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Abstract: Keyless systems have replaced the old-fashioned methods of inserting physical keys into 

keyholes to unlock the door, which are inconvenient and easily exploited by threat actors. Keyless 

systems use the technology of radio frequency (RF) as an interface to transmit signals from the key 

fob to the vehicle. However, keyless systems are also susceptible to being compromised by a threat 

actor who intercepts the transmitted signal and performs a replay attack. In this paper, we propose 

a transfer learning-based model to identify the replay attacks launched against remote keyless con-

trolled vehicles. Specifically, the system makes use of a pre-trained ResNet50 deep neural network 

to predict the wireless remote signals used to lock or unlock doors of a remote-controlled vehicle 

system. The signals are finally classified into three classes: real signal, fake signal high gain, and 

fake signal low gain. We have trained our model with 100 epochs (3800 iterations) on a KeFRA 2022 

dataset, a modern dataset. The model has recorded a final validation accuracy of 99.71% and a final 

validation loss of 0.29% at a low inferencing time of 50 ms for the model-based SGD solver. The 

experimental evaluation revealed the supremacy of the proposed model.  

Keywords: artificial intelligence; cybersecurity; remote control; fake signals; replay attack;  

deep learning; ResNet50; transfer learning 

 

1. Introduction 

Rapid technological advancement allows the usage of computers and wireless de-

vices with modern vehicles to increase customer security and convenience [1]. Keyless 

systems are considered a vital component of modern vehicles because they perform sev-

eral functions, such as locking and unlocking the doors, opening and closing the trunk, 

and starting the engine [2]. The first remote keyless system used with a vehicle was intro-

duced in 1982 [3]. Keyless systems have replaced the old fashion methods of inserting 

physical keys into the keyhole to unlock the door, which are inconvenient and easily ex-

ploited by threat actors [4]. Generally, there are two types of keyless systems, remote key-

less entry (RKE) and passive keyless entry (PKE) [5]. Both keyless systems use the tech-

nology of radio frequency (RF) as an interface to transmit signals from the key fob to the 

vehicle. In the RKE system, the driver needs to press the fob button to send the intended 

command to the vehicle, i.e., unlock the door. Then, the authenticated protocol is used to 

validate the vehicle’s owner [6]. However, the PKE system does not require drivers to 

press any button. Still, once the fob becomes close to the proximity distance of the vehicle, 

an authentication protocol establishes before the automated command is sent to the vehi-

cle [7].  

The early keyless system was developed based on static code sent from the key fob 

to the receiver, which is easily compromised by a thread actor who intercepts the trans-

mitted signal and performs a replay attack [6]. A replay attack is also called a playback 

attack, when authorized legitimated data are captured and copied during transmission 
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by a threat actor to be repeated for fraudulent purposes, as illustrated in Figure 1 [8]. Roll-

ing codes attempted to overcome this issue by producing a changed code based on a coun-

ter. Therefore, a new code is generated every time the keyless system is used; however, a 

rolling code is also suspectable to different types of replay attacks [9]. Due to the vulner-

ability of the keyless systems, threat actors can exploit them to steal vehicles or owner 

belongings. For example, United Kingdom police broadcasted a video illustrating how a 

threat actor can steal a vehicle within 1 min using relay devices [10]. Furthermore, increas-

ing the number of installed communication technologies, such as keyless, WiFi, and Blue-

tooth systems in a vehicle, leverages drivers’ and passengers’ convenience and enables 

fast transformation into automation. However, this opens the gate to more opportunities 

for establishing cyberattacks [11]. 

 

Figure 1. Replay Attack Targeting keyless system. 

The theory of the CIA triad model, which is the conditionality, integrity, and availa-

bility, can be used to measure the security level of a system [11]. Conditionality assures 

that data will not be accessed by unauthorized users, programs, or procedures. To guar-

antee that only authorized users can access the data, sufficient control mechanisms are 

used. Integrity has much to do with reliability; thus, unauthorized users must not modify 

the data. Finally, availability ensures that data must be available and not prevented when 

users need it [12]. 

Recently, researchers used different authentication techniques to mitigate and pre-

vent threats on keyless systems, such as authentication using smartphones [13], authenti-

cation using bioinformatics [14], and authentication using blockchain [15,16]. However, 

this field still needs more research to investigate how to resist malicious activities on key-

less systems. 

This research uses transfer learning to enhance the security of remote keyless vehicle 

systems. Transfer learning is a pre-trained neural network that uses existing, generaliza-

ble knowledge from previous related tasks to learn a new task with a small amount of 

data [17]. This research proposed a deep transfer learning based on the ResNet50 deep 

neural network to overcome fake replay attack signals targeting remote keyless systems 

of modern vehicles. Our pre-trained model distinguishes fake signals caused by a threat 

actor and true signals caused by a vehicle’s owner. We evaluated our model using the 

KeFRA 2022 dataset. In addition, we measured the performance of our model using accu-

racy, precision, F1-score, and recall, and we found that our model scored 99.71% for all 

metrics. This reveals the superiority of the proposed model over the existing models in 

the same area of study. For the novelty of using transfer learning in our research, in addi-

tion to the use of signal frequency images describing the real and fake signals, we have 

noticed a limitation in research on applying transfer learning to enhance the security of 
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remote keyless systems on vehicles. Although transfer learning shows its power in detect-

ing/classifying cyberattacks in security sectors, there is still a need to use it with remote 

keyless systems, as we did in this research. In addition, our ResNet50-based model scored 

high-performance indicators compared with the most recent research models in the de-

tection/classification of cyberattacks in the security field. 

The rest of this paper is arranged as follows: Section 2 summarizes the related re-

search work. Section 3 elaborates on the proposed detection system modeling and archi-

tecture. Section 4 provides comprehensive experimental results and discussion. Finally, 

Section 5 concludes the research article. 

2. Literature Review 

Modern vehicles are designed to rely on the keyless system when starting the engine 

and unlocking and locking doors instead of using traditional keys for the convenience of 

vehicle owners. However, there is a cost to using such technology because keyless systems 

are susceptible to various attacks, such as replay, relay, and man-in-the-middle (MITM) 

attacks [18]. 

Cryptography could be used to eliminate replay attacks, as the authors of [6] devel-

oped an encryption algorithm to prevent replay attacks on remote keyless vehicles. Their 

model was built based on asymmetrical and hashing methods to allow authentication be-

tween the vehicle and the owner. The authors of [19] also used cryptography methods to 

mitigate replay attacks in remote keyless systems by enhancing the performance of the 

KeeLoq algorithm. However, the authors of [4] illustrated that encryption techniques are 

insufficient for authentication, and there is a need for more security layers; therefore, they 

proposed the HODOR technique to detect attacks targeting keyless systems using a clas-

sifier algorithm they implemented. The vehicle owner needs to hold the door handle, and 

radio frequency fingerprinting is used to detect unauthorized commands based on col-

lected features. 

To enhance the authentication mechanism of the remote keyless system, [20] intro-

duced an authentication protocol based on challenge-response pairs integrated with the 

RKE system. Therefore, the command sent from the key fob to the vehicle is first verified 

then a challenge is computed. Next, the computed challenge is sent from the vehicle to the 

key fob. Finally, the key fob computes the challenge and sends the response to the vehicle 

that verifies the response and executes the command. 

Smart vehicles that use a controlled area network (CAN) for communication pur-

poses are vulnerable to cyberattacks since CAN protocol has limited security mechanisms 

to provide comprehensive, secure communication [21]. There are several reasons for CAN 

vulnerabilities of cyberattacks, such as that the exchanged messages between the physical 

components are not encrypted, and all components are connected with the same CAN 

bus; therefore, the same message can be broadcasted to all components [21]. Aldhyani et 

al. [22] implemented a deep learning model that integrates a convolution neural network 

(CNN) with long short-term memory (LSTM) to defend the self-driving car network from 

various cyberattacks, such as packets, replaying, and spoofing attacks. The authors eval-

uated their model using a collected dataset from real network traffic of CAN that was 

injected with the cyberattacks above. They achieved 97.30% using the classification accu-

racy metric. 

The authors of [23] proposed a biometric method to enhance the security of the key-

less system. Their model integrates two security levels: face recognition and fingerprint. 

In the face recognition phase, the driver’s face is captured using a camera attached to the 

vehicle door, and a spoofing algorithm is used to perform anomaly detection to identify 

the legitimacy of the driver. In the fingerprint phase, the driver’s fingerprint is scanned 

using another spoofing algorithm; therefore, if the fingerprint is confirmed, the driver can 

access the vehicle. However, this model has a challenge in finding the perfect position of 

the camera used for face recognition. 
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Blockchain is a recent technology that can also be used to enhance the security of the 

keyless system. It is an advanced technology built to increase the security of pair-to-pair 

networks. Blockchain is considered a decentralized distributed system. It is a well-known 

technology used to secure transactions in the cryptocurrency market, such as Bitcoin [24]. 

The authors of [8] proposed an authentication model based on a Blockchain system. Basi-

cally, the transmitted data between the key fob and the vehicle is encrypted using hash 

algorithms. The authors compared secure hash algorithms: SHA-1, SHA-256, SHA-512, 

and message digest (Md5). 

Machine learning (ml) techniques can be used to mitigate the impacts of attacks tar-

geting keyless systems. The authors of [25] implemented a data-intensive model using ml 

to prevent relay attacks on the PKE system. The authors developed their models based on 

artificial neural networks (ANN), K-nearest neighbors (KNN), support vector machines 

(SVM), and decision trees. They trained their ml algorithms using the following features: 

date, time, elapsed time, location, type of day, key fob signal strength, and key fob accel-

eration. According to the authors, the decision tree outperformed the other ml algorithms 

and reached 99% accuracy based on the classification accuracy metric. 

Most keyless systems use radio-frequency identification (RFID) technology as an in-

terface to transmit a command from the key fob to the vehicle. However, RFID could be 

vulnerable to various malicious attacks, such as relay attacks. Therefore, the authors of 

[26] used several security features to proximity identify the location of the vehicle based 

on contextual information, such as global positioning system (GPS) coordinates, receiving 

signal strength indicator (RSSI), and WiFi access points. Therefore, their technique helps 

to overcome the vulnerability of RFDI, which can be compromised using a variety of at-

tacks, such as relay attacks. Moreover, the authors of [10] proposed a context detection 

method to detect relay attacks on passive keyless entry systems using a smartphone. 

Therefore, a secure connection between the vehicle owner’s smartphone and the vehicle 

is established using Bluetooth low energy (BLE) technology to track the location of the 

vehicle’s owner and determine their proximity to the vehicle, then evaluate the legality of 

the owner. 

The authors of [27] proposed a timestamp-based method to defend remote keyless 

systems from replay attacks. The authors enhanced the rolling-code algorithm by adding 

a timestamp factor (time in seconds) to the generated code. Therefore, each time the roll-

ing-code algorithm generates code, the time in seconds is added as a parameter with the 

generated code. Even though a threat actor captures the generated code, they still need to 

know when the code was generated. However, this method requires the clock to be syn-

chronized between the sender and receiver. Table 1. lists a summary of the most recent 

proposed solutions to leverage the security of the keyless system. 

Table 1. Summary of recently proposed solutions for the security of the keyless system. 

Research Proposed Solution 

[6] Poolat et al. Asymmetrical and hashing methods 

[19] Madhumitha et al. Enhanced KeeLoq algorithm 

[4] Kyungho et al. HODOR 

[20] Jinita et al. Challenge-response pairs 

[22] Aldhyani et al.  CNN and LSTM 

[23] Béatrix-May et al. Biometric 

[8] Husain et al. Blockchain 

[25] Usman et al. ML 

[26] Juan et al. Contextual information 

[10] Jing et al. Contextual information 

[27] Greene et al. Timestamp-based 

3. Detection System Modeling 
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In this research, we aim to develop a new detection system for the replay attack sig-

nals (false signals) over the remote-controlled keyless entry used to lock or unlock the 

vehicle doors. The overall system modeling architecture is provided in Figure 2. Accord-

ing to the figure, the system can mainly be decomposed into three subsystems: (a) image 

dataset and preprocessing subsystem, (b) transfer learning subsystem, and (c) assessment 

and detection subsystem. 

 

Figure 2. The overall architecture for the proposed detection system. 

3.1. Image Dataset and Preprocessing Subsystem 

In this research, we have used the KeFRA-2022 Image dataset [28] of the Ad hoc com-

munication signals of remote keyless entry (RKE) used to lock or unlock doors distantly. 

Specifically, a key fob, a small handheld remote-control device that controls a remote key-

less entry system of a 2016 model vehicle, was used to produce the real experimentation 

signals collected in the dataset (110 samples, known as real signal). Moreover, a Hack RF-

SDR, an open-source remote-control hardware platform that acts as an attacker, was used 

in a replay attack mode to produce the fake signals in the replay scheme. Two types of 

fake signals were produced: Fake_Signal_High_Gain (110 samples, resulting from config-

uring the Hack RF-SDR with high radio frequency (RF)) gain, and, Fake_Sig-

nal_Low_Gain (120 samples, resulting from configuring the Hack RF-SDR with low radio 

frequency (RF). Finally, the dataset examples are modeled as RGB bitmap images of 1288 

X 421 pixels with 3-channels-pixel. 

Figure 3 demonstrates three samples of the KeFRA-2022 Image dataset: (A) real re-

mote signal, (B) Fake_Signal_Low_Gain, and (C) Fake_Signal_High_Gain. The differences 

between the signals are very deep, requiring a powerful deep neural network such as the 

ResNet50 CNN used in this research. 
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Figure 3. Three samples of the KeFRA-2022 Image dataset: (A) real remote signal (Green), (B) 

Fake_Signal_Low_Gain (Orange), and (C) Fake_Signal_High_Gain (Blue). 

Then, once the dataset is acquired, it undergoes a number of image preprocessing 

stages before it can be handled by the deep neural network at the next subsystem. These 

include: 

 Image Resizing: All images have been resized to accommodate the input layer of 

pre-trained ResNet50 CNN. Therefore, the original size of the image samples, 1288 

× 421 × 3, was downsized to 224 × 224 × 3; 

 Image augmentation: This is a process concerned with applying simple and com-

plex image transformations in order to increase the number of data samples in the 

dataset. Several image transformations were applied here, including (1) random 

reflection axis X, (2) random reflection axis Y, (3) random image rotation using min-

max degrees, (4) random image rescaling using min-max factors, (5) random hori-

zontal translation using min-max pixels, and (6) random vertical translation using 

min-max pixels. Since the number of images in the accumulated dataset is relatively 

small, with a small frequency for each class (340 images in total distributed in 110 

images for the real signal, 110 images for the fake signal with high gain, and 120 

images for the fake signal with low gain). Therefore, the images in the dataset have 

undergone the image argumentation phase to increase the number of images and 

improve the learning process of the employed classifier. The images were subject 

to six transformation processes, including (1) random reflection axis X, (2) random 

reflection axis Y, (3) random image rotation using min-max degrees, (4) random 

image rescaling using min-max factors, (5) random horizontal translation using 

min-max pixels, and (6) random vertical translation. This, in turn, has resulted in 

increasing the frequency of images for each class by a factor of 6. The following 

A 

B 

C 
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figure shows the frequency graph image before and after augmentation. Figure 4 

shows the frequency graph image of the classes contained in the dataset before and 

after applying image argumentation processes. The total number of images before 

and after the data argumentation (using 6 different transformations): (1) before the 

data argumentation, 340 images, and (2) after the data argumentation, 2040 images; 

 

Figure 4. The frequency graph image of the classes contained in the dataset before and after apply-

ing image argumentation processes. 

 Image Shuffling: All images have been randomly redistributed before starting the 

learning process. This is necessary to ensure that each data sample creates an “inde-

pendent” change in the model without being biased by the same points [29]; 

 Image Distribution: Finally, the dataset is divided into two separate datasets: (A) 

training dataset (90% of the images in the dataset) and (B) testing dataset (10%) of the 

images in the dataset). Five-fold cross-validation (CV) was implemented to test the 

effectiveness of the learning model and provide a re-sampling procedure to evaluate 

a model in case of limited data [30]. The valuation process is repeated five times using 

different random validation sets (fold) using a Five-fold CV. For each validation ex-

periment, the performance is evaluated and recorded for the specific fold. Finally, the 

overall performance is evaluated as the average of all experiments (i.e., five folds). 

To ensure the random distribution for splitting data for training and testing, we use 

the DivideRand algorithm [31] implemented in MATLAB to divide targets into sets 

using random indices. DivideRand takes the number of targets to divide up, the ratio 

of vectors for training, the ratio of vectors for validation, and the ratio of vectors for 

testing, and returns the training indices, the validation indices, and the test indices. 

3.2. Transfer Learning Subsystem 

In this subsystem, we leverage the transfer learning technology to gain the benefits 

of the pre-trained deep convolutional neural networks. In transfer learning, a model de-

veloped for a task is reused as the starting point for a model on a second task. However, 

fine-tuning is required for the learning hyperparameters employed by pre-trained CNN 

to accommodate the new learning tasks [32]. Figure 5 shows the main idea of the transfer 

learning technique where the core part of network A (transfer parameters) is frozen and 

transferred to network B. The adjustment will be performed at the hyperparameters of the 

output fully connected layer that is tuned to accommodate the output for the new classi-

fication task (at network B). 
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Figure 5. Demonstration of transfer learning technique where all layers in networks A and B are 

identical except for the output layer, which is tuned to fit the new classification task. 

In this work, we are utilizing the transfer learning of ResNet-50 CNN, which is pre-

trained on the ImageNet dataset [33] after preprocessing the collected dataset to fit into 

the input layer of ResNet50. Fine-tuning for the network hyperparameters at the output 

layer is performed to accommodate the output of our three-classes classification task in 

this research (real signal, fake signal high gain, and fake signal low gain). Figure 6 demon-

strates the developmental stages of the proposed learning model subsystem. Once the 

images are preprocessed and resized to 224 × 224 × 3, they are fed through the 50 frozen 

residual layers. Finally, proper tuning and other learning parameters are performed for 

the fully connected layer and classification layer. 

 

Figure 6. Demonstration of developmental stages of the proposed learning model subsystem. 

The other learning hyperparameters are configured as follows: the learning rate (� =

0.001), solver = {Adam optimizer; stochastic gradient descent (SGD) optimizer; root mean 

squared propagation (RMSProp) optimizer}, maximum number of epochs = 100 each with 

38 iterations (total number of iterations = 3800), and mini-batch size = 8. Moreover, the 

models were developed, trained, and tested using MATLAB R2021b system on a high-

performance commodity laptop with Windows 11 professional, Intel I7 of 11th Gen, 16 

GB of memory, and NVIDIA GeForce RTX 3050 Ti GPU. 

3.3. Assessment and Detection Subsystem 

Like any other learning-based system, its performance must be assessed to ensure its 

effectiveness and readiness for deployment and operation in a real-time environment to 



Electronics 2022, 11, 3376 9 of 14 
 

 

provide the intended functionality. Several common evaluation factors are commonly 

used to assess the performance of the learning-based models, such as the model’s positive 

and negative rates (confusion matrix analysis), the model accuracy, the model precision, 

the model sensitivity (recall), and the model inferencing time (detection time, generated 

by the simulation platform). These factors have been extensively defined and described in 

the literature [34]. 

Finally, once the system is assessed and assured to reach the intended performance 

in order to provide the intended detection functionality, it can be deployed to perform a 

real-time detection process for the replay attacks targeted against the remotely accessed 

locking control system for the vehicle. In this work, the deployed system should be able 

to receive any signal and provide the proper classification for every remote signal as a real 

signal (by the key fob) or a fake signal (by the attacker), which is with low or high-fre-

quency gain. 

4. Experimental Results and Discussion 

In this section, we provide results from evaluating the proposed overall 3-class de-

tection system to identify the replay attacks launched against remote keyless controlled 

vehicles. In Figure 7, we demonstrate the 3-class confusion matrix analysis for the pro-

posed transfer learning based ResNet50 model using three optimizers (solver) techniques: 

(A) using SGD solver, (B) using Adam solver, and (C) using RMSProp solver. The matrix 

considers the three types of remote signals: the real signal (non-malicious), the fake signal 

with high frequency (HF/malicious), and the fake signal with low frequency (LF/mali-

cious). According to the figure, the model-based SGD solver recorded 339 true classifica-

tions (99.71%) and 1 false classification (0.29%), the model based-Adam solver recorded 

320 true classifications (94.12%) and 20 false classifications (5.88%), and the model-based-

RMSProp solver recorded 270 true classifications (79.41%) and 70 false classifications 

(20.59%). 

   

Figure 7. Confusion matrix analysis for the proposed transfer learning based ResNet50 model using 

three optimizers (solver) techniques: (A) using SGD solver, (B) using Adam solver, and (C) using 

RMSProp solver. 

Furthermore, Table 2, along with Figure 8, compares the three models (model-based 

SGD solver, model based-Adam solver, and model-based- RSMProp solver) in terms of 

seven performance indicators, including the number of correctly classified samples (NCC 

= TP + TN), the number of Incorrectly classified samples (NIC = FP + FN), the overall de-

tection accuracy (ACC), the overall detection precision (PRC), the overall detection sensi-

tivity/recall (RCL), the overall detection harmonic mean/F1 Score (F1S), and the overall 

detection (inferencing) overhead/time (INF). Based on the results obtained from the con-

fusion matrix and the other evaluation metrics, it can be clearly seen that the model-based 

SGD solver outperforms other models in all the performance factors. However, 
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inferencing time shows very close values as it is mainly affected by a deep convolutional 

neural network (i.e., ResNet50) with a slight difference impacted by changing the solver 

algorithm. 

Table 2. Summary of performance indicators of the three model-based techniques. 

Model NCC NIC ACC PRC RCL F1S INT 

SGD Based 

Model 
339 1 99.71% 99.71% 99.71% 99.71% 50 ms 

Adam Based 

Model 
320 20 94.11% 94.14% 94.12% 94.12% 52 ms 

RSMProp Based 

Model 
270 70 79.41% 79.65% 79.39% 79.45% 55 ms 

    

Figure 8. Comparing the performance indicators of the three model-based techniques. 

Based on the earlier evaluation and analysis, the model-based SGD solver is selected 

to be deployed in the final detection model. Therefore, the next results will focus on the 

detection of fake replay attack signals on remote keyless controlled vehicles using pre-

trained ResNet50 CNN with the SGD solver technique. Moreover, Figure 9 illustrates the 

classifier performance plots for the loss function and classification accuracy trajectory for 

100-epochs training using the SGD solver technique. According to the figure, both evalu-

ation metrics (i.e., loss function and classification accuracy) consistently advance along 

with the evolving training epochs. Nevertheless, the detection loss function showed a de-

creasing tendency toward the minimum loss (i.e., zero MSE). In contrast, the detection 

accuracy function exhibits an increasing tendency toward the highest possible detectabil-

ity (i.e., 100% accuracy). Moreover, both functions appeared to be saturated after almost 

75 training epochs recording an error value of ≤0.5% and an accuracy rate of ≥99.5%. 

While the intrusion detection systems for automated controlled vehicles are widely 

investigated and studied in the literature, to the best of our knowledge, this is the first 

work that focuses mainly on the detection of fake signals over the remote-controlled elec-

tronic access system of a model vehicle. The majority of state-of-the-art detection models 

focused on intrusion/cyberattack detection on the whole control system in the vehicles 

(such as [35–37]) or the controller area network (CAN) for connected vehicles (such as [38–

40]). Nevertheless, there are some other related models that, to some extent- provide com-

parable detection systems to our proposed system. Table 3 presents a comparative analy-

sis of the proposed and other state-of-the-art models in the same area of study to provide 

more insights into the solution approach. The table compares the models in terms of learn-

ing approach, number of classes, detection accuracy, detection precision, and detection 

recall. Furthermore, the table considers the comparison of the proposed model with six 

other models, including (1) Roh et al. model [41], which is implemented using a hybrid 

deep learning technique comprising the use of the convolutional neural network (CNN) 

along with the long, short-term memory (LSTM); (2) Tariq et al. model [42], which is called 

CANTransfer and implemented using the transfer learning technique of deep cascaded 

model comprising several CNN-LSTM units; (3) Javed et al. model [43], which is called 

CANintelliIDS and implemented using convolutional attention incorporated with gated 
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recurrent neural network (GRU); (4) Song et al. model [44], which is implemented using a 

deep convolutional neural network (DCNN); (5) Kang et al. model [45], which is imple-

mented by incorporating the deep neural networks with deep belief networks (DNN-

DBN); and finally, (6) Seo et al. model [46], which is called GIDS-CNN (Generative Ad-

versarial Nets IDS -CNN). According to the table, the proposed model outperforms others 

in several performance indicators. 

 

Figure 9. Loss function trajectory vs. classification accuracy trajectory for 100-epochs training using 

SGD solver technique. 

Table 3. Comparing the performance of our proposed model with existing detection models. 

Research ML Model Number of Classes Accuracy Precision Recall 

Roh et al. [41] CNN-LSTM Two 92.03% - - 

Tariq et al. [42] CANTransfer Two - 99.00% 91.00% 

Javed et al. [42] CANinyelliIDS Two - 93.69% 93.91% 

Song et al. [44] DCNN Two - 87.97% 88.97% 

Kang et al. [45] DNN-DBN Three 98.00%   

Seo et al. [46] GIDS-CNN Three 98.00% 98.00% 98.00% 

Proposed method ResNet50 CNN Three 99.95% 99.71% 99.71% 
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5. Conclusions and Remarks 

An autonomous intelligent detection system to recognize the replay attacks (play-

back attacks) over a remote keyless entry (RKE) of a remotely controlled vehicle has been 

suggested, implemented, and evaluated in this paper. The proposed system leverages the 

power of transfer learning techniques for the ResNe50 deep convolutional neural network 

(DCNN) that is pre-trained on the ImageNet dataset. Fine-tuning for the output and clas-

sification layers has been performed to fit the new classification task. Moreover, several 

image preprocessing processes have been implemented and performed before the input 

layer of ResNet50 to ensure the readiness of input images for the learning and validation 

process via DCNN. The system aims to uncover the replay attack signals (fake signals) at 

low and high gain with a fast and high detection rate. The experimental evaluation re-

ported high-performance metrics for the proposed detection system recording a 99.71% 

of classification accuracy at a very low detection overhead. Furthermore, the comparison 

with other existing models indicated the supremacy of the proposed detection system in 

several performance factors. 
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