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Abstract: The advancing applications based on machine learning and deep learning in communica-
tion networks have been exponentially increasing in the system architectures of enabled software-
defined networking, network functions virtualization, and other wired/wireless networks. With data
exposure capabilities of graph-structured network topologies and underlying data plane informa-
tion, the state-of-the-art deep learning approach, graph neural networks (GNN), has been applied
to understand multi-scale deep correlations, offer generalization capability, improve the accuracy
metrics of prediction modelling, and empower state representation for deep reinforcement learning
(DRL) agents in future intelligent network management and orchestration. This paper contributes a
taxonomy of recent studies using GNN-based approaches to optimize the control policies, including
offloading strategies, routing optimization, virtual network function orchestration, and resource
allocation. The algorithm designs of converged DRL and GNN are reviewed throughout the selected
studies by presenting the state generalization, GNN-assisted action selection, and reward valuation
cooperating with GNN outputs. We also survey the GNN-empowered application deployment in the
autonomous control of optical networks, Internet of Healthcare Things, Internet of Vehicles, Industrial
Internet of Things, and other smart city applications. Finally, we provide a potential discussion on
research challenges and future directions.

Keywords: deep reinforcement learning; graph neural networks; management and orchestration;
offloading strategies; routing optimization; software-defined networking; virtual network functions

1. Introduction

The roles of machine learning, deep learning (DL), and deep reinforcement learning
(DRL) have been utilized to complete the requirements of intelligent proactive/reactive
policy orchestration [1,2], prioritization of activating ultra-reliable low-latency commu-
nications [3], cloud/edge intelligence [4], and zero-touch network service management
in future autonomous control systems [5–7]. With data exposure capabilities from (1)
service-based architectures, (2) modern communication networks (5G and beyond), and
(3) softwarized/virtualized enablers using software-defined networking (SDN)/network
functions virtualization (NFV), data-driven (Euclidean or non-Euclidean structures) mod-
elling has been popularized in the confluence of using artificial algorithms for optimization,
prediction, or policy creation [8–11]. Numerous deployment platforms, standardization
releases, and research studies have continuously explored and greatly exploited better
performance metric evaluation, e.g., Quality of Service (QoS), to fully integrate the in-
telligent models with real-time communication systems [12–17]. However, a particular
DL/DRL model can only cover a limited scope of application services within the utilization
of mostly Euclidean structural data/states, which remains a shortcoming for autonomous
real-time control in graph-structured input scenarios (e.g., directed, undirected, acyclic,
and cyclic types).
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To overcome the limitations of traditional mechanisms, the graph-considered meth-
ods are motivated to improve (1) the autonomy of feature-extracted state observations in
DRL-based agents, (2) routing optimization, (3) communication and computation resource
allocation, (4) virtual network function (VNF) deployment in service function chaining
(SFC), (5) virtual network embedding in SDN/NFV-enabled networks, etc. [18–22]. The re-
lations between users, cell association, VNF instances, virtual links, nodes of routing paths,
and physical server storage/computing capacities are highly relevant to non-Euclidean
data, which requires the expansion of graph-based approaches.

Graph neural networks (GNN)-based approaches take the fast-growing and heteroge-
neous taxonomies of the user-centric ultra-dense and Internet of Things (IoT) deployment
into consideration. The significant objective is to jointly illustrate how the multi-scale deep
edge relations between network nodes benefit the control reliability. By providing op-
tions and preferences to extract, generalize, and represent both non-graph and graph data
into network modelling systems, the management and orchestration entities are greatly
efficient and applicable with a deeper realization of the data plane and support to better
control scalability.

Therefore, in this paper, we aim to provide a comprehensive review as a descriptive
textual narrative synthesis by constructing homogeneous subgroups of essential manage-
ment and orchestration objectives based on GNN integration scenarios. We describe GNN
as a key enabler to activate intelligent non-Euclidean data-driven modelling in (1) manage-
ment entities of core systems, (2) SDN controllers, or (3) NFV orchestrators. We queried
primary papers via GoogleScholar search engine with a combination of keywords such as
“graph neural networks”, “communication networks”, “SDN”, “NFV”, “management and
orchestration”, “offloading decisions”, “service function chaining”, “routing optimization”,
“resource allocation”, “VNF”, and other terms of variant GNN [23]. We finally selected
67 key papers, published between 2019 and 2022 inclusively, to construct the review struc-
tures and enable the key review ideas in Sections 3–6. The contributions in this survey are
summarized as follows:

• The relations between (variant) GNNs and communication networks are presented by
discussing the specificity of input network topologies and device/resource abstraction.
The possible input features, processing flows, and target applications (e.g., congestion
prediction, rule configuration) in the network management and orchestration entities
are specified for collaborating with GNN execution.

• We categorize GNN-based modelling domains into 4 sub-section, namely (1) task
offloading, (2) routing optimization, (3) VNF orchestration, and (4) resource allo-
cation, which are essential core policy controls in SDN/NFV-enabled and other
wired/wireless networks. In each sub-section, we emphasize the GNN-enabled system
architectures, system models, working flows, algorithm designs, simulation environ-
ment, and the key performance metrics for evaluation. We prioritize the summaries
on enabler technologies, observable GNN components in networking, and other com-
plementing methods (e.g., reinforcement learning and encoder-decoder).

• We highlight the characteristics of several application deployments using GNN-
empowered mechanisms in communication perspectives. The selected applications
include autonomous control in optical networks, Internet of Healthcare Things, Inter-
net of Vehicles, Industrial IoT, and other smart city services.

• We identify the challenging research problems and future directions. To the best of
our knowledge, we suggest several improving and extending features in GNN-based
approaches for next-generation autonomous network modelling.

The rest of this paper is organized as follows. Section 2 presents the preliminary studies
on GNN architectures and the selected variants. Section 3 discusses the relations between
GNN and communication networks. Section 4 presents the main contribution of modelling
domains using GNN-based approaches. The review of the confluence between GNN and
DRL for autonomous network control is also included in Section 4. The selected application
deployment using GNN is given in Section 5. Section 6 suggests research challenges and
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future directions. Finally, the conclusion is summarized in Section 7. Figure 1 presents the
structure of this paper. Table 1 provides the acronyms used in this paper.
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Table 1. List of Important Acronyms.

Abbreviation Description

CNN Convolutional Neural Networks
DL Deep Learning

DRL Deep Reinforcement Learning
EC Edge Computing

GAT Graph Attention Networks
GCN Graph Convolutional Networks
GNN Graph Neural Networks
IoT Internet of Things

MPNN Message Passing Neural Networks
MDP Markov Decision Process
MLP Multi-Layer Perceptron
NFV Network Functions Virtualization
QoS Quality of Service
SFC Service Function Chaining
SDN Software-Defined Networking
VNF Virtual Network Functions

2. Preliminary Studies on GNN

In this section, the background studies on GNN are given in terms of architectures and
variants. The architectures cover the general execution phases of input graphs, message
passing (aggregation and update), and final output (embedding of node, edge, and graph),
as an overview insight towards the networking domain specification in Section 4. The
following Section 2.1 will describe GNN architectures, which differentiate the primary
purposes from other architectures such as transformers, capsule networks, and convolu-
tional neural networks (CNN). Transformers act as GNNs with a multi-head attention
mechanism of iterative queries, keys, and values [24,25]. GNN is known for constructing
graph representations through neighboring aggregation; in addition, the transformer with
multi-head attention activates the joint modelling of information from different represen-
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tation subspaces. For capsule networks, the initial architecture started with transforming
autoencoder, and further modifications lead to CapsNets which contrary to CNN with
attention [26]. CNN [27,28] designed an architecture for allowing kernels/filters/feature-
detector to learn features and correlate the neighboring information in Euclidean data. A
GNN variant, namely graph convolutional networks (GCN) uses the same operators to
learn features, generate node connectivities, and handle the representations/generalization
in non-Euclidean data. To specify each architecture difference and how the variants opti-
mize the performances in particular application domains (e.g., graph types and scaling),
Section 2.2 presents the selected variants of GNNs that applied by recent studies to the
control modelling of network management and orchestration, including (1) GCN, (2) graph
attention networks (GAT), and (3) aggregation with multi-layer perceptron (MLP).

2.1. GNN Architectures

Based on superior studies of GNN in [29–32], this sub-section presents an overview
of context and execution phases. GNN has been deployed rapidly to investigate complex
underlying patterns in non-Euclidean data inputs and create graph-level modelling systems.
The entire graph is denoted as G(V, E), where (1) ∀v ∈ V is the set of nodes that are
provided as input and (2) E is the set of connecting edges. Let N(v) represent a subset
of neighboring nodes to the current node v. In the initialization phase, the input graph
is fed to generate an association of the state vector. With massive sharing/connecting
between nodes and edges as states, the execution phases of the graph-structured data
process iteratively through message passing between directed node interactions to obtain
the node information. The number of layers in GNN is associated with the performance of
neighborhood hops and iterative message passing to fully construct the overall structure
relations. However, the parameters/hyperparameters setting, number of layers, and deep
network structures need to be configured appropriately to mitigate the over-smoothness
problems. The process starts with directed neighbor u where ∀u ∈ N(v), until the main
node v consists of aggregated features that have a complete understanding of neighboring
instances and path buffers. The update function at timestep-k, denoted as UPDATEk, uses
two primary variables to obtain the next hidden state hk+1

v , including (1) the information
of hidden state in node v at timestep-k, denoted as hk

v, and (2) the aggregation function
AGGREGATEk to all the neighboring nodes ∀u of hk

u. The output phase can be processed
to obtain node-level, edge-level, or graph-level features. Each level feature can refer to the
specifications on Open vSwitch/router buffers, path performances, or central congestion
level for (1) node clustering, (2) link prediction, or (3) graph classification tasks, respectively.
Extensively, the primary objective of sub-component GNN, e.g., message passing neural
networks (MPNN), can be referred to as the embeddings of fixed-dimensional vectors,
which comprises the information on graphs, elements, or connections [30,33]. Equation (1)
presents the overview formulation of GNN hidden state updates.

hk+1
v = UPDATEk

(
hk

v, AGGREGATEk
({

hk
u, ∀u ∈ N(v)

})
(1)

Furthermore, graph studies have been modified in several ways for large graphs, single
fixed graphs (transductive), or dynamic graphs (inductive). GraphSAGE [32] presents
the inductive representation learning that processes through 3 significant steps, such
as (1) sample k-neighboring nodes and depth, (2) aggregate feature information for a
single vector in node v from ∀u ∈ N(v), and (3) preserve the entire graph-structured
context. By sampling and aggregating features from the node’s neighbors, the learning
model aims for handling large graphs with low-dimensional vector embeddings, node
classification/clustering, and link prediction. GraphSAGE requires the input of (1) graph,
(2) nodes, (3) features, (4) depth K, (5) weight metrics Wk from ∀k ∈ {1, 2, .., K}, (6) non-
linearity σ, (7) defined aggregator functions, and (8) neighbors’ determination. Within
each node v ∈ V, the differentiable aggregation and update functions are expressed in
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Equations (2) and (3). Other variants that have been used in the selected network modelling
studies will be presented in the following sub-section.

hk
N(v) ← AGGREGATEk

({
hk−1

u , ∀u ∈ N(v)
})

(2)

hk
v ← σ(Wk·[hk−1

v ‖hk
N(v)]) (3)

2.2. GNN Variants

In this sub-section, the variants, that are used in the selected complementary literature
on network modelling, are specified by different graph types (e.g., directed, undirected,
heterogenous, homogeneous), scale, and modification on aggregation/update functions.
In [29], an in-depth taxonomy of GNN is given by computational modules of propagation,
sampling, and pooling. The classification criteria are explicit and thorough, including
(1) propagation: convolution, recurrent, or skip connection, (2) sampling: node, layer,
or subgraph, and (3) pooling: direct or hierarchical. The selected variants are based on
the applicability in network service and management applications, which appeared to
be in the propagation module. The determinations of the selected variants are based on
the taxonomy of ways to capture both features and network topology information. The
modifying architecture on aggregation/update functions is given as follows.

GCN [34,35] is classified as a spatial/spectral-based method (depending on convolu-
tion types) in the convolution operator, which considers the one-step neighboring of the
selected node to observe the aggregated features. This variant uses a sum of normalized
neighboring and a self-loop function as an updating mechanism. Equation (2) presents
the overview formulation of GCN with definitive aggregation and update functions. The
normalizing constant for the edge N(u) and N(v) is represented as cu,v that further equal
to the degree of nodes, as

√
|N(u)||N(v)|. Within each node v ∈ V, the hash function of

neighboring embedding summation is used; furthermore, in terms of layer-like functions,
the expression can be replaced as Equation (4). Weight matrix and non-linear activation are
used for self-loop updates and aggregation.

hk
v = σ(∑v∈N(u)∪{u}

1
cu,v

hk−1
v Wk−1) (4)

GAT [24,36] creates a differentiable weight value αu,v for multi-level neighboring nodes
when executing the aggregation. The attention mechanism learns the significance of weight
between nodes, which emphasizes each link specifically. Equation (5) shows the replacing
aggregated message for GAT by an attention-weight mechanism to neighboring subset. The
aggregated features from hv are concatenated to acquire aggregated message AggMN(u).
k-independent attention (s) can assign to emphasize node relations to the head. In [36], the
experiments on transductive and inductive learning are given by comparing with state-
of-the-art approaches from (1) semi-supervised classification GCN [34], (2) GraphSAGE-
GCN, (3) GraphSAGE-LSTM, etc. [32]. The study used datasets of (1) Cora, (2) Citeseer,
(3) Pubmed, and (4) protein–protein interaction (PPI). The comparison metrics included
(1) the classification accuracies and (2) micro-averaged F1 scores. Moreover, in [30,37],
authors presented the utilization of MLP as an aggregator. MLP uses feedforward networks
of the neighboring subsets, denoted as MLP(hv), to modify the aggregation procedures.
Equation (6) presents the representative process by total considerations of learnable param-
eters and assigning each neighboring node state through MLP(·) function.

AggMN(u) = ∑v ∈ N(u)(αu,vhv) (5)

AggMN(u) = MLPα(∑v ∈ N(u) MLP(hv)) (6)
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3. Relations between GNN and Communication Networks

This section provides an overview of key relations between the networking envi-
ronment and GNN components. Table 2 presents the existing surveys of graph-based
approaches in communication networks. This paper’s domains and contributions are sum-
marized to show the complementary structures, which we used to (1) enhance awareness
of applied GNN in communications with different use cases and (2) further adjust our con-
tribution domains to a new perspective study. We strengthen our work by selecting recent
studies, organizing the taxonomies for autonomous control objectives, and particularizing
the GNN-based modelling in the management and orchestration layer.

Table 2. Summary of Existing Surveys on Graph-Based Approaches in Communication Networks.

Domains Summary of Contributions Ref. Year

GNN Applications in
Wireless Networks

• The constructing methods of wireless communication graphs in
cellular networks, wireless local area networks, or Mesh/Ad
hoc networks

• Taxonomies of GNN and its variants in wireless networks
• GNN-assisted resource allocation and other emerged fields (e.g.,

channel estimation and vehicle communications)
• Discussions on key issues and future directions

[38] 2021

Potentials of GNN Towards
Autonomous Optimization in

Network Modelling

• In-depth representations of GNN components (initialization, message
passing, and readout) in networking topology perspectives

• Generalization capabilities over graph-structured network data
• Applicability of GNN-based autonomous network optimization
• Discussions on opportunities and open challenges in (1)

generalization to real networks and (2) uncertainty

[39] 2022

Graph-based Deep Learning in
Both Wired and

Wireless Networks

• Graph structures and graph-based deep learning models in
communications followed by a comprehensive discussion on pros
and cons factors

• Specific summaries and (variant) GNN selections in various problems
of wireless networks, wired networks, and SDN

• Discussion on future directions, e.g., (1) convergence of GNN and
other intelligent algorithms, and (2) GNN in a
large-scale environment

[40] 2022

The possible networking states, networking models, and output metrics are speci-
fied in depth for fine-grained aspects to ensure the deep network structures of different
graph types, scales, and objectives [38–40]. Figure 2 illustrates the flow interactions of
emerging GNN-based mechanisms in SDN-enabled architecture. The interactions between
the SDN planes (data, control, and knowledge) can gather the networking states for en-
abling programmability. This use case illustrates the utilization of SDN controller to get
PACKET_IN messages for forwarding path configuration; afterward, the graph-structured
path information is stored in the SDN database for feeding into GNN-empowered latency
prediction. Based on the outputs from GNN modelling, the path configuration can be
modified to optimize the latency performances or mitigate the exceeding upper-bound
delay. A proactive prediction on QoS, cost, energy, reliability, or resources can be the key
objective for optimizing path configuration in each particular service requirement.
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The possible networking states for GNN can be gathered in graph-structured complete
topology (e.g., data plane abstraction), routing paths, user association, forward graphs,
service chains, traffic flows, etc. [41–45]. In terms of networking models, the application
objectives that expect to achieve or improve with the GNN-based approach are described
briefly as the access point selection [46], channel tracking [47], autonomous virtual network
embedding [48–50], security enhancement for SFC [51,52], etc. The selected core GNN-
based modelling domains in the management and orchestration layer are extensively
presented in Section 4. Figure 3 illustrates a use case of feeding the VNF forwarding graph
data (VNF nodes, virtual link) to the modelling systems for optimizing SFC forwarding
path. Based on complementary studies on GNN-based communication networks [39,40],
the output metrics can be classified into three classes, namely flow-level, link-level, and
port metrics. In this use case, the flow-level metrics (e.g., QoS delays) can be used to
evaluate the output efficiency and assign different weights to modify the path.
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4. GNN for Intelligent Modelling in Network Management and Orchestration

In this primary section, four taxonomies are given to illustrate the intelligent GNN-
based modelling domains, including (1) offloading strategies, (2) routing optimization,
(3) VNF orchestration, and (4) resource allocation.

4.1. Offloading Strategies

Table 3 presents a summary of selected works in Section 4.1, including the GNN-based
approaches, a summary of contributions, primary enabler technologies/algorithms (termed
PETA), reference index, and the year of publication.
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Table 3. Summary of Selected Works in GNN-Based Offloading Strategies.

GNN-Based Approaches Summary of Contributions PETA Ref. Year

4.1. Offloading
Strategies

4.1.1. Dependent
Task Awareness

GCN-based method was used for dependent
task embedding as state features for
actor–critic agents. GCN-based method was
also applied to extract/generalize the graph
structure of the application.

DRL (actor–critic), GCN,
collaborative EC, directed

acyclic graphs, MLP
[53] 2022

Optimal selection on access node, offloading
node, and path via double GNNs to obtain
the extracted features of service/network
graphs and offer E2E multi-service
offloading policy

Deep graph matching
algorithm, GNN,
collaborative EC

[54] 2022

4.1.2. Continuous
Task Awareness

A generalization and extraction capability
concerning Euclidean space (from edge
servers and task attributes) using GCN and
fully connected layer to act as observable
states for autonomous agent

GCN, directed acyclic
graph, collaborative EC,

soft actor–critic, long
short-term memory

[55] 2021

4.1.1. Dependent Task Awareness

To adapt with real-world scenarios, an optimization approach on dependent multi-task
offloading in a heterogenous-user environment was proposed in [53] by formulating the
problem as reinforcement learning, then executing under the Markov decision process
(MDP) framework. The collaborative computation between local, edge, and cloud was
considered [56–58], and the EC system was modelled as MDP with a primary condition of
heterogenous users/servers. In this mentioned environment, the system models required
presenting the formulation of overall system architecture, application, local execution,
edge execution, and cloud execution. The models aimed for acquiring the minimization of
local/edge/cloud execution times, efficient uplink rates, and energy conservation. With the
defined problems and systems, a DRL-driven approach was merged to handle the channel
interference of heterogenous-user and multi-task dependency by aiming to minimize
the average energy-time cost of all users. To obtain the objectives, the proposed agent
necessitated to identify the detailed MDP and GNN-based components, including

• State space: (1) EC embedding consists of edge server and user statuses, which later
feed into MLP for learning the embedding process. (2) Task embedding considers the
multi-task dependencies using the GCN-based approach.

• Action space: Discrete indices, denoted as {0, 1, . . . , n}, for representing the decisions
of offloading destination, where 0 indicates the local computation and 1 to n indicates
the edge server index.

• Reward–evaluation metrics: The difference between the summation of current-state
and next-state (in terms of energy-time cost of all users).

• The actor–critic framework: (1) Actor network for action sampling and selection. (2)
Critic network for evaluating the efficiency of the sampled/selected action; furthermore,
GCN was applied to extract/generalize the structures of directed acyclic graphs from
the application.

In the experimental simulation, the authors presented the comparison of average
latency, energy, and energy-time cost between the proposed and conventional schemes
(local-only offloading, cloud-only offloading, edge-only offloading, random offloading, and
greedy algorithm on the weighted sum of time and energy). The number of users, edge
servers, and tasks were considered in different capacities.

In [54], the authors proposed a deep graph matching algorithm for end-to-end multi-
service offloading in fine-grained aspects. The algorithm used GNN to determine the
optimal nodes with sufficient resources, load balancing, and delay efficiencies. The system
model for this approach consisted of three significant layers: (1) service layer, (2) service
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orchestration layer, and (3) edge network layer. In edge networks, an undirected graph was
modelled, which obtained edge nodes, connection links between nodes, residual/upper-
bound available computing, and storage capacities of each node. The interactions between
layers were to orchestrate and offload the services. The system models consisted of three
significant models: (1) the service offloading model was signified by bounding the represen-
tation of service to network graph, (2) the delay model considered the processing time of
the offloaded subtask, propagation offloading time on the assigned links, and transmission
(wired/wireless) time in end-to-end perspective, and (3) the load balancing model was to
ensure that the offloading subtask reached an equalized load ratios and a well-measured
weighted sum of efficiencies. The proposed scheme followed each model to be a part
of the weighted sum for assisting the selection of access and offloading nodes. In graph
construction, two GNN algorithms were applied to obtain the sequential features from both
service and underlying network graphs. In graph embedding, GCN was used to formulate
the correlation between central, neighboring, and edge nodes as an aggregation function.
Furthermore, the similarity matrix and loss function were given. The simulation results
returned a notable contribution to the loading optimization, multi-service reliability, and
not exceeding upper-bound tolerable delay. The scheme aimed to tackle the application
scenarios with enhanced generalization and rapid processing time.

4.1.2. Continuous Task Awareness

A reinforcement learning model for optimizing the autonomous strategy in continuous
task offloading was proposed in [55] to obtain an efficient decision in EC systems. GCN-
based reinforcement learning architecture consisted of three primary layers including cloud,
edge, and user. Cloud layer obtained the central server for handling computation of the
networks and storage to preserve experience batches. Edge layer obtained the processing
units, edge servers, and offloading scheduler for computing the offloaded tasks, assigning
the task sets, and user network distribution. For user layer, the set of tasks was extracted
toward directed acyclic graphs for feeding into networks. GCN was used to (1) extract the
task features in the user layer and (2) generalize the features of edge servers in the edge
layer with a fully connected layer. In converged DRL deployment components, the primary
attributes in this study consisted of:

• State space: The observations on servers and tasks were used as states. A Euclidean
space of the original task attributes was extracted and transformed into directed
acyclic graphs.

• Action space: The probability distribution in offloading scheduler was indicated as
an action to decide the offloading certainty between tasks to any particular servers.
The action selection follows the output of actor networks. To optimize the function
approximation, network parameters are exchanged between training and target.

• Reward–evaluation metrics: The determination of negative scores defined the effi-
ciency of the selected action, which was configured as an offloading scheduler to
assign the task-server pair and result in a total waiting time.

To present the contributed performances in this domain, the authors compared the
proposed scheme with the heuristic algorithm, round-robin method, deep Q-learning-based,
and DRL-based schemes. The metrics that were used to evaluate the system execution
consisted of average waiting time, idle time, and numbers of invalid offloading. The
proposed scheme achieved an improvement for continuous task offloading with GCN and
soft actor–critic networks.

4.2. Routing Optimization
4.2.1. Congestion Awareness

Table 4 presents a summary of selected works in Section 4.2. In this sub-section, the
congestion-aware taxonomy presents the primary objective of alleviating the bottleneck by
optimizing the routing strategies via two use cases: (1) cell-level congestion-aware routing
and (2) congestion-aware intent-based routing.
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Table 4. Summary of Selected Works in GNN-Based Routing Optimization.

GNN-Based Approaches Summary of Contributions PETA Ref. Year

4.2. Routing
Optimization

4.2.1. Congestion
awareness

Modified GAT to extract the graph-structured patterns
in cell connectivity for intelligent congestion prediction

GAT, netlist graph, Kendall
ranking coefficient [59] 2019

Appointing GNN in the orient phase for predicting
latency and loading metrics to assist decision-making
on high/low congestion-aware routing

Network controller, GNN,
interfere engine, route filter [60] 2021

4.2.2. Delay
awareness and

link-level realization

GNN as a function approximator to value the action of
node selection in proposed agents (reward valuation of
packet delivery and delay)

DRL (deep Q networks),
Q-routing algorithm, GNN,

SDN-enabled networks
[61] 2021

Efficient DRL agent operation integrating with GNN
architecture to set the source, destination, and
link-level bandwidth allocation in SDN routing
use case

DRL (deep Q networks),
GNN, MPNN,

SDN-enabled optical
transport network

[62] 2020

Attention-weight link adjustment as actions to alter the
wireless network routing states, which are executed on
DRL and GNN (generalization capability) framework

DRL (deep deterministic
policy gradient), GNN,

wireless sensor network
[63] 2021

An autonomous GNN and DRL approach for
SDN-enabled routing to consider optimizing
end-to-end delays in various multi-path schemes,
topologies, link failures, and traffic demands

DRL, GNN, SDN-enabled
networks, multi-path

routing network
architecture

[64] 2022

A data/experience-driven routing algorithm to
minimize link congestion using GNN-based policy
system architecture with DRL

DRL, (iterative) GNN,
MLP comparison [65] 2021

Within SDN architecture, GNN is placed in the
knowledge plane to associate with graph-structured
network data through the controller by formulating to
predict delay, configure timeout settings, and install
flow rule entries.

GNN, SDN-enabled
networks, MPNN,

multi-path routing network
architecture

[66] 2022

4.2.3. QoS
realization

A message-passing architecture was given to illustrate
the procedures towards generalization capabilities,
different dimensionality handling, and aggregation.
Models on QoS metrics were formulated for assisting
the routing strategies.

GNN, MPNN, recurrent
neural networks,

SDN-enabled architecture
[67] 2020

An enhancement enabler towards future intelligent
features and QoS-improved systems in terms of
handling traffic model complexity, overlay routing,
and scheduling

GNN, queuing theory
comparison [68] 2022

Learning the model proactively for preventing
exceeding computation time during real-time
operation and graph-based topology change handling

GNN, MLP, pointwise
CNN, genetic algorithm

comparison
[69] 2020

4.2.4. Output-port
prediction

GNN was used for node feature generation, which has
later associated with artificial neural networks and
attention mechanisms to train the prediction model for
forwarding packets with shortest/optimal paths.

GNN, artificial
feed-forward neural
networks, attention
mechanism, SDN

[70] 2022

End-to-end routing based on graph-structured information considers a complete path
of access and core networks, which is required to acknowledge the cell-level congestion.
In [59], GAT was demonstrated to extract the underlying access patterns of cell coverage
connectivity and extend the capability of graph-based edge learning. The scheme differen-
tiated the valuation between high-peak and off-peak congestion by assisting with model
training setup and correlation measurement. The proposed deep networks used 8-layer
GAT to emphasize the network decisions in graph-structured conditions. Firstly, the model
tackled node features and its neighboring within 1-hop. The weighted sum was executed
to aggregate the new update node features. The linear transformation was executed for
the new node vector. Until every element in the model structure can be considered, the
prediction of congestion was given in the output layer. The model training applied the
real-world environment of cell information and physical network criteria for extracting into
an undirected affinity with the netlist graph. The correlation was evaluated between actual
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and predicted values. Kendall ranking coefficient was utilized to measure the association
in this study [59].

To ensure the reliability of a heterogenous network, spectral efficiency is highly conse-
quential to be optimized in terms of linkage or re-routing traffic transmission. A proactive
congestion-aware intent-based routing was proposed in [60] by:

1. Deploying network controller to activate elastic or programmable networking,
2. Modelling architecture for congestion-aware features, and
3. Using models to estimate and alleviate the high possibility of congestion statuses.

The architecture allowed accessibility for the network controller to observe the states.
GNN was appointed to the orient phase for predicting the latency and loading metrics over
the communication links. A router filter was used for the next phase as the decision-making
of gathering and identifying route tables of high-peak and off-peak paths. The off-peak
route path can be readjusted for prioritizing mission-critical traffic.

4.2.2. Delay Awareness and Link-Level Realization

In [61], the authors proposed a notable approach via the confluence between DRL and
GNN, which used the framework of MDP (state, action, reward, and transition probability)
to (1) first build experience batches for acquiring exploration/exploitation values and
(2) then apply GNN as an action valuation networks. The proposed scheme consisted of
two primary phases, namely inference and training. In the inference phase, GNN repre-
sented the orchestration of the flow rule when receiving the path request. The proposed
GNN played a significant role as an action of the agent to install the rule for node selection.
For every selected action (next-node selection) in any particular state, an immediate/long-
term expected reward was formulated following the vector output of GNN. The obser-
vations of the data plane state consisted of the following steps: (1) network state matrix,
(2) forward pass and next link selection, and (3) storage in replay buffer. In the training
phase, the primary objectives were to maximize the long-term expected rewards (packet
delivery/delay) and minimize the delay. In [61], the packet delivery reward was set to
three discrete scoring values:

• The reward returns 50 if the link destination and packet destination are identical.
• The reward returns 20 if the link source is attached to the current node.
• Otherwise, the reward returns −20.

Delay reward considered each link delay, queue sizes to the destination, and packet
processing time. Experience replay acted as a container to keep track of the current state,
current action, reward, and next-state transition. With an experience-driven approach
(based on MDP and reinforcement system), the link delay can be iteratively optimized
through explored actions from GNN. The optimal reward output was stored for exploitation
as a final policy. Therefore, the integration of GNN-based DRL agent has expanded
efficiently in the routing optimization use case, which has a specific algorithm design of:

• Networking environment setup for DRL engine: Network topology’s state observa-
tions of link capacity and connectivity.

• Action space: Link-level bandwidth allocation.
• GNN architecture: processing on all links to optimally find the link relation entity and

compute message passing.
• Agent execution: (1) Interactions with the environment state, (2) action orchestration on

three-tuple (source, destination, bandwidth), and (3) valuation on state-action pairs for
prioritizing the optimal policy based on explored/exploited-driven procedures [62].

An intelligent routing algorithm was proposed by formulating the DRL and GNN
to design the control agent in wireless network routing [63]. In addition to learning the
environment from experiences, this algorithm tackled a streaming update use case. The
complexity of network topology and source-destination routing links was generalized
with the algorithm and expected to handle the unseen topology through iterative training.
The path configuration in this wireless network routing followed an implicit selection
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approach and weight-based link adjustment represented the orchestration of action space
to the setup environment. A deep deterministic policy gradient was applied to construct
the proposed agent, which was conducted in an experiment of satisfying performance
metrics, in terms of energy consumption and generalization competence. An autonomous
routing approach was studied in [64] by designing GNN to acquire and extract the graph-
structured information of communications traffic (e.g., topology, delay, forwarding paths,
flow entries, link usages) in SDN-enabled networks. DRL was deployed to collaborate with
SDN controller and database for state input; furthermore, the proposed agent analyzed
the state relations and applied the selected action to configure a modified routing path in
SDN controller. DRL was also used to optimize the parameters of GNN model dynamically.
A simulation experiment was conducted to compare various multi-path routing schemes;
subsequently, the proposed scheme illustrated significant improvement in end-to-end
delay under different network environments, link failures, and congestion states. In [65],
the authors presented a minimization approach to link congestion using DRL and GNN
for comparison with MLP approach. The problem statement in this study included the
setup of network flow with each node/flow capacity. To predict proactively on future
non-congestion routing paths, the proposed GNN-based data-driven routing considered
the input network modelled as a directed graph and extracted the state features for the
agent. The action aimed to configure the routing alternation, and the reward function
considered the scoring valuation ratio between the maximum link utilization and optimal
exploitation value from experiences. The scheme prevented the system execution to not
exceed upper-bound latencies in terms of overall performance and learning time.

Furthermore, GNN was deployed as a prediction mechanism to enable a link delay-
aware approach, which facilitated the adaptive flow divergence and optimal path selection
towards efficient multi-path transmission in OpenFlow-based SDN [66]. The authors
placed GNN to optimize the performance within a parallel transport scenario. By using
SDN topology, OpenFlow-enabled switch in the data plane with PACKET_IN messages
allowed SDN controller in programmable control plane to form the paths into GNN
input. The network topology, matrix of traffic, routing policy, and path/link features were
accountable for feeding into the proposed GNN and training toward delay prediction.
The proposed model was executed iteratively to optimize the prediction accuracy for
outputting back to the SDN controller. The upper-bound delay difference was indicated
in the SDN controller before formulating the new idle timeout to the OpenFlow-enabled
switches. The optimization approach considered the joint constraints of bandwidth, flow
conservation, path, flow/flowlets, and sequence. The GNN-based approach illustrated
a variety of improving aspects including efficient model convergence, well-predicted
delay performance, and a notable mechanism for flow splitting in different network state
observations. These aspects can be presented in performance evaluation metrics of:

1. Loss and accuracy of model training and validation.
2. Time overhead in path delay information.
3. Number of flowlets.
4. End-to-end delays to determine (1) the performance specifications on parallel for-

warding in multi-path transmission, (2) delay minimization on how well the path is
prioritized, and (3) how efficient the idle timeout setting can signify.

5. Flow completion time including total duration and reordering.
6. Throughput in different congestion states and strengths which were configured by

the number of flows between 1000, 5000, and 10,000.

4.2.3. QoS Realization

By proactively predicting the key performance indicators of future QoS, the rout-
ing strategy can be greatly optimized and well-orchestrated in terms of dynamic path
selection and efficient communication resources. In [67], GNN-based network modelling,
termed RouteNet, was investigated in depth on SDN-enabled architecture for compre-
hending the complex use cases of traffic intensity, underlying network topology, and
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routing control. With SDN-based data-plane exposure capability, data-driven approaches
become a well-known deployment with elasticity and programmability; therefore, the
model for management and orchestration is customizable by various input-data types.
In RouteNet, the capability of networking feature generalization and transformation into
graph-structured data was fully presented using GNN. MPNN architecture of RouteNet
considered the correlations between nodes and the encoding procedures of the entire graph
into a fitting variable. The path-level and link-level information were processed toward
fixed-dimensional vectors. To deploy message aggregation on link states, recurrent neural
network was used to activate the sequence model on the links/paths relationship. The
models on delay, jitter, and packet drops were formulated in a generalized probabilistic
method. In a use case of QoS-aware optimization, the lower-bound metrics were adjusted
as follows:

• The average packet drop ratio was set to less than 0.1%,
• The average jitter was set to less than 20% of the average delay.
• The average delay was aimed at minimal contingency.

The experiment evaluation illustrated a great improvement in various traffic intensity
conditions. Furthermore, in [68], a GNN-based approach was comprehensively studied
to activate modern QoS-aware features on modelling complexity, overlay routing, and
multi-queue scheduling policies. This study defined the primary principles of relationships
between flow, queue, and link states. Network modelling has improved in performance
accuracies compared to conventional queuing theory. The experimental simulation ac-
knowledged various conditions as follows:

• The complexity of traffic models (on-off periods, autocorrelated exponentials, and
modulated exponentials).

• Queuing configurations (scheduling policies).
• Real-word topologies from NSFNET and GEANT.

In the process of handling topology diversity and achieving bandwidth efficiency, the
GNN-based approach was proposed in [69], which conjointly aimed for an optimal routing
policy with the realization of satisfying QoS metrics. The proposed model consisted of
three primary phases including

1. Initialization: Directed graph of nodes and edges (information of weight between
links, bandwidth, and traffic patterns).

2. Feature extraction: The variables on each node and edge become fixed-dimensional
vectors and the implementation of GNN executes to get the feature values; after all,
the output vectors remain in the same dimension.

3. Output: The routing table with an indication of the current node, destination node,
and the number of edges (neighboring to the current node).

Two-layer MLP and pointwise CNN were used to compute the updated node/edge
and selected routing node probability. The experiments discussed the loss and accuracy
curves of model training and testing. Moreover, the distribution between the shortest
path, genetic algorithms, and the proposed approach was compared in various ranges of
maximum link utilization.

4.2.4. Output-Port Prediction

GNN was proposed to generate table-less routers, termed Grafnet, in [70]. The authors
formulated an interesting environment architecture to support the applicability of GNN
and artificial feedforward neural network deployment in the routing optimization use case.
This paper aimed to primary objectives of obtaining feature extraction, representation of
nodes, and IP information in the proposed topology; then, predicting the output port. The
proposed models are executed in the control plane within the SDN controller to abstract
the device/resource from the data plane for feature generalization. After generating input
node features, the prediction model was iteratively trained. However, towards the main
prediction model, the proposed system followed the processing flows of:
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1. Generation of node features using GNN.
2. Generalization of IP information to feature space (graph-structured data for GNN)

using artificial neural networks.
3. Attention mechanisms implementation for the bounded convex region from general-

ized features (GNN) and projected IP.
4. Artificial neural networks for prediction model of the output port.

This paper also considered scaling down the GNN features. In the experiments, the
authors evaluated several significant performance metrics, including system accuracies,
inference times, and average hop count. The proposed Grafnet managed to find optimal
routing paths for transmitting packets based on intelligent output-port prediction.

4.3. VNF Orchestration

VNF orchestration can be optimized for several domains including adaptive SFC, core
network slicing, and elastic NFV systems. In this section, we classified the objectives into
five essential taxonomies, including directing awareness on energy, QoS, resource, cost,
and link loading. These taxonomies expect to comprise of advanced (variant) GNN-based
approaches for intelligent orchestration modelling. Table 5 presents a summary of selected
works in Section 4.3.

Table 5. Summary of Selected Works in GNN-Based VNF Orchestration.

GNN-Based Approaches Summary of Contributions PETA Ref. Year

4.3. VNF
Orchestration

4.3.1. Energy
awareness

(1) GCN for SFC-directed graph processing and (2)
node representation for action selection (VNF
deployment and virtual link mapping) in
DRL-assisted approach

GCN, DRL (double deep Q
networks), SFC, VNF [71] 2021

4.3.2. QoS awareness

To optimally instantiate the SFC path, GNN-based
architecture was used to interact encoder and decoder
(SFC environment) with the generalization of topology
representation and prediction of each
VNF deployment.

GNN, SFC
(encoder-decoder), VNF [72] 2020

With SFC (encoder-decoder) extension from [72],
reinforcement learning observed the states of decoder
inputs, annotation, and adjacency matrix for feeding
into GNN. The reward evaluated the delay of SFC
path execution.

Reinforcement learning,
GNN, SFC, VNF [73] 2020

Digital twin for efficient end-to-end latency in
multi-network slicing with GNN-based method by
activating virtual representation and graph-structured
slice/node information

GNN, digital twin,
network slicing [74] 2022

4.3.3. Resource
awareness

With edge cloud/network states, the GNN-based SFC
path prediction model was used for efficient VNF
deployment associated with the proposed
resource-aware module

GNN, SFC, VNF,
SDN/NFV-enabled

networks
[75] 2020

Asynchronous DRL for advancing GNN modelling in
VNF resource prediction with policy
weight adjustment

GNN, Asynchronous DRL
(deep Q-learning), SFC,

VNF, NFV-enabled
networks

[76] 2019

The architecture of DeepOpt for interactively accessing
the graph-structured information of the NFV
environment to (1) assist autonomous agent training
and (2) translate the agent policy for efficient
VNF deployment

GNN, DRL, VNF,
NFV-enabled networks [77] 2021

4.3.4. Cost
awareness

Optimized VNF policy by GNN approach and
generalization for VNF management to provide
efficient joint costs of energy, placement, forwarding,
allocation, etc.

GNN, VNF,
SDN/NFV-enabled

networks
[78] 2020

4.3.5. Link Loading
awareness

An optimization approach to SFC design and mapping
with objectives of minimizing the link load factor

virtual network embedding,
NFV-enabled networks,

integer linear programming
[79] 2022
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4.3.1. Energy Awareness

VNF deployment has been optimized throughout various weight objectives and
aspects; however, the primary consideration of energy remains an open challenging topic,
particularly in a graph-structured SFC environment. In [71], authors modelled the energy-
efficient graph-structured SFC as a combinatorial optimization problem, and GCN-based
DRL was proposed to (1) generalize the extraction of SFC data, (2) minimize the energy
consumption, and (3) autonomously select nodes with adequate resources. In the defined
problem statement, SFC was represented as a directed graph of VNF sets and virtual
links. The VNF deployment considered the mapping VNF forwarding graph selection (e.g.,
VNF1-VNF2-VNF3) after the service requests were instantiated. The energy consumption
in this study was defined by the total server-working variables of executed physical nodes.
To overcome the energy minimization, the system models dealt with the proposed DRL
components as follows:

• State space: SFC graph of VNFs information, including (1) required computational
resources, (2) allocation statuses of VNF in the particular physical server, (3) availability
ratio of computational resources in the particular server, (4) required bandwidth
capacities, and (5) deployment statuses of VNF. The variables on virtual links and
VNF deployment were initialized through state sampling functions.

• Action space: Index of the server to deploy the running VNF in a particular timeslot.
• Reward–evaluation metrics: {0, 1} variables to indicate the starting status of a new

server after applying the selected action.

Double deep Q networks was used to interactively train the function approximators
(online and target) following the input SFC information from the experience replay batch
(state, action, reward, next-state). The reward valuation followed the effectiveness level
of VNF deployment and virtual links mapping. Furthermore, GCN was applied to act
as Q and target-Q networks. Graph convolution was formulated in GCN following the
parameter valuation from SFC topologies and graph node features. Node representation
was generated via GCN for assisting the optimal action selection with maximum future
expected Q-value.

4.3.2. QoS Awareness

To provide satisfying QoS performances in SFC, the path generation and efficiency
of VNF placement in physical servers are essential key factors to tackle in the control
entity. Within SDN/NFV-enabled architecture, the controller and orchestrator necessitate
maximizing the data information and intelligent control models. The GNN/GCN-based
approach aims to extract the detailed features of graph-structured network topology for
in-depth state observations. Reinforcement learning has emerged in the architecture in
which the network states are observable. The autonomous configurability of emerged
GNN/DRL actions provides adaptiveness to the SFC environment. Therefore, in this sub-
section, the QoS awareness objective covers the confluence implementation of GNN/GCN
with a modified SFC environment (encoder-decoder), reinforcement learning-enhanced
SFC, and efficient GNN-based digital twin for network slicing management.

To preserve efficient QoS in SFC executions, the processing of VNFs adjustment,
path creation, and overall system topologies require comprehensive intelligent modelling
and estimation. SFC offers a dynamic path for network services to execute following the
orchestrated set of VNFs, virtual links, and connection points. In [72], the SFC environment
was modelled via encoder-decoder architecture for portraying the network topology (state
representation and correlations between nodes) and predicting the execution probability of
neighboring nodes or deployed VNF in a particular service chain process. GNN-based SFC
handled the state transition and returned the vector representation.

In [73], the authors presented GNN-enabled architectures in optimizing the SFC
tasks with the capability of (1) network feature representation and (2) handling multi-
conditional network topologies with unlabeled data exposure. A reinforcement learning-
based approach was integrated to enable autonomous behaviors and iterative optimization
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learning in the defined SFC environment. The primary encoder-decoder architecture
from [72] was used to model SFC-environment processing flows. Therefore, the components
of the proposed agent consisted of:

• State space: Inputs of the decoder (node encoding, VNF updates, etc.), annotation,
and adjacency matrix, which feed into the graph-recurrent neural networks.

• Action space: Neighboring node selection and processing statuses of VNF at the
current selected node.

• Reward–evaluation metrics: Total delays of the SFC path execution, as a scoring
metric with the weight of penalty.

The policy gradient algorithm modelled the computation of graph-recurrent neural
networks for the executing SFC path to measure optimality. Multiple reinforcement learning
models and baseline schemes were compared in this domain to illustrate the performances
in terms of failure and delay ratios in (1) original, (2) random, and (3) random with VNFs
test topologies. In addition to SFC environment, the GNN-based approach was used to
advance the realization of end-to-end latency performances in network slicing management
with digital twin technology [74]. Multi-network slicing as a graph incorporated the slices
into a synthetic network graph, in which VNF placement on the server and link feature
extracted the node features.

4.3.3. Resource Awareness

Resource awareness objective is undoubtedly essential compared to the prioritization
of QoS awareness, particularly in resource-constrained computing or IoT node platforms.
In this sub-section, the consideration of resource-aware SFC/VNF deployment is queried
with GNN-based advancement.

In [75], GNN designs were formulated to extract the network features and general-
ize the network information in the creation of VNF forwarding graph for SFC deploy-
ment. The correlations between traffic metrics, routing matrix, and topology were pro-
cessed towards graph-structured data. Delay-aware traffic flow steering and resource-
aware SFC deployment modules were proposed for considering the architecture costs on
(1) policy creation, (2) path selection, (3) policy configuration, (4) client interactions, and
(5) instantiation requests of SFC. The proposed scheme was fed by the topology and de-
ployed SFC exposures with network and edge cloud states. The GNN-based model was
used to predict the optimal SFC path. Resource utilization was evaluated in this deploy-
ment environment. Figure 4 presents the interaction of emerged GNNs for path prediction
with delay and resource awareness.
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Virtual infrastructure manager (VIM) emulator was a sample platform that was con-
sidered an applicable tool for path ordering and orchestration in this domain. The module
was converged for SFC scenarios and executed as follows:

• Monitoring (flow manager) states of physical servers, virtual nodes, and links for
feeding into the extraction/generalization phase.

• Graph-structured input that gathered for the initialization phase to the message-
passing execution.

• Executing the model for outputting optimal path with efficient delay and resource.
• The output translation for executing as a (predictive) action to configure VNF place-

ment, virtual machine placement, and path configuration in the orchestrator.

An advancement in GNN for enabling intelligent VNF resource prediction was inves-
tigated in [76] using asynchronous DRL (deep Q-learning). By using deep neural networks
to approximate the Q-value and action valuation, the learning policy was improved with
the input from detailed network states in the experience batch containers. The proposed
agents observed the states from the GNN module, which represents the feature outputs of
graph SFC. The reward mechanisms were calculated as the accuracy output. The policy
weights were given from the proposed agent to the NFV environment for adjusting the
SFC/VNF path and deployment according to the future expected predictions. The system
architectures considered the virtual infrastructure management system as an executing
emulator and resource prediction modules.

Furthermore, a joint optimization approach on resource utilization and QoS perfor-
mance were studied in the VNF placement scenario by the convergence of DRL and GNN
to provide efficient generalization capability and model parameter training [77]. The graph-
structured network data of resource capacities between nodes, virtual link capacities, and
overall topology was modelled for the GNN approaches. In NFV-enabled networks, the
gatherable information consisted of (1) processing and storage capacities in each node,
(2) bandwidth between each virtual link, and (3) specifications on VNF function instances.
The proposed architecture, termed DeepOpt, utilized two primary modules as follows:

1. The input attributes was used to gather the network states for interacting between the
data plane and GNN-based processing in the DRL framework.

2. The policy translator executed the VNF deployment to the data plane following the
action of the DRL agent, which was processed through a GNN-based mechanism.

4.3.4. Cost Awareness

The costs of VNF/link placement and resource allocations required a comprehensive
measurement and optimization in the intelligent NFV-enabled orchestration layer. The costs
of operation and (power/user) budget are highly indicated, which necessitates considering
further enhancement. In [78], an advancement in virtual machine/network functions
management was proposed with a GNN-based algorithm to provide a reliable deployment
prediction. The physical networks were expressed with a set of nodes and links as an
undirected graph. The nodes associated with the physical servers are whether deployable
to VNF placement or undeployable. VNF instances were considered with the maximum
capacity and used capacity. The physical links consisted of connection data. The variety
of service requests by multi-user and VNF management was tackled to optimize the
expenditure in multi-aspect conditions. The GNN approach and generalization for VNF
management were given by formulating the graph-structured information of instance
numbers and locations for nodes and VNF groups. Therefore, the optimality of the VNF
policy with a GNN-based algorithm can be jointly considered by the efficiency level of
energy cost, placement cost, traffic forwarding cost, service-level objective cost, and resource
allocation cost.

4.3.5. Link Loading Awareness

In [79], the authors formulated the problem of service chain graph and design as
an integer linear programming, which aimed for optimizing the load balancing. In the
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system model, the substrate networks were modelled with a set of VNFs, instance types,
virtual links, and capacities; furthermore, the model on SFC requests was formulated. To
choose the optimal mapping, the rounding method, namely rounding-based service chain
graph and mapping strategy configuration, was used in order to provide the configuration and
set the upper-bound link loading. The approximation algorithm considered the functions
of SFC graph design, mapping method, and rounding selection. In the experiment, the
authors provided interesting correlation performances between the number of requests
and the average length of requests to the maximum link loading factor. Furthermore, in
different topologies, the performance metrics on maximum/average loading of the links
were compared in a different number of requests.

4.4. Resource Allocation

In this section, (variant) GNN-based approaches for improving the resource alloca-
tion in (1) SDN and NFV-enabled IoT networks, (2) radio resource management, and (3)
wireless resource allocation are given by illustrating the processing flow and prioritized
objectives on different deployment scenarios. Table 6 presents a summary of selected works
in Section 4.4.

Table 6. Summary of Selected Works in GNN-Based Resource Allocation Softwarization Policies.

GNN-Based
Approaches Summary of Contributions PETA Ref. Year

4.4. Resource
Allocation

GNN approach to advance the state representation
for DRL agent in resource optimization of VNF
placement and routing

SDN and NFV-enabled IoT
networks, GNN, DRL, VNF
forwarding graph, directed

acyclic graph

[80] 2022

Optimizing the training costs, computation, and
generalization via an efficient GNN-based resource
management scheme

Radio resource management,
wireless networks, GNN, MPNN [81] 2020

Consideration of allocation policies in wireless
networks with an efficient scheme using random
edge GNN for enhanced large-scale systems

Wireless resource allocation,
GNN [82] 2020

By enabling softwarization and virtualization in IoT networks, the data-driven model
can be conceivably applicable with rich features and topology understanding. In an
aspect of resource allocation in SFC, the optimization approach requires dealing with the
ramification and diversity of IoT multi-service and massive requests. Therefore, the problem
statement demands a joint formulation of every delay/resource-mattered executing model
in the architecture. Figure 5 shows the relations of:

1. A topology of 2 access-points (AP), 8 end-users (EU), and radio link interferences.
2. Graph generation procedure by replicating each node/link into an entire graph G.
3. Input network topology as a graph to the GNN mechanism.
4. Execution of delay/resource-aware metrics for optimizing resource allocation.
5. Configuration of GNN readout to resource management policies.

The data from the infrastructure topology required extracting in-depth features and
relations for optimizing the service path, allocating sufficient resources, and offloading
to an appropriate destination. In [80], the VNF forwarding graph problem was well-
formulated for representing the requests as directed acyclic graphs in SDN and NFV-
enabled IoT networks. The optimization algorithm was based on the convergence of GNN
and DRL to orchestrate the actions on VNF placement and routing policy. The substrate
IoT networks, VNF, and VNF forwarding graphs can be jointly considered to express the
processing relevance in this environment. The GNN approach was used to assist the DRL
in state representation.
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In the radio resource management aspect, wireless network architectures/topologies
were modelled as graph-structured channel and optimization problems by showing the
relevance to the exploitation using neural network designs [81]. The architecture for orches-
trating the radio resource required scalability, in which MPNN and distributed optimization
were applied. The generalization capability with graph-based methods provided great
performance metrics of low training costs and efficient computation. In [82], an optimal
wireless resource allocation was investigated with the primary approach using random
edge GNN. The properties of the approach consisted of (1) scalability, (2) permutation
invariance/equip variance, and (3) transference, which illustrated the numerous possibility
of (1) large-scale training, (2) optimality in a certain network, and (3) the interactivity of
crossing networks capabilities, respectively.

5. Application Deployment

In this section, the implementation of (variant) GNN-based approaches is presented in
five primary application case studies, including (1) autonomous control in optical networks,
(2) Internet of Healthcare Things, (3) Internet of Vehicles, (4) Industrial IoT, and (5) other
smart city applications. The selected studies are given in Table 7, as a summarized review.

Table 7. Summary of Selected Works in GNN-Based Application Deployment.

GNN-Based Application Deployment Summary of Contributions Ref. Year

5.1. Autonomous Control
in Optical Networks

GNN-based modelling for latency estimation and network
reconfiguration policy [83] 2022

5.2. Internet of Healthcare Things
The applicability of applied GNN to enable graph-structured data
in malware detection, monitoring system, data management, and
anomaly detection

[84] 2021

[85] 2020

5.3. Internet of Vehicles GNN-driven traffic forecasting (Chebyshev Networks, GCN, GAT)
and trajectory clustering for intelligent vehicle systems

[86] 2021

[87] 2021
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Table 7. Cont.

GNN-Based Application Deployment Summary of Contributions Ref. Year

5.4. Industrial IoT
GNN-driven anomaly detection (point, contextual, and collective)
in three case studies including smart transportation, smart factory,
and smart energy

[88] 2022

5.5 Smart City
Spatial-temporal attention GCN for vehicle prediction, and
federated deep learning with graph representation for traffic flow
prediction in urban application services

[89] 2022

[90] 2022

[91] 2022

5.1. Autonomous Control in Optical Network

In [83], a system architecture in the optical network was designed for jointly creating
a GNN-based approach with autonomous operation based on latency prediction. SDN-
enabled architecture can be described in three primary planes with components of:

• Data plane: Optical line terminal in access and other entities in metro and core.
• Control plane: Modified SDN controller with (1) OpenFlow-enabled modules, (2) re-

configurable add-drop multiplexers, (3) network configuration protocol, (4) interfaces
to the routing system, and (5) path computation element protocol.

• Application plane: Services of optical signal-to-noise ratio track, routing policy, trou-
bleshooting, optical amplifier management, etc.

With SDN interface/protocol interactions, the states for GNN consisted of extracted
network topology, traffic matrix, the link between nodes, bandwidth requests, wavelength,
etc. The proposed GNN model predicted the latency and applied the policies to network
reconfiguration requests.

5.2. Internet of Healthcare Things

For future intelligent healthcare services, the considerations of malware detection [84],
digital health monitoring systems, anomaly detection, and secure data management are
significant aspects, which can be further optimized by the generalization capability and
node/edge feature relations using GNN [92–94]. SDN-enabled smart healthcare networks
can abstract the data exposure and provide programmability to the proposed modelling
mechanism. A GNN-based anomaly detection approach in smart healthcare [85] presented
an architecture, termed GuardHealth, that consisted of five significant layers including:

• Contract layer: Secure data storage and sharing processing scheme.
• Incentive layer: Issuing and distribution mechanisms.
• Consensus layer: Delegated proof-of-stake as the consensus protocol.
• Network layer: Kademilia implementation (distributed Hashtable), communication,

and verification mechanisms.
• Data layer: Merkle patricia tree, hash chain, timestamp, symmetric/asymmetric

encryption, and digital signature.

Within this architecture, the graph model gathered network nodes with edge entities
and representation. A set of network nodes and edge-connecting nodes were fed to the
modelling mechanism.

5.3. Internet of Vehicles

In the Internet of Vehicles applications [95], GNN-based approaches can be applied to
predict the traffic and cluster the vehicle trajectory [86,87]. The proposed models in [86]
converged the three graph-based algorithms, namely Chebyshev Networks, GCN, and GAT.
Chebyshev polynomials worked with adjacency and characteristic matrices towards the
spectral domain, and GCN extended over the Chebyshev Networks. GAT model adapted
to traffic prediction with calculation of the correlation degree and information aggregation.
In [87], the K-nearest neighbor-based vehicle trajectory clustering was proposed with



Electronics 2022, 11, 3371 21 of 29

observability of the vehicle positions and transitions. The study covered vehicle pattern
analysis to determine the similarity. Vehicle positions were formulated, and representation
learning with the construction of vehicle networks was handled with the input information
of vehicle sets, longitude/latitude, etc. A real-world dataset was used in the experiment to
illustrate the model contribution and performance improvement.

5.4. Industrial IoT

Incentive mechanisms, including game theory, blockchain, and GNN, can be used
to activate efficient (Industrial) IoT services in offloading decisions, caching placement,
mobile crowdsensing, privacy, and security [96,97]. With layer infrastructure of incen-
tive techniques in [97], GNN can be placed to process the data in the information layer.
Figure 6 shows the incentive mechanisms with GNN in Industrial IoT network infrastruc-
ture. By enabling the processing capabilities of both Euclidean and non-Euclidean data
types from both sensing and communication/data layers, the high-level information of in-
dustrial applications are obtained for further control modelling in terms of (1) data sharing,
(2) offloading policies, (3) resource allocation, and (4) even GNN-assisted proactive predic-
tion on QoS-aware, resource-aware, energy-aware, or cost-aware applications.
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Furthermore, an anomaly detection approach based on GNN was studied in an indus-
trial IoT environment, which provided a multi-aspect realization of type differentiation,
such as point, contextual, and collective [88]. With detailed classification, the specifications
on appropriate model selection, hyperparameter adjustment, and graph-based architecture
setup can be well-customized for each type. The authors queried in-depth deployment
of industry applications, such as smart transportation, energy, and factory. Based on the
review, the differences in anomaly and application types lead to different (variant) GNN
or graph-based modelling selections, which include GAT, GCN, gated GNN, jump knowl-
edge networks, or self-enhanced GNN. Well-known real-world datasets can be used to
conduct the experiments in this application deployment, such as the U-turn dataset, Uber
movement dataset, Chicago taxi dataset, water distribution system, US energy information
administration dataset.
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5.5. Smart City

Traffic flow, congestion, vehicle, and mobility predictions are among the major ap-
plication services in the future smart city aspects. In this sub-section, the contributions of
GNN-based solutions are outlined in the primary objectives of handling similarity, ana-
lyzing road circumstances, operating for spatial-temporal complexity, studying external
factors, and observing the multi-scale correlation of traffic patterns [89–91]. The authors
proposed a framework with network architectures and engines for spatial graph convolu-
tion, temporal convolution, spatial conditional random field-GCN layer, attention to time
cycle shift, and multi-scale fusion [89]. Towards the federated systems in the smart city,
three primary modules were formulated in [90] including recurrent long-term capture net-
work (input details), attentive mechanism federated network (capturing spatial features),
and semantic capture network (capturing information via point of interest and GCN). Fur-
thermore, the GNN-assisted application of location-based social networks was proposed
by [91]. Intelligent location recommendation improves interactive services and business
efficiencies in smart city. The authors proposed a model called SIGMA, which generated
preferences and relations of user locations from geographical mobility graphs. Gated GNN
was used to encode the nodes with neighboring information aggregation. A weighted
stacked scoring method was used to create dynamic preferences for the recommendation
systems by a confluence of personal and group mobility behaviors. Figure 7 presents the
overview architecture of deploying Gated GNN for graph users interaction.

Electronics 2022, 11, x FOR PEER REVIEW 24 of 31 
 

 

geographical mobility graphs. Gated GNN was used to encode the nodes with 
neighboring information aggregation. A weighted stacked scoring method was used to 
create dynamic preferences for the recommendation systems by a confluence of personal 
and group mobility behaviors. Figure 7 presents the overview architecture of deploying 
Gated GNN for graph users interaction. 

 
Figure 7. Deploying Gated GNN for graph users interaction. 

6. Research Challenges and Future Directions 
GNN-based modelling in network management and orchestration consists of 

inevitable challenging issues to deal with in order to upgrade the applicability in practical 
real-world deployments. The potential research challenges and future directions are 
discussed in this section, including (1) multi-aspect (e.g., joint considerations on QoS, 
resource, cost, and energy) awareness with an attention-weight mechanism, (2) 
expansions of federated GNNs for privacy-preserving modelling, (3) autonomous 
convergence of DRL and GNN, (4) communication-efficient GNN, and (5) 
explainable/justifiable GNN. Table 8 presents the summary of (1) challenging domains, 
(2) suggestions on emerging technologies, (3) deployable environments, and (4) 
complementary references that could enhance further understanding. The essential 
challenges and future directions are described as follows: 

Table 8. Summary of Selected Challenges and Future Directions in Section 6. 

Domains Suggestions on Emerging Technologies Deployable Environments Ref. 

Multi-Aspect Awareness 
(1) Multi-objective awareness with attention 
mechanisms, (2) weighted sum modelling, and 
(3) proactive GNN predictions 

Next-generation optimization 
(e.g., SFC orchestration), 

SDN/NFV-enabled networks 
[98,99] 

Expansions of Federated 
GNNs 

(1) (Edge) federated learning, (2) distributed 
GNN, and (3) privacy-restricted regulations 

High privacy-sensitive data, 
differential privacy 

[100–103] 

Autonomous 
Convergence of DRL and 

GNN 

(1) DRL, (2) MDP, and (3) GNN on state 
representation, action selection, or reward 
valuation mechanism  

Zero-touch network and 
service management, next-

generation network 
automation systems 

[5,104] 

Communication-Efficient 
GNN 

(1) GraphSAGE and (2) mission-critical slicing 
prioritization 

Large-scale network graphs, 
real-time services [32,105,106] 

Explainable/Justifiable 
GNN 

(1) Justification module, (2) GNN-empowered 
architecture, and (3) explainable artificial 
intelligence (XAI) 

Edge intelligence, network 
automation, intelligent radio, 

enhanced security 
[107,108] 

• Multi-Aspect Awareness: The existing GNN-based modelling mostly considers the 
awareness of a single objective, which leads the proposed mechanism to be biased by 

Group 1 Group 2

Graph Users Interaction
Enhanced Gated GNN

Group 3

Group K

Transition
Time 

Interval Distance

Figure 7. Deploying Gated GNN for graph users interaction.

6. Research Challenges and Future Directions

GNN-based modelling in network management and orchestration consists of in-
evitable challenging issues to deal with in order to upgrade the applicability in practical
real-world deployments. The potential research challenges and future directions are dis-
cussed in this section, including (1) multi-aspect (e.g., joint considerations on QoS, resource,
cost, and energy) awareness with an attention-weight mechanism, (2) expansions of fed-
erated GNNs for privacy-preserving modelling, (3) autonomous convergence of DRL
and GNN, (4) communication-efficient GNN, and (5) explainable/justifiable GNN. Table 8
presents the summary of (1) challenging domains, (2) suggestions on emerging technologies,
(3) deployable environments, and (4) complementary references that could enhance further
understanding. The essential challenges and future directions are described as follows:

Table 8. Summary of Selected Challenges and Future Directions in Section 6.

Domains Suggestions on Emerging Technologies Deployable Environments Ref.

Multi-Aspect Awareness
(1) Multi-objective awareness with attention
mechanisms, (2) weighted sum modelling, and
(3) proactive GNN predictions

Next-generation optimization
(e.g., SFC orchestration),

SDN/NFV-enabled networks
[98,99]
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Table 8. Cont.

Domains Suggestions on Emerging Technologies Deployable Environments Ref.

Expansions of Federated GNNs (1) (Edge) federated learning, (2) distributed
GNN, and (3) privacy-restricted regulations

High privacy-sensitive data,
differential privacy [100–103]

Autonomous Convergence of
DRL and GNN

(1) DRL, (2) MDP, and (3) GNN on state
representation, action selection, or reward
valuation mechanism

Zero-touch network and
service management,

next-generation network
automation systems

[5,104]

Communication-Efficient GNN (1) GraphSAGE and (2) mission-critical slicing
prioritization

Large-scale network graphs,
real-time services [32,105,106]

Explainable/Justifiable GNN
(1) Justification module, (2) GNN-empowered
architecture, and (3) explainable artificial
intelligence (XAI)

Edge intelligence, network
automation, intelligent radio,

enhanced security
[107,108]

• Multi-Aspect Awareness: The existing GNN-based modelling mostly considers the
awareness of a single objective, which leads the proposed mechanism to be biased
by following only the proposed system architecture. With non-flexibility and non-
scalability, the applicability of GNN-based in real-world deployment will be deficient.
In the coarse-grained aspect, the overall processing flows should be investigated, and
multi-aspect (multi-objective) awareness [98,99] of the joint weighted sum of QoS,
energy, resource, and others is highly suggested to consider in further investigation.

• Expansions of Federated GNNs: based on several surveyed studies, the network states
(e.g., topology, traffic flows, routing configuration, and forwarding paths) are collec-
tively uploaded via the central controller/processing modules for feeding the GNN
model without considering the possibility of privacy-restricted information. Follow-
ing the general data protection regulation (GDPR) obligations, the collectible data
for processing DL-based applications require user consent and legit authorization.
Therefore, (edge) federated learning [100,101] is introduced and offers collaborative
model construction between local devices, (edge) aggregators, and global parameter
servers. Instead of transmitting raw data, (edge) federated learning allows the model
round communications between selected participants and the server. The participants
can receive the initialized global model (e.g., model structures, hyperparameters,
and target applications) to execute with its local data batch. The local participants
optimize the loss and model parameters iteratively, then offload to the global server
for averaging and aggregating until the final learning model is constructed with sat-
isfying accuracy metrics. With motivations and influence factors of the federated
learning framework, the study on federated learning and GNN has been converged
and termed Federated GNNs (FedGNNs) [102,103]. The challenges and opportuni-
ties in this method can be (1) the adaptivity improvement of FedGNNs against the
security threads, (2) multi-type graph data handling, (3) aggregation accuracy, and (4)
communication-efficient extraction. The expansions of FedGNNs in policy optimiza-
tion, such as routing strategies, offloading decisions, resource allocation, and VNF
orchestration, are highly crucial and applicable to the privacy-preserving aspect of
future intelligent network service management systems.

• Autonomous Convergence of DRL and GNN: several studies converge the formula-
tion of reinforcement learning problems, use the components of MDP, and apply
DRL agents with GNN-based approaches. The utilization of GNN can be used to
(1) provide the state representative to the DRL agent or (2) act as an actor, critic, online,
or target networks in DRL agent via a multi-platform execution. By converging two
different algorithms through multiple entities and interfaces, the performance could be
inadequate and unreliable. Therefore, the consideration of autonomous convergence
between DRL and GNN is highly recommended to be explored.
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• Communication-Efficient GNN: for large-scale graph data, the total execution time of
the GNN-included system remains a challenging issue and requires a comprehensive
modification (whether to cluster the graph data efficiently or offer an adaptive diver-
gence scheme to execute the GNN modelling). GraphSAGE can be sufficient for induc-
tive graph inputs and construct node embeddings efficiently from unseen large-scale
topologies [32]. The optimization of communication overhead has to consider critically
when executing GNN-based approaches, particularly in high-congested network states
with mission-critical service operations. The central controller/orchestrator has to
translate the output policy (action) from the GNN approach in a real-time manner with
pre-estimated configuration and modification times, which necessitates prioritizing
the deployment of a communication-efficient GNN.

• Explainable/Justifiable GNN: XAI aims to tackle network automation, intelligent
radio/edge networks, resource management, privacy, and security enhancement
for next-generation communications [107,108]. With GNN-empowered architecture,
the high-level information of graph-structured cell-level, node-level, user-level, and
service-level information can be possible for extraction to feed the model mechanism.
By bridging mutual understanding between explainable GNN and stakeholders (e.g.,
legal auditors, service providers, end-users), the logical interpretation is linked to
enhance trustworthiness. The level agreement and justification modules can be set as
a priority policy before configuring any management and orchestration rules. Figure 8
presents the GNN-empower network architecture for enhancing the XAI in 5G/6G
technical aspects.
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7. Conclusions

This paper presented a survey of recent GNN-based modelling in network manage-
ment and orchestration by considering well-known policy optimization including task
offloading, routing, VNF orchestration, and resource allocation. In task offloading, we
queried the utilization of (variant) GNNs (e.g., GCN and MLP as an aggregator) for
dependent and continuous task awareness. For routing optimization, the proposed tax-
onomies based on recent works covered the primary aspects of congestion awareness,
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delay awareness/link-level realization, QoS realization, and output-port prediction. In
VNF orchestration, we focused on SDN/NFV-enabled networks, where the VNF/virtual
machine placement can assist the applications of adaptive SFC, network slicing, and elastic
prediction systems. The orchestration based on GNN was reviewed based on five primary
objectives, namely energy, QoS, resource, cost, and link loading. For resource allocation
based on GNNs, the use cases in SDN/NFV-enabled networks, radio resource management,
and wireless resource allocation were provided. In this study, the possible states, models,
and output metrics of networking information in GNN components were discussed. After-
ward, we provided GNN-based application deployment of autonomous control in optical
networks, Internet of Healthcare Things, Internet of Vehicles, Industrial IoT, and smart
city. Finally, we discuss the potential challenges and future directions, such as multi-aspect
awareness, expansions of federated GNNs, autonomous convergence of DRL and GNN,
communication-efficient GNN, and explainable/justifiable GNN.
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