mem
i,k

. (34)

We denote CPU and memory SLAV compensation price indices as puncpu and punmem,
respectively. Then, we have:

CSLAV = puncpu × SLAVcpu + punmem × SLAVmem. (35)

3.3. Problem Description

In the above Section 3.1, we analyze the factors involved in the operating cost in a
CDC, which are the host energy consumption cost C′H , the VM migration cost Cmig, and
the SLAV penalty cost CSLAV . In this paper, our research goal is to minimize the associated
operating cost C of the CDC. Combining the above models, we have a minimizing multi-
core-host-based cost problem in server consolidation (MMCC):

MIN C = C′H +
L

∑
k=1

Cmig_mem
k + CSLAV . (36)

A 0–1 indicator βi,j,xi ,k is used to mark whether the VM vj is running on the xi-th core
of the host hi’s processor at the beginning of the tk time period. If vj runs on the xi-th
core of the host hi, then βi,j,xi ,k = 1, otherwise βi,j,xi ,k = 0. The constraints of the MMCC
problem are:

N

∑
i=1

corei

∑
xi=1

βi,j,xi ,k = 1, ∀j, ∀k, (37)

N

∑
i′=1

corei′

∑
xi′=1

γj,i,xi ,i′ ,xi′ ,k
= 1, i 6= i′, ∀j, ∀k, (38)

M

∑
j=1

βi,j,xi ,k × scpu
j,k ≤ rcorei

i,k , ∀i, ∀xi, ∀k, (39)

Electronics 2022, 11, 3377 10 of 25

M

∑
j=1

βi,j,xi ,k × smem
j,k ≤ rmem

i,k , ∀i, ∀k. (40)

Constraint (37) means that in any period, any VM can only run on a specific core on a
unique specific host. Constraint (38) means that in any period, a VM migrated from any
host can only have a unique destination host and a unique core. Constraint (39) and (40)
mean that in any period, the CPU and memory resources provided by each host to the VM
cannot exceed its resource upper limits.

In the following, we analyze the complexity of the MMCC problem by considering a
simple case of the problem. If the hosts in the CDC are homogeneous, the resource require-
ments of any VM vj in any time segment tk are fixed values and satisfy constraints (39) and
(40). Then, the VM migration cost and SLAV penalty cost are both zero, and the objective
function of the MMCC problem is:

MIN C = CH . (41)

Obviously, the MMCC problem in this simple case can be reduced to the bin-packing
problem. Since the bin-packing problem is NP-hard, the MMCC problem is also NP-hard.

4. Solution for MMCC Problem

Since the MMCC problem is NP-hard, we propose a heuristic based on the traditional
four-step method for dealing with server consolidation. The first step is host workload
detection, the second step is VM selection, the third and fourth steps are VM placements
for VM from the overloaded and underloaded hosts. Before performing host overloading
detection and VM selection, we will first predict the future workload trends of the VM
based on its workload history. The purpose of this is to balance the load of hosts before
they become overloaded and trigger SLAV occurrences, thereby reducing costs as much
as possible.

4.1. VM Workload Prediction

Before predicting the future workload of a VM, we first need to preprocess its workload
trace. The sampling frequency and precision cause a certain deviation between the historical
sampling records and the actual usage of resources by the VM. To minimize the impact of
these biases on the final result, we denoise by assuming that there is noise in the workload’s
history. In addition, we do not need to spend high computing power and a lot of time to
obtain accurate prediction results. We only need to roughly judge a general trend of the
VM’s resource usage in the future.

In this paper, we utilize a classic denoise autoencoder [36] (DAE) based filter algo-
rithm to preprocess the workload of VMs. Figure 2 shows the general structure of the
DEA mechanism.

Figure 2. Denoise autoencoder.

In Figure 2, x is the initialization input, and x̃ ∼ qD(x̃|x) is the stochastic mapping of
x. Then, the autoencoder maps x̃ to y with the encoder fθ and generates the reconstruction
z with the decoder gθ′ . The reconstruction error is measured by the loss function LH(x, z).
In our proposed DAE-based filter, three autoencoders and one compression decoder are
assembled, and their network structures are shown in Figures 3–6. Figure 7 shows the
result of processing a segment of CPU usage records of a VM using the DEA-based filter.

Electronics 2022, 11, 3377 11 of 25

Figure 3. The network structure of the first autoencoder of the DAE-based filter.

Figure 4. The network structure of the second autoencoder of the DAE-based filter.

Figure 5. The network structure of the third autoencoder of the DAE-based filter.

Figure 6. The network structure of the compression decoder of the DAE-based filter.

Figure 7. Example of the DAE-based filter.

Traditional RNNs cannot be parallelized, so there is a problem of slow training speed.
To address this issue, we employ an SRU-based approach to predict the workload of
VMs. Simple recurrent units (SRU) [37] eliminate the time dependency of most operations,
enabling parallel processing. Experiments [37] show that the processing speed of the SRU
is more than ten times faster than that of traditional LSTM under the condition of similar
result accuracy. Since the SRU has been open-sourced and its usage method is not much
different from LSTM, we will not discuss the theoretical details of SRU in this article.

After predicting the resource usage of each VM at the next time segment, we can
perform host load detection and VM selection.

4.2. Host Workload Detection

The purpose of host overloaded detection is to avoid and eliminate the fierce com-
petition of VMs for resources, thereby reducing the occurrences of SLAV. Common host
overloaded detection methods are divided into two categories, static threshold method and
dynamic threshold method. In the static threshold method, the resource uasge thresholds
are set as fixed values. When the usage exceeds the threshold, the host is in an overloaded
state, and SLAV occurs. At this time, the VMs must be migrated to reduce the load. In the
dynamic threshold, CSPs analyze the use of computing resources through various statistical

Electronics 2022, 11, 3377 12 of 25

methods to determine whether the competition for resources is fierce and whether the hosts
are overloaded. The advantage of the static threshold method is that the host resources are
fully utilized, but the disadvantage is that more overhead is required to reduce the SLAV.
The advantage of the dynamic threshold method is that it can effectively reduce the SLAV,
but the disadvantage is that sometimes the usages of hosts’ resources are not sufficient.
Therefore, we combine the advantages of the two and propose the double insurance-based
fixed threshold overloading detection method (DIFT).

In DIFT, the first insurance is that the host cannot overload the CPU and memory
resources during the current period. The second insurance is that the host cannot overload
the CPU and memory resources in the next period. For a given host hi, DIFT first detects
whether the usages of various resources on hi exceed the given thresholds at the beginning
of the tk time period, and then, based on the prediction results of the SRU method, we
judge in the next time period tk+1 whether the usages of various resources on hi exceed the
given thresholds.

Since the VM migrations are divided into inter-core migrations and inter-host mi-
grations, we correspondingly divide the CPU overload of the host into two situations:
processor-overloaded and cores-overloaded. When the host is processor-overloaded, all
cores on the processor are in an overloaded state. When the host is cores-overloaded, some
(but not all) cores on the processor are in the overloaded state.

Let the overloaded threshold be THup = THcpu
up , THmem

up , where both THcpu
up and

THmem
up are in the interval (0, 1). For any corexi on hi, when the following inequality holds

in tk, it is in the state of processor-overloaded:

M

∑
j=1

βi,j,xi ,k × scpu
j,k > THcpu

up × c
corexi
i , (42)

M

∑
j=1

βi,j,xi ,k × scpu
j,k+1 > THcpu

up × c
corexi
i . (43)

For some corexi on hi (the number of corexi that satisfy the condition cannot exceed cni),
when the above in Equations (42) and (43) are established in tk, it is in the cores-overloaded state.

Host hi is in a memory-overloaded state when the following inequality holds in tk:

M

∑
j=1

βi,j,xi ,k × smem
j,k > THmem

up × cmem
i , (44)

M

∑
j=1

βi,j,xi ,k × smem
j,k+1 > THmem

up × cmem
i . (45)

When the host is memory-overloaded or processor-overloaded, it must be in the host-
overloaded state, and VM inter-host migration is required at this time. The situation where
the host has only cores-overloaded is called semi-overloaded, and inter-core migrations
can be preferentially leveraged at this time.

For an underloaded host, all VMs on it are migrated to other suitable hosts through
inter-host migration; hence there is no need to consider inter-core migration requirements.
Let the underloaded threshold be THdown = THcpu

down, THmem
down, where both THcpu

down and
THmem

down are in the interval (0, 1). For corexi on hi, when the following inequalities hold in tk,
it is in the host-underloaded state:

M

∑
j=1

βi,j,xi ,k × scpu
j,k < THcpu

down × c
corexi
i , (46)

M

∑
j=1

βi,j,xi ,k × scpu
j,k+1 < THcpu

down × c
corexi
i . (47)

Electronics 2022, 11, 3377 13 of 25

M

∑
j=1

βi,j,xi ,k × smem
j,k < THmem

down × cmem
i , (48)

M

∑
j=1

βi,j,xi ,k × smem
j,k+1 < THmem

down × cmem
i . (49)

4.3. VM Selection

VM selection is for overloaded hosts. The reason why we use the DIFT method is to
avoid host overload and SLAV as much as possible, rather than react passively after SLAV
occurs. Therefore, we can assume that in the tk+1 time segment, there would be slight SLAV
and host overload in the CDC. Our priority in VM selection is to select the VMs on each
host hi that may cause hi to be overloaded during t(k + 1) at the tk time segment and form
a list of VMs to be migrated. If after the migrations of these VMs are completed, hi is still in
the overloaded state during the tk period, then targeted processing will be performed. We
discuss VM selection strategies under various overloaded states within tl (e.g., l = k + 1) in
different cases.

• Case 1: Host with semi-overloaded

In this case, we need to reduce the load on each overloaded core. Given the j-th
overloaded core corei,j,l on host hi in tl , we denote the set of n VMs running on it as Vi,j,k =

{v1
i,j,k, v2

i,j,k, . . . , vn
i,j,k}, its total resources are ccorei,j,k , and the current available resource is

rcorei,j,k . For a VM vq
i,j,k ∈ Vi,j,k, the amount of CPU resources it uses is denoted as cpuvq

i,j,k
.

Then, each selection chooses the VM vq
i,j,k that has the minimum value of |(1− THcpu

up)×
ccorei,j,k − (rcorei,j,k + cpuvq

i,j,k
)| into the inter-core migration list. We select a VM at a time until

rcorei,j,k ≥ (1− THcpu
up)× ccorei,j,k .

• Case 2: Host with only memory overloaded

Given a memory-overloaded host hi in tl , we denote the set of n VMs running on it
as Vi,j,k = {v1

i,j,k, v2
i,j,k, . . . , vn

i,j,k}, the total amount of memory resource it has is cmemi,l , and

the currently available amount of resources is rmemi,l . For a VM vq
i,k ∈ Vi,k, the amount of

memory resources used by it is recorded as memvq
i,l

. Then, each selection chooses the VM

vq
i,k that has the minimum value of |(1− THmem

up)× cmemi,k − (rmemi,k + memvq
i,k
)| into the

inter-host migration list. We select a VM at a time until rmemi,k ≥ (1− THmem
up)× cmemi,k .

• Case 3: Host with only processor overloaded

We select VMs from each core in the same method as proposed in Case 1. All selected
VMs are added into the inter-host migration list.

• Case 4: Host with processor overloaded or cores overloaded and memory overloaded

We first use the method in Case 1 to select VMs from each overloaded core. After
the load of all cores drops under the overloaded threshold, if the memory load also drops
under the overload threshold, the VM selection is completed; otherwise, the method in
Case 2 is used to select VMs to reduce the memory load. All selected VMs are put into the
inter-host migration list.

For a given overloaded host, at the beginning of the tk time segment, the above VM
selection strategies are executed for its overloaded condition in tk+1. If the host is still in an
overloaded state in the tk time segment, the above strategies are executed again to reduce
the current load.

4.4. VM Placement

To make full use of the resources of the hosts, we should fully consider the space and
time competition of different VMs for different resources when placing VMs on hosts.

Electronics 2022, 11, 3377 14 of 25

In the VM selection phase, we obtain the inter-core migration list and inter-host
migration list. Regarding a semi-overloaded host, it should be noted that the load of the
cores may not be reduced through inter-core migration. Therefore, in the VM placement
phase, we first process the inter-core migration list and then add the remaining VMs to the
inter-host migration list to process together.

There are two goals of VM placement: (1) to ensure that the resources of the target host
can be fully utilized during the tk period; and (2) after the VM is placed on the destination
host hi, the host will not be in the overloaded state during the tk+1 period.

We address the inter-core migration list first. For the a semi-overloaded host hi, we
sort all un-overloaded cores {core1, · · · , corecn′i

} in ascending order of load, where cn′i is
the number of overloaded cores. We denote this orderd sequence as ordered_uo_coresi,k.
We arrange the VMs in the inter-core migration list icmi of hi in descending order according
to the current demand for CPU resources to form the list ordered_icmi. We take the first VM
from ordered_icmi and traverse ordered_uo_coresi,k for it in order to find the first core with
enough CPU resources. If a suitable core cannot be found in ordered_uo_coresi,k for this
VM, we add it to the inter-host migration list. The VM is then removed from ordered_icmi.
We repeat the above operations until ordered_icmi is empty. Each semi-overloaded host
needs to execute this placement algorithm for its VMs in icmi. Algorithm 1 demonstrates
the pseudocode of the inter-core VM placement algorithm.

Algorithm 1 Inter-Core VM Placement Algorithm.
Input: host hi, inter-core migration list icmi of hi
Output: allocation of VMs on certain cores
1: Get_sorted(core1, · · · , corecn′i

)→ ordered_uo_coresi,k

2: Get_sorted(icmi)→ ordered_icmi
3: for each vmj in ordered_icmi do
4: for each corep in ordered_uo_coresi,k do
5: if corep is available for vmj in tk and tk+1 then
6: allocation.add(vmj, hj.corep)
7: ordered_icmi.remove(vmj)
8: end if
9: break

10: end for
11: end forreturn allocation

Next, the inter-host migration list is processed. First, all the hosts are divided into two
categories according to the intensity of CPU and memory usage: CPU-intensive hosts and
memory-intensive hosts. The following calculation method is used to classify a given host
hi. We take the workload trace of hi in 12 consecutive time segments (one hour), where the
normalized CPU workload time series is LDcpu

i,k = {ldcpu
i,k−10, · · · , ldcpu

i,k , ldcpu
i,k+1}, and the time

series of normalized memory workload is LDmem
i,k = {ldmem

i,k−10, · · · , ldmem
i,k , ldmem

i,k+1}. Since hi
has a multi-core CPU, its normalized CPU workload at period tk is:

ldcpu
i,k =

cni

∏
x=1

c
corecni
i − rcorex

i,k

max{ccorecni
i |i ∈ [1, N]}

. (50)

The reason why the denominator is max{ccorecni
i |i ∈ [1, N]} is that CPUs with different

performances can be compared with each other through normalization. The smaller the
value of ldcpu

i,k is, the lower the CPU load of hi in the time period tk.
At a certain time period tk, its normalized memory workload is:

ldmem
i,k =

cmem
i − rmem

i,k

max{cmem
i |i ∈ [1, N]} . (51)

Electronics 2022, 11, 3377 15 of 25

The smaller the value of ldmem
i,k is, the lower the memory load of hi in the time period

tk.
Based on Equation (50), we calculate the CPU score of hi:

scorecpu
i,k =

1
10

(
12

∑
y=1

ldcpu
i,k −max(LDcpu

i,k)−min(LDcpu
i,k)), (52)

where max(LDcpu
i,k) is the maximum value in the normalized CPU workload sequence, and

min(LDcpu
i,k) is the minimum value in the normalized CPU workload sequence. We remove

max(LDcpu
i,k) and min(LDcpu

i,k) from ∑12
y=1 ldcpu

i,k to minimize the impact of possible severe
load fluctuations on the score.

Based on Equation (51), we calculate the memory score of hi:

scoremem
i,k =

1
10

(
12

∑
y=1

ldmem
i,k −max(LDmem

i,k)−min(LDmem
i,k)), (53)

where max(LDmem
i,k) is the maximum value in the normalized memory workload sequence,

and min(LDmem
i,k) is the minimum value in the normalized memory workload sequence.

If scorecpu
i,k ≥ scoremem

i,k , hi is CPU-intensive type; otherwise, hi is a memory-intensive
type. The CPU-intensive type hosts have more abundant available memory resources, and
the memory-intensive type hosts have more abundant available CPU resources. Therefore,
in the time period tk, the hosts of the CPU-intensive type are arranged in ascending order
according to their values of ldmem

i,k , forming a list memordered_cpu_hosts_list. Memory-
intensive hosts are sorted in ascending order according to their ldcpu

i,k values to form a
list cpuordered_mem_hosts_list. The reason for using the above sorting method is: CPU-
intensive hosts have enough remaining memory resources, so VMs that require more
memory resources can be placed on them; memory-intensive hosts have enough remaining
CPU resources, so they can be placed with VMs that require more CPU resources.

In the following, we sort the VMs in the inter-host migration list by their resource
usage requirements. The VMs to be migrated are also divided into CPU-intensive type
and memory-intensive type. The CPU-intensive type VMs need to be placed on the
memory-intensive type hosts as much as possible, and the memory-intensive VMs need
to be placed on the CPU-intensive type hosts as much as possible. We use the following
calculation method to classify a given VM vj. We take the workload trace of vj in 12
consecutive time segments (one hour), where the normalized CPU workload time series
is VLDcpu

j,k = {vldcpu
j,k−10, · · · , vldcpu

j,k , vldcpu
j,k+1}, and the time series of normalized memory

workload is VLDmem
j,k = {vldmem

j,k−10, · · · , vldmem
j,k , vldmem

j,k+1}. At certain time period tl , the
normalized CPU workload of vj is:

vldcpu
j,k =

scpu
j,k −min{scpu

x,k |x ∈ [1, M]}

max{scpu
x,k |x ∈ [1, M]} −min{scpu

x,k |x ∈ [1, M]}
. (54)

The smaller the value of vldcpu
j,k , the lower the CPU demand of vji in the time period tk.

At certain time period tl , the normalized memory workload of vj is:

vldmem
j,k =

smem
j,k −min{smem

x,k |x ∈ [1, M]}
max{smem

x,k |x ∈ [1, M]} −min{smem
x,k |x ∈ [1, M]} . (55)

Based on Equation (54), we calculate the CPU score of vj:

vscorecpu
j,k =

1
10

(
12

∑
y=1

vldcpu
j,k −max(VLDcpu

j,k)−min(VLDcpu
j,k)), (56)

Electronics 2022, 11, 3377 16 of 25

where max(VLDcpu
j,k) is the maximum value in the normalized CPU workload sequence of

vj, and min(VLDcpu
j,k) is the minimum value in the normalized CPU workload sequence

of vj.
Based on Equation (55), we calculate the memory score of vj:

vscoremem
j,k =

1
10

(
12

∑
y=1

vldmem
j,k −max(VLDmem

j,k)−min(VLDmem
j,k)), (57)

where max(VLDmem
j,k) is the maximum value in the normalized memory workload sequence

of vj, and min(VLDmem
j,k) is the minimum value in the normalized memory workload

sequence of vj.
If vscorecpu

j,k ≥ vscoremem
j,k , vj is a CPU-intensive type; otherwise, vj is a memory-

intensive type.
In the time period tk, CPU-intensive type VMs are arranged in descending order

according to their vldcpu
j,k values, forming a list ordered_cpu_vms_list. We pick out the VMs

in ordered_cpu_vms_list in turn, traverse the cpuordered_mem_hosts_list, and find the first
host that can meet the resource requirements of the current VM and will not be overloaded
at both tk and future tk+1.

Since the hosts have multi-core CPUs, we design the following judgment when decid-
ing which core of the host hi will be used by the VM vj. We sort the cores in hi’s processor

in descending order by their available resources rcore1
i,k , rcore2

i,k , · · · , r
corecni
i,k , which constitute

the sequence ordered_coresi,k. Then, the VM vj will be preferentially placed on the front
core in ordered_coresi,k (and this core will also meet the resource requirements of vj in the
tk+1 time period).

In the time period tk, memory-intensive type VMs are arranged in descending order
according to their values of vldmem

j,k , forming a list ordered_mem_vms_list. We pick out
the VMs in the ordered_mem_vms_list in turn, traverse the memordered_cpu_hosts_list, and
find the first host that can meet the resource requirements of the current VM and will not be
overloaded at both tk and future tk+1 . On the current host, the same multi-core placement
method is used for processing ordered_coresi,k.

When the destination host is determined for a given VM to be migrated, this VM is
removed from the inter-host migration list. Algorithm 2 demonstrates the pseudocode
of the inter-host VM placement algorithm. After the above ordered_mem_vms_list and
ordered_cpu_vms_list are traversed, and there are still VMs to be migrated, the first-fit
method is used to find available hosts in the host list for them. If there are still VMs to be
migrated, the hosts in the energy-saving state are powered on one by one until all the VMs
to be migrated are assigned destination hosts.

After the above process, we perform underloaded host detection on the hosts in the
CDC. If there are still underloaded hosts at this time, the VMs on the underloaded hosts
are added to form a VM migration list, and Algorithm 2 is executed.

Electronics 2022, 11, 3377 17 of 25

Algorithm 2 Inter-Host VM Placement Algorithm.
Input: hostlist, inter-host migration list
Output: allocation of VMs
1: Get_classi f ication(host)→ cpu_intensive_hostsk, mem_intensive_hostsk
2: Get_classi f ication(inter− hostmigrationlist)→ cpu_intensive_vmsk,

mem_intensive_vmsk
3: Get_sorted(cpu_intensive_hostsk)→ memordered_cpu_hosts_list
4: Get_sorted(mem_intensive_hostsk)→ cpuordered_mem_hosts_list
5: Get_sorted(cpu_intensive_vmsk)→ ordered_cpu_vms_list
6: Get_sorted(mem_intensive_vmsk)→ ordered_mem_vms_list
7: for each vmj in ordered_cpu_vms_list do
8: for each hi in cpuordered_mem_hosts_list do
9: Get_sorted(core1, · · · , corecni)→ ordered_coresi,k

10: for each corep in ordered_coresi,k do
11: if corep is available for vmj in tk and tk+1 then
12: allocation.add(vmj, hi.corep)
13: orderedc puvmsl ist.remove(vmj)
14: end if
15: break
16: end for
17: end for
18: end for
19: for each vmj in ordered_mem_vms_list do
20: for each hi in memordered_cpu_hosts_list do
21: Get_sorted(core1, · · · , corecni)→ ordered_coresi,k
22: for each corep in ordered_coresi,k do
23: if corep is available for vmj in tk and tk+1 then
24: allocation.add(vmj, hi.corep)
25: orderedc puvmsl ist.remove(vmj)
26: end if
27: break
28: end for
29: end for
30: end forreturn allocation

5. Performance Evaluation

In this section, we evaluate the performance of our proposed solution, named MMCC,
with a real VM workload trace-driven simulation.

5.1. Experiment Setup

According to the energy consumption analysis and statistics of the hosts by Basmadjian
et al. [34], Minartz et al. [38], and Jin et al. [39], we simulated three types of hosts as Hlarge,
Hmedium, and Hsmall , respectively. Their resource parameters are shown in Table 1, the power
parameters are shown in Tables 2 and 3, and the capacitances of different components of
the processor are given in Table 4. The numbers of Hsmall hosts, Hmedium hosts, and Hlarge
hosts in the simulated CDC are both 100.

The VM workload trace dataset is from the Alibaba CDC [33]. The VM traces in the
dataset are recorded by sampling every five minutes. We selected 1000 VMs in one day (a
total of 288 time segments) from the dataset to simulate the consumers’ demands for cloud
services. The simulation was implemented on CloudMatrix Lite [40]. The DAE-based filter
and the SRU algorithm (the source code is available at https://github.com/asappresearch/
sru accessed on 19 October 2022) was based on PyTorch [41].

We set the electricity price as EP = 0.25$/kWh. The SLAV penalty is a static value
puncpu = punmem = 0.01$ [42]. The host should reserve an extra 10% resources for

https://github.com/asappresearch/sru
https://github.com/asappresearch/sru

Electronics 2022, 11, 3377 18 of 25

migrations. Thereby, we set THcpu
up = THmem

up = 0.9. We also set THcpu
down = THmem

down =

THdisk
down = THnet

down = 0.1.

Table 1. Resource parameters of the hosts.

Host Type CPU Memory

Hlarge Intel Xeon CPU (16 cores) 8 GB
Hmedium Intel Xeon CPU (8 cores) 6 GB
Hsmall Intel Xeon CPU (4 cores) 4 GB

Table 2. Base power of the hosts.

Host Type Base Value (kW)

Hlarge 108.2
Hmedium 103.8
Hsmall 98.5

Table 3. Memory power parameters.

Host Type Value Memory (kW)

Hlarge ppeak 0.21736
pidle 0.17576

Hmedium ppeak 0.10868
pidle 0.08788

Hsmall ppeak 0.05434
pidle 0.04394

Table 4. Capacitance of different components of the processor.

Component Capacitance

Chip-Level Mandatory 0.103
Die-Level Mandatory 0.301

On-chip Cache 0.165
Off-chip Cache 3.759

Inter-die 0.595

We combined four overloading detection algorithms (MAD [20], IQR [20], and LR [20]),
three VM selection algorithms (MMT [20,25,30], MC [20,43], and RS [20]), and one VM
placement algorithm (PABFD [20]) as nine baseline methods to compare with our proposed
solution MMCC. All the abovementioned workload detection and selection algorithms
were initially designed for single-core; hence, we modified them to work in the multi-core
hosts by seeing the capacity of the CPU as the sum of its capacities of the cores. Moreover,
The PABFD placement algorithm and its corresponding energy consumption model only
take into account the host’s sinlge-CPU. Therefore, we modified it here to suit our multi-
core (by randomly selecting a core in the CPU for the VM) and multi-resource scenario. The
new PABFD placement algorithm is PABFDM, as shown in Algorithm 3 for the pseudocode.

Electronics 2022, 11, 3377 19 of 25

Algorithm 3 PABFDM algorithm.
Input: hostList, vmList
Output: allocation of the VMs
1: vmList.sortDecreasingUtilization()
2: for each VM in vmList do
3: minPower←MAX
4: for host in hostList do
5: if no SLAV on this host and this host meets the CPU and memory resource requirement

for VM then
6: power← estimatePower(host, VM)
7: if power<minPower then
8: minPower←power
9: end if

10: end if
11: end for
12: allocation.add(VM, host.random(core))
13: end for

return allocation

5.2. Evaluation

The metrics involved in the evaluation are host energy consumption cost, SLAV
penalty cost, and the number of VM migrations. Since the CPU cost of the VM migration
energy consumption belongs to the hosts’ energy consumption during calculation, we used
the number of VM migrations to indirectly measure the migration cost.

Figure 8 shows the host energy consumption for each time slice of the day when all the
methods are used to perform server consolidation. Figure 9 compares the total host energy
consumption over the day when all the methods are used to perform server consolidation.
From Figure 8, it can be seen that the host energy consumption generated by MMCC is
less than that of the baseline methods in most of the time periods. From Figure 9, it can be
seen that the total host energy consumption generated by MMCC in a day is about 10%
less than that of LR-MMT (the best in the baseline methods) and is about 43.9% less than
that of MAD-RS (the worst in the baseline methods). In a cluster composed of multi-core
processor hosts, MMCC can effectively schedule tasks among multiple cores to optimize
energy consumption.

The comparison of CPU and memory SLAV produced by all the methods in a day is
shown in Figure 10. The CPU SLAV generated by MMCC is much smaller than that of the
baseline methods. For example, MMCC produces about 54% less CPU SLAV than that of
MAD-RS and about 39% less than that of LR-MMT. Likewise, the memory SLAV produced
by MMCC is much smaller than that of the baseline methods. A comparison of the total
SLAV cost produced by all methods in one day is shown in Figure 11. MMCC outperforms
the baseline methods. For instance, the total cost generated by MMCC is about 51.7% less
than that generated by IQR-RS (the worst of the baseline methods) and about 33.5% less
than that generated by LR-MMT (the best of the baseline methods). It can be said that
the traditional server consolidation method represented by the baseline methods do not
perform well in a cluster composed of multi-core processor hosts, while MMCC can better
handle this scenario.

Electronics 2022, 11, 3377 20 of 25

Figure 8. Comparing the energy consumption of hosts by all methods in every time segment.

Figure 9. Comparing the total energy consumption hosts by all methods.

Figure 12 shows the number of VM migrations triggered in each time slice of the day
when all the methods are used to perform server consolidation. Figure 13 compares the
total number of VM migrations triggered in a day using all the methods to perform server
consolidation. As can be seen from Figure 13, compared to the baseline method, the number
of migrations triggered by MMCC does not have a large advantage. For example, MMCC
triggers about 9.5% fewer migrations than that of IQR-RS. However, it should be noted
that the VM migrations caused by MMCC in time tk is mainly to deal with the possible
overloaded hosts in the future. Therefore, the SLAV produced by MMCC is much smaller
than that of the baseline methods. In addition, part of the migrations caused by MMCC are
inter-core migrations, which only happen inside the host. The cost of inter-core migration
is negligible. The traditional baseline methods do not consider the inter-core migration in
the case of multi-core processors.

Figure 14 shows and compares the total cost generated by all the methods in one
day. MMCC outperforms the baseline methods. For instance, the total cost generated by

Electronics 2022, 11, 3377 21 of 25

MMCC is about 20.9% less than that of LR-MMT (the best of the baseline methods) and
about 34.4% less than that of MAD-RS (the worst of the baseline methods). MMCC can not
only optimize the energy consumption in the environment of multi-core processor hosts,
but also reduce the SLAV in server consolidation through the host load detection and VM
selection strategies based on the prediction method.

Figure 10. Comparing the SLAV by all methods regarding CPU and memory.

Figure 11. Comparing the total SLAV penalty cost by all methods.

Electronics 2022, 11, 3377 22 of 25

Figure 12. Comparing the number of VM migrations triggered by all methods in every time segment.

Electronics 2022, 11, 3377 23 of 25

Figure 13. Comparing the total number of VM migrations triggered by all methods.

Figure 14. Comparing the total cost by all methods.

6. Conclusions

In this paper, we focus on reducing the total cost of server consolidation in a CDC,
which is composed of multi-core processor hosts, operating costs while ensuring consumers’
QoS. We established a cost model based on multi-core and multi-resource usage in the
CDC, taking into account the host energy cost, VM migration cost, and SLAV penalty cost.
Based on this model, we define the MMCC problem in server consolidation. We designed a
heuristic solution to deal with this problem. We employ a DAE-based filter to preprocess
the VM workload dataset and to reduce noise in the workload trace. Subsequently, an
SRU-based method is used to predict the usage of computing resources, allowing us to
trigger inter-core or inter-host VM migrations before the host enters the state. We design
a muliti-core-aware heuristic algorithm to solve the VM placement problem. Finally,
simulations driven by real VM workload traces verify the effectiveness of our proposed
method. Compared with the existing server consolidation methods, our proposed MMCC
can reduce host energy consumption from 10% to 43.9%, SLAV cost by 33.5% to 51.7%, and
total cost by 20.9% to 34.4% in a multi-core hosts cluster.

In the future, we will first consider a more comprehensive cost model, such as taking
into account the operational life span of the host, the network topology of CDC, and
cooling system.

Electronics 2022, 11, 3377 24 of 25

Author Contributions: Conceptualization, H.L. and Y.S.; methodology, H.L.; software, H.L.; vali-
dation, H.L., L.W., and Y.S.; formal analysis, H.L.; investigation, H.L. and Y.L.; resources, H.L. and
Y.L.; data curation, H.L.; writing—original draft preparation, H.L., L.W., and Y.L.; writing—review
and editing, H.L., L.W., Y.L., and Y.S.; visualization, H.L.; supervision, Y.S.; project administration,
Y.S.; funding acquisition, H.L. and Y.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.62002067),
the Guangzhou Youth Talent Program (QT20220101174), the Department of Education of Guangdong
Province (No.2020KTSCX039), Foundation of The Chinese Education Commission (22YJAZH091), and
the SRP of Guangdong Education Dept (2019KZDZX1031).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Almost 82% Hong Kong Businesses Plan to Keep Remote Working Post-COVID-19. Available online: https://hongkongbusiness.

hk/information-technology/more-news/almost-82-hong-kong-businesses-plan-keep-remote-working-post-covid- (accessed on 27
September 2022).

2. Hong Kong Data Center Market—Growth, Trends, COVID-19 Impact, and Forecasts (2021–2026). Available online: https://www.
reportlinker.com/p06187432/Hong-Kong-Data-Center-Market-Growth-Trends-COVID-19-Impact-and-Forecasts.html (accessed on
27 September 2022).

3. Dhiman, G.; Mihic, K.; Rosing, T. A system for online power prediction in virtualized environments using gaussian mixture
models. In Proceedings of the 47th Design Automation Conference, Anaheim, CA, USA, 13–18 June 2010; pp. 807–812.

4. Ham, S.; Kim, M.; Choi, B.; Jeong, J. Simplified server model to simulate data center cooling energy consumption. Energy Build.
2015, 86, 328–339. [CrossRef]

5. Kavanagh, R.; Djemame, K. Rapid and accurate energy models through calibration with IPMI and RAPL. Concurr. Comput. Pract.
Exp. 2019, 31, e5124. [CrossRef]

6. Gupta, V.; Nathuji, R.; Schwan, K. An analysis of power reduction in datacenters using heterogeneous chip multiprocessors. ACM
Sigmetrics Perform. Eval. Rev. 2011, 39, 87–91. [CrossRef]

7. Lefurgy, C.; Wang, X.; Ware, M. Server-level power control. In Proceedings of the Fourth International Conference on Autonomic
Computing (ICAC’07), Jacksonville, FL, USA, 11–15 June 2007; p. 4.

8. Beloglazov, A.; Abawajy, J.; Buyya, R. Energy-aware resource allocation heuristics for efficient management of data centers for
cloud computing. Future Gener. Comput. Syst. 2012, 28, 755–768. [CrossRef]

9. Rezaei-Mayahi, M.; Rezazad, M.; Sarbazi-Azad, H. Temperature-aware power consumption modeling in Hyperscale cloud data
centers. Future Gener. Comput. Syst. 2019, 94, 130–139. [CrossRef]

10. Chen, Y.; Das, A.; Qin, W.; Sivasubramaniam, A.; Wang, Q.; Gautam, N. Managing server energy and operational costs in hosting
centers. In Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, Banff, AB, Canada, 6–10 June 2005; pp. 303–314.

11. Wu, W.; Lin, W.; Peng, Z. An intelligent power consumption model for virtual machines under CPU-intensive workload in cloud
environment. Soft Comput. 2017, 21, 5755–5764. [CrossRef]

12. Lien, C.; Bai, Y.; Lin, M. Estimation by software for the power consumption of streaming-media servers. IEEE Trans. Instrum.
Meas. 2007, 56, 1859–1870. [CrossRef]

13. Raja, K. Multi-core Aware Virtual Machine Placement for Cloud Data Centers with Constraint Programming. In Intelligent
Computing; Springer: Cham, Switzerland , 2022; pp. 439–457.

14. Economou, D.; Rivoire, S.; Kozyrakis, C.; Ranganathan, P. Full-system power analysis and modeling for server environments. In
Proceedings of the International Symposium on Computer Architecture, Ouro Preto, Brazil, 17–20 October 2006.

15. Alan, I.; Arslan, E.; Kosar, T. Energy-aware data transfer tuning. In Proceedings of the 2014 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, Chicago, IL, USA, 26–29 May 2014; pp. 626–634.

16. Li, Y.; Wang, Y.; Yin, B.; Guan, L. An online power metering model for cloud environment. In Proceedings of the 2012 IEEE 11th
International Symposium on Network Computing and Applications, Cambridge, MA, USA, 23–25 August 2012; pp. 175–180.

17. Lent, R. A model for network server performance and power consumption. Sustain. Comput. Inform. Syst. 2013, 3, 80–93.
[CrossRef]

18. Kansal, A.; Zhao, F.; Liu, J.; Kothari, N.; Bhattacharya, A. Virtual machine power metering and provisioning. In Proceedings of
the 1st ACM Symposium on Cloud Computing, Indianapolis, IN, USA, 10–11 June 2010; pp. 39–50.

https://hongkongbusiness.hk/information-technology/more-news/almost-82-hong-kong-businesses-plan-keep-remote-working-post-covid-
https://hongkongbusiness.hk/information-technology/more-news/almost-82-hong-kong-businesses-plan-keep-remote-working-post-covid-
https://www.reportlinker.com/p06187432/Hong-Kong-Data-Center-Market-Growth-Trends-COVID-19-Impact-and-Forecasts.html
https://www.reportlinker.com/p06187432/Hong-Kong-Data-Center-Market-Growth-Trends-COVID-19-Impact-and-Forecasts.html
http://doi.org/10.1016/j.enbuild.2014.10.058
http://dx.doi.org/10.1002/cpe.5124
http://dx.doi.org/10.1145/2160803.2160867
http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1016/j.future.2018.11.029
http://dx.doi.org/10.1007/s00500-016-2154-6
http://dx.doi.org/10.1109/TIM.2007.904554
http://dx.doi.org/10.1016/j.suscom.2012.03.004

Electronics 2022, 11, 3377 25 of 25

19. Lin, W.; Wang, W.; Wu, W.; Pang, X.; Liu, B.; Zhang, Y. A heuristic task scheduling algorithm based on server power efficiency
model in cloud environments. Sustain. Comput. Inform. Syst. 2018, 20, 56–65. [CrossRef]

20. Beloglazov, A.; Buyya, R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers. Concurr. Comput. Pract. Exp. 2012, 24, 1397–1420. [CrossRef]

21. Li, H.; Li, W.; Wang, H.; Wang, J. An optimization of virtual machine selection and placement by using memory content similarity
for server consolidation in cloud. Future Gener. Comput. Syst. 2018, 84, 98–107. [CrossRef]

22. Li, H.; Li, W.; Zhang, S.; Wang, H.; Pan, Y.; Wang, J. Page-sharing-based virtual machine packing with multi-resource constraints
to reduce network traffic in migration for clouds. Future Gener. Comput. Syst. 2019, 96, 462–471. [CrossRef]

23. Li, H.; Li, W.; Feng, Q.; Zhang, S.; Wang, H.; Wang, J. Leveraging content similarity among vmi files to allocate virtual machines
in cloud. Future Gener. Comput. Syst. 2018, 79, 528–542. [CrossRef]

24. Li, H.; Wang, S.; Ruan, C. A fast approach of provisioning virtual machines by using image content similarity in cloud. IEEE
Access 2019, 7, 45099–45109. [CrossRef]

25. Yadav, R.; Zhang, W.; Kaiwartya, O.; Singh, P.; Elgendy, I.; Tian, Y. Adaptive energy-aware algorithms for minimizing energy
consumption and SLA violation in cloud computing. IEEE Access 2018, 6, 55923–55936. [CrossRef]

26. Hieu, N.; Di Francesco, M.; Ylä-Jääski, A. Virtual machine consolidation with multiple usage prediction for energy-efficient cloud
data centers. IEEE Trans. Serv. Comput. 2017, 13, 186–199. [CrossRef]

27. Esfandiarpoor, S.; Pahlavan, A.; Goudarzi, M. Structure-aware online virtual machine consolidation for datacenter energy
improvement in cloud computing. Comput. Electr. Eng. 2015, 42, 74–89. [CrossRef]

28. Arianyan, E.; Taheri, H.; Sharifian, S. Novel energy and SLA efficient resource management heuristics for consolidation of virtual
machines in cloud data centers. Comput. Electr. Eng. 2015, 47, 222–240. [CrossRef]

29. Rodero, I.; Viswanathan, H.; Lee, E.; Gamell, M.; Pompili, D.; Parashar, M. Energy-efficient thermal-aware autonomic management
of virtualized HPC cloud infrastructure. J. Grid Comput. 2012, 10, 447–473. [CrossRef]

30. Li, Z.; Yan, C.; Yu, L.; Yu, X. Energy-aware and multi-resource overload probability constraint-based virtual machine dynamic
consolidation method. Future Gener. Comput. Syst. 2018, 80, 139–156. [CrossRef]

31. Sayadnavard, M.; Toroghi Haghighat, A.; Rahmani, A. A reliable energy-aware approach for dynamic virtual machine consolida-
tion in cloud data centers. J. Supercomput. 2019, 75, 2126–2147. [CrossRef]

32. Yuan, C.; Sun, X. Server consolidation based on culture multiple-ant-colony algorithm in cloud computing. Sensors 2019, 19, 2724.
[CrossRef] [PubMed]

33. Lu, C.; Ye, K.; Xu, G.; Xu, C.; Bai, T. Imbalance in the cloud: An analysis on alibaba cluster trace. In Proceedings of the 2017 IEEE
International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 2884–2892.

34. Basmadjian, R.; De Meer, H. Evaluating and modeling power consumption of multi-core processors. In Proceedings of the 2012
Third International Conference On Future Systems: Where Energy, Computing and Communication Meet (e-Energy), Madrid,
Spain, 9–11 May 2012; pp. 1–10.

35. Brodersen, R. Minimizing Power Consumption in CMOS Circuits; Department of EECS University of California at Berkeley: Berkeley,
CA, USA. Available online: https://sablok.tripod.com/verilog/paper.fm.pdf (accessed on 27 September 2022).

36. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.; Bottou, L. Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.

37. Lei, T.; Zhang, Y.; Wang, S.; Dai, H.; Artzi, Y. Simple recurrent units for highly parallelizable recurrence. arXiv, 2017,
arXiv:1709.02755.

38. Minartz, T.; Kunkel, J.; Ludwig, T. Simulation of power consumption of energy efficient cluster hardware. Comput. Sci.-Res. Dev.
2010, 25, 165–175. [CrossRef]

39. Jin, Y.; Wen, Y.; Chen, Q.; Zhu, Z. An empirical investigation of the impact of server virtualization on energy efficiency for green
data center. Comput. J. 2013, 56, 977–990. [CrossRef]

40. Li, H.; Xiao, Y. CloudMatrix Lite: A Real Trace Driven Lightweight Cloud Data Center Simulation Framework. In Proceedings
of the 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China,
23–25 October 2020; pp. 424–429.

41. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:
An imperative style, high-performance deep learning library. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 8024–8035.

42. Aljoumah, E.; Al-Mousawi, F.; Ahmad, I.; Al-Shammri, M.; Al-Jady, Z. SLA in cloud computing architectures: A comprehensive
study. Int. J. Grid Distrib. Comput. 2015, 8, 7–32. [CrossRef]

43. Cao, Z.; Dong, S. Dynamic VM consolidation for energy-aware and SLA violation reduction in cloud computing. In Proceedings
of the 2012 13th International Conference on Parallel and Distributed Computing, Applications And Technologies, Beijing, China,
14–16 December 2012; pp. 363–369.

http://dx.doi.org/10.1016/j.suscom.2017.10.007
http://dx.doi.org/10.1002/cpe.1867
http://dx.doi.org/10.1016/j.future.2018.02.026
http://dx.doi.org/10.1016/j.future.2019.02.043
http://dx.doi.org/10.1016/j.future.2017.09.058
http://dx.doi.org/10.1109/ACCESS.2019.2907596
http://dx.doi.org/10.1109/ACCESS.2018.2872750
http://dx.doi.org/10.1109/TSC.2017.2648791
http://dx.doi.org/10.1016/j.compeleceng.2014.09.005
http://dx.doi.org/10.1016/j.compeleceng.2015.05.006
http://dx.doi.org/10.1007/s10723-012-9219-2
http://dx.doi.org/10.1016/j.future.2017.09.075
http://dx.doi.org/10.1007/s11227-018-2709-7
http://dx.doi.org/10.3390/s19122724
http://www.ncbi.nlm.nih.gov/pubmed/31213035
https://sablok.tripod.com/verilog/paper.fm.pdf
http://dx.doi.org/10.1007/s00450-010-0120-6
http://dx.doi.org/10.1093/comjnl/bxt017
http://dx.doi.org/10.14257/ijgdc.2015.8.5.02

	Introduction
	Related Work
	Server Consolidation Cost Models
	Server Consolidation Solutions

	Cost Model and Problem Description
	Cost Model
	VM Migration Cost
	Problem Description

	Solution for MMCC Problem
	VM Workload Prediction
	Host Workload Detection
	VM Selection
	VM Placement

	Performance Evaluation
	Experiment Setup
	Evaluation

	Conclusions
	References

