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Abstract: This study presents a unique frequency-reconfigurable antenna that may be the first to use
a dip switch and a bias circuit integrated on the same substrate as the antenna. Such an antenna
may be used for many wireless applications, since it is small and versatile enough to operate in
several frequency bands with different modes. Printed on a Rogers RT5880 substrate, the suggested
structure has a relative permittivity of 2.2, a tangent loss of 0.0009, and a size of 28 x 26.35 x 1.6 mm3.
Three-PIN diode switches are inserted between radiating patches. The proposed antenna operates in
four modes, covering nine different bands by using three dual bands (i.e., 4.36 and 7.78 GHz, 3.56
and 6.89 GHz, 3 and 6.2 GHz) in MODE 1, MODE 2, and MODE three, respectively, and triple band
in MODE 4 (i.e., 2.88, 5.87, and 8.17 GHz). The efficiency of the planned antenna is 97.66%, and the
gain varies from 1.38 to 4.89 dBi. The obtained bandwidths at corresponding frequencies range from
5.5 to 31.17%. The suggested structure is modeled in the CSTMWS and the simulated findings are
experimentally confirmed. The suggested antenna may be employed in current portable (5G) devices
and the IoT.

Keywords: monopole antenna; reconfigurable antenna; PIN diode; Internet of Things; multimode

1. Introduction

The new 5G radio access networks are projected to be able to handle many connections
at once due to the rapid development of current wireless communication technologies
operating across a broad range of frequencies. Low bandwidth (up to 1 GHz), the middle
band (below 6 GHz), and the high bandwidth (millimeter-wave) have been separated by
the FCC to allow for 5G [1,2]. Fifth-generation (5G) wireless communications call for novel
approaches to miniaturizing and enhancing the functioning of RF components such as
antennas [3]. Low bandwidth offers strong 5G coverage, millimeter-wave offers data speeds
above 2 Gbps and enormous capacity, and the medium band offers a blend of the two.
Superfast data speeds may be achieved by using the 5G millimeter wave band. However,
several significant issues must be solved before millimeter-wave mobile communication
may be used. Millimeter waves are limited in their range due to atmospheric attenuation.
For long-distance, high-data-rate communication systems, sub-6 GHz waves may be a
better option than millimeter waves since they travel farther. Technology below 6 GHz will
soon convert to 5G before millimeter-wave technology for 5G connectivity is completed.
5G connectivity may be used in urban and rural locations since it can transmit high data
speeds across great distances. Reconfigurable antennas are gaining popularity as wireless
communication technology advances because they can change their properties to meet the

Electronics 2022, 11, 3368. https:/ /doi.org/10.3390/ electronics11203368 https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics11203368
https://doi.org/10.3390/electronics11203368
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0567-2482
https://orcid.org/0000-0003-3217-0891
https://orcid.org/0000-0003-4408-2733
https://orcid.org/0000-0002-7859-3550
https://doi.org/10.3390/electronics11203368
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11203368?type=check_update&version=1

Electronics 2022, 11, 3368

20f18

user’s needs [4,5]. With frequency-reconfigurable antennas, you may tune your signal to
any desired range of frequencies, allowing for effective use of the available spectrum [6].

The single, distinctive reconfiguration of antennas is the subject of the vast majority
of published research [7]. A frequency-reconfigurable hook-shaped antenna was demon-
strated in [8] for a variety of applications. An innovative headband antenna for WiFi,
WLAN, WiMAX, and UMTS applications has been described in [9]. ISMA low-profile
frequency reconfigurable antennas cover ISM, WLAN, WiFi, and Airport Surveillance
Radar band applications [10]. WLAN and 5G sub-6 GHz applications offer frequency-
reconfigurable antennas [11,12]. For the 5G sub-6 GHz applications addressed in [13], a
base station dual-band dual-polarized filtering antenna with good selectivity is suggested.
As an alternative, [14] discusses a four-band frequency reconfigurable antenna. As we
move toward 5G, the complexity of the RF front end continues to increase [15]. The fast
development of communication technology necessitates the use of several antenna con-
figurations for different purposes; PIN diodes for frequency reconfigurability have been
extensively studied by researchers to achieve single-band, dual-band, and multiple-band
reconfigurable operations [16-29].

In Ref. [16], a wideband antenna for Wireless Wide Area Network (WWAN) and Long-
Term Evolution (LTE) applications was designed for sub-6-GHz applications. Despite its
modest design, the antenna performed well across a broad range of operating frequencies.
Despite this, the antenna had some downsides, including a large size, limited gain, and
the inability to be reconfigured. Ref. [17] converted a wideband monopole antenna into a
triband antenna for ISM and 5G-sub-6-GHz use. Antennas that use proximity-coupling
feeds to cover WLAN and 5G-sub-6 GHz have also been proposed [18,19]. However,
these antennas do not provide frequency reconfiguration. The suggested antenna, on
the other hand, features a complicated antenna construction comprised of two substrates
connected by an air gap. Many single-band frequency reconfigurable antennas have been
developed in the frequency ranges of 2-4.5 GHz [19-24]. Antennas described in [19-21]
have very high gain characteristics, but their multilayered constructions increase their
thickness and complexity. In Ref. [22], a novel hybrid co-simulation technique was used to
create an extremely small microstrip reconfigurable filter for 4G and sub-6 GHz 5G systems.
Although the antennas described in [23,24] are small, their bandwidth is extremely limited,
making them unsuitable for modern devices that operate in wideband frequency spectrums.
Refs. [25,26] present antennas with frequency reconfigurable characteristics for LTE and
Wireless Local Area Network (WLAN) applications. For wideband operation, a typical
rectangular patch antenna was modified with Defected Ground Structure (DGS) and three-
PIN diodes [25].

Ref. [26] used an asymmetric feed and two PIN diodes, as well as a variety of slots,
to provide frequency reconfigurability. Despite their small size and simple shape, these
antennas have very limited bandwidth in both single- and dual-band modes of operation.
Refs. [27,28] described frequency reconfigurable antennas that could go from dual-band
to tri-band or from dual-band to quad-band. However, although both works span a wide
range of frequencies, they are hindered by their relatively limited bandwidth, intricate
geometrical architecture, and very small number of operating modes. Additionally, the
bigger dimensions of the antenna shown in [27] are a drawback. For sub-6-GHz applica-
tions, Ref. [29] suggested a flexible frequency reconfigurable antenna. With a very basic
construction, the submitted work provides wideband and dual-band operating modes.

A compact dimension (28 x 26.35 x 1.6 mm?3.) multiband compound reconfigurable
antenna with both frequency reconfigurability is reported in this study. The compound
reconfigurability is performed using three-PIN diode switches. This research presents a
new rogers RT5880 substrate-based frequency reconfigurable multiband antenna design.
The suggested antenna is reconfigurable utilizing PIN diode switches and radiates on nine
distinct bands with promising gain, radiation efficiency, and small dimensions by using a
dip switch to transition between the bands. The proposed antenna can be used with this
switching mechanism as a first-stage standard for designing an antenna for cognitive radio
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Bias Line

and controlling the frequency range by switching the dip switch with an electronic switch
that can be controlled by the microcontroller board (Arduino Uno). The proposed antenna
comprises three-PIN diode switches. This paper is arranged as follows: Section 2 outlines
the design technique and geometry of the proposed switchable multiband antenna. The
analysis of simulated and measured data is described in Section 3, and Section 4 concludes
this research work.

2. Methodology

The fundamental geometry and theory of design for the proposed multiband frequency
reconfigurable antenna are presented in this section. An RLC-equivalent circuit of PIN
diodes provides frequency reconfigurability in simulation. The ON/OFF status of the
diodes allows the antenna to be operated at various frequencies. Partial ground planes
have been found to improve efficiency and provide acceptable results in the distant field.

2.1. Structural Geometry

Figure 1 presents the top, bottom, and side view of the systematic geometry of the pro-
posed frequency reconfigurable antenna. A Rogers RT5880 dielectric (g, = 2.2, tan 6 = 0.0009,
h = 1.6 mm) is used as the antenna substrate. The antenna is fabricated using standard
copper cladding of 0.035 mm thickness. A truncated ground plane of length Lg was used to
achieve wideband operational bandwidth. The design also implemented two slots made in
the ground plane to increase impedance matching. The PIN diode switches were inserted
with a one-millimeter gap between the patches. The antenna is excited by a microstrip
line with a width of 4.47 mm and an impedance of 50 (). In the simulations, switching is
accomplished via a PIN diode (SMP1340-079LF). The same Rogers RT5880 substrate is used
to create the biasing circuit for the PIN diode switch. Figure 2 displays a manufacturing
model of the suggested antenna and Table 1 shows the precise dimensions.

Ws

Bias Pad

Le

e
We

Wg

Front view Back view Side view

Figure 1. The suggested antenna geometry.
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Figure 2. Prototype antenna structure: top and bottom view.

Table 1. The suggested optimum antenna parameters.

Parameters Value (mm) Parameters Value (mm)

Ls 28 L3 3.25

Ws 26.35 L4 2

Lg 7 L5 8.5
Wg 20.7 L6 2

Lc 1 W1 12

Wc 45 W2 2.5

Lf 13 W3 3.995
Wi 4.47 W4 2

L1 2 W5 2.25

The effective resonant lengths for intended frequencies are calculated using the trans-
mission line model theory [30]. For the intended operating frequency f, the effective reso-
nant length Lf and effective permittivity ¢, are determined by using Equations (1) and (2).

&e+1 &—1 wy\
eoff = ~5— + (1“2(?)) 1)
Co
e “

where Cv represents the velocity of light in a vacuum, ¢, is the relative permittivity, & is the
height or thickness, and w is the width of the substrate.

2.2. Bias Circuit

The biasing circuit for the suggested antenna PIN diode switch is designed on the
same Rogers RT5880 substrate. The control of the PIN diode is depicted in Figure 3. For
proof of the idea, three switches (PIN diode) are operated by a bias line with a connected
bias pad in the biasing circuit. The dip switch works as a switch that operates the diodes by
allowing the passage of voltage ON and OFF the diodes, where the dip switch is connected
to the negative terminal of the 6-volt DC battery, and the positive end of the battery is
directly connected to the bias circuit. When three diodes (D1, D2, and D3) are turned ON,
we turn OFF (sw 2 and sw 3), and (sw 4) is on. If we want to turn ON two of the diodes
(D1 and D2), we turn OFF (sw 2 and sw 4) and turn ON the (sw 3), and when we want to
turn ON (D1) diode, we turn OFF the switches (sw 3 and sw 4); the second switch (sw 2)
we keep ON. When using a four-state dip switch, while the actual connection on the bias
circuit is three, the fourth (sw 1) connects the positive end of the DC, and we can connect



Electronics 2022, 11, 3368

50f18

the DC terminal directly as we did, so that the model is scalable to suit future applications,
such as cognitive radio. A gap of 1 mm between the patch and bias pad for inductors
(H1, H2, H3, and H4) is maintained, as well as a gap of 0.2 mm for a capacitor (C) in the
microstrip line, and another gap of 1 mm between two pad lines for resistance (R) 1 Kohm

to protect the PIN diode.

inductance 3

inductance 4

Figure 3. The fabrication of the suggested antenna and biasing circuit.

The bias circuit used in the proposed model has minimal effects on the antenna
because we use inductors of 47 nH that isolate the assumed design from the bias circuit
manufactured on the same substrate. Figure 4 shows S-parameter(S;;) in the case of the
bias circuit and the absence of this circuit. We exclude from the bias circuit these three

diodes that are already inserted between patches and touch those patches directly. In
addition, when we look at Figure 4, we find that the bias circuit can improve the reflection
coefficient, but it remains to maintain the same frequency band and the same bandwidth
approximately as is shown in the figure. There is a slight difference, so we neglected the
calculations of the bias circuit from the measure of the assumed antenna. The check was

carried out using CST.
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Figure 4. Sy1 in the case of the bias circuit and the absence of this circuit.

2.3. Reconfigurability

By altering the ON and OFF states of each PIN diode that provide an open and short
circuit behavior between radiating patches, frequency reconfiguration is accomplished in
the suggested antenna design. There are nine different modes of operation for the antenna,
each with its own set of resonant frequencies. In MODE 1 (D1 to D3 = OFF), the antenna
shows dual band behavior and covers 4.36 and 7.78 GHz. For MODE 2 (D1 = ON, D2
and D3 = OFF), the antenna produces two different bands of 3.56 GHz and 6.89 GHz. The
antenna also shows dual band behavior and covers 3 and 6.2 GHz in MODE 3 (D1 and
D2 = ON, D3 = OFF). The three unique bands of 2.88, 5.87, and 8.17 GHz are covered when
the antenna operates in MODE 4 (D1 to D3 = ON). The PIN diodes state at each MODE
and the resonant bands related to that MODE are detailed in Table 2.

Table 2. The proposed antenna tuning states.

MODES D1 D2 D3 Frequency Band (GHz)
1 OFF OFF OFF 4.36 and 7.78
2 ON OFF OFF 3.56 and 6.89
3 ON ON OFF 3and 6.2
4 ON ON ON 2.88,5.87 and 8.17

2.4. Switching Techniques

Three-PIN diodes (SMP1340-079LF) are often used for switching since their RF behav-
ior is similar to that of a variable resistor. They are capable of regularly operating in the
frequency range of 10 MHz to 10 GHz. As the PIN diodes are inserted, the effective resonant
length of the antenna changes, changing the antenna’s operating frequency in the process.
These PIN diodes exhibit open and short-circuit behavior. Equivalent circuits for PIN diode
switches in both the ON and the OFF states are shown in Figure 5. When in the “ON”
position, the circuit is merely made up of a low-value resistor (RL) and an inductor (L). A
high-value resistor “RH" is in series with an inductor, and a capacitor (“C”) is in parallel
with the other three components. This project makes use of a Skyworks SMP1340-079LF
PIN diode. RL = 0.85, L = 0.7 nH, and C = 0.21 pF, according to the datasheet.

L
L
Ry c
R.
ON State OFF State Lumed RLC boundary

Figure 5. The equivalent circuits of the PIN diode and its CST model.
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3. Results and Discussion

CST Microwave Studio 2021 was used to design and assess the proposed structure. A
waveguide port of standard size was allocated to excite the radiating structure. Standard
boundary conditions in the CST microwave studio were used to acquire the performance
characteristics, such as S-parameter, gain, and surface current plots.

3.1. S-parameter and Bandwidth

Figure 6 depicts the S-parameter of all modes of the suggested antenna. At MODE 1,
all switches (D1 to D3) are in the off state; the suggested antenna worked at two different
frequency bands, i.e., 4.36, 7.78 GHz with a bandwidth of 1050 MHz (3.92-4.97 GHz)
and 1520 MHz (7.18-8.7 GHz), and with—18.37 dB —28.29 dB S-parameter, respectively.
In MODE 2 (When D1 is ON), the suggested antenna also resonates with two bands,
ie., 3.56, 6.89 GHz and with —23.5 dB, —14.19 dB S-parameter and bandwidth of 670 MHz
(3.26-3.93 GHz) and 1100 MHz (6.59-7.69 GHz), respectively. In MODE 3, the same antenna
covers two different bands of 3 and 6.2 GHz; when D1 and D2 are ON, and D3 is OFF, the
S-parameter was —14.8 dB and —43.46 dB with a bandwidth of 260 MHz (2.92-3.18 GHz)
and 1850 MHz (5.4-7.25 GHz), respectively, at the operating frequencies. When all switches
(D1 to D3) are ON, the antenna switches to MODE 4 and operates at 2.88, 5.87, and 8.17 GHz
with an S-parameter of —15.17 dB, —35.85 dB, and —15.61 dB with a bandwidth of 230 MHz
(2.79-3.02 GHz), 1830 MHz (5.31-7.14 GHz), and 450 MHz (7.94-8.39 GHz), respectively.

5
U‘ . . ‘
P7'Y) NUNVRUIUN SRS | § - ¥ N—— ; O e P et
15 | : WL e e : AN SU—
.25--..........._:._...____.
_30.
el : : ) : : b : :

45

MODE 1
MODE 2
MODE 3
MODE 4

Su (dB)

1 2 3 4 5 6 7 8 9 10
Frequency (GHz)

Figure 6. S 1; for all operating modes in the antenna.

The antenna’s feeding line is segregated from the DC path, which is worth emphasiz-
ing. Because capacitors may block DC while allowing RF signals to flow, and RF chokes
can only block RF and passing DC, a combination of the two is necessary. This work used
47 nH inductors, 10 pF capacitors, and a resistor of 1000 ohm, which were all needed. The
resistor is 1000 ohm mounted to limit the voltage across the diode. The biased current is
about 10 mA and the biased voltage is 6 V; it is supplied by four alkaline batteries; the
reconfigurable monopole antenna’s reflection coefficient (S1) is measured using Agilent
Technologies E5071C 30 kHz—20 GHz in Al-Nahrain University as shown in Figure 7a,b.
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MODE 1 [ MODE 2

MODE 3

Figure 7. The reflection coefficient: (a) setup of antenna used to determine the reflection coefficient of
(511), (b) S11 measured using Agilent Technologies E5071C.

Figure 8a—d show the simulated and measured S-parameter for each mode. Compar-
ing the measured and simulated findings indicates that they are in good agreement. One of
the important things in the case of measurement, especially if we have a reconfigurable
antenna test, is that we calibrate the device after each MODE so that the practical results
are according to the theoretical ones. For all resonant bands, the antenna’s VSWR (Volt-
age Standing Waves Ratio) is less than 1.5, indicating optimal driving point impedance
matching. Figure 9 shows that the VSWR is less than 2 for all working frequency bands.
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Figure 8. The simulated and measured S-parameter occurs in all operational modes: (a) MODE 1,

4.36 and 7.78 GHz. (b) MODE 2, 3.56 and 6.89 GHz. (¢) MODE 3, 3 and 6.2 GHz. (d) MODE 4, 2.88,
5.87, and 8.17 GHz.
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=== MODE 2
=== MODE 3
=== MODE 4
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Frequency (GHz)

Figure 9. VSWR of the proposed antenna in different operating modes.

3.2. Far Field Radiation Pattern

In both the H-plane and E-plane at the operating frequency bands, the simulated
radiation pattern of the proposed antenna is shown in Figure 10. In the E-plane, the shape
of the radiation pattern is a figure-of-eight: Figure 10a at frequency 4.36 GHz, Figure 10c at
frequency 3.56 GHz, Figure 10e at frequency 3 GHz and Figure 10g at frequency 2.88 GHz. In
most frequency bands, the antenna’s radiation qualities in the H-plane are omnidirectional.
In Figure 10b,d,f/h,i, the E-plane is irregular. The suggested antenna operates dual bands
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4.36 GHz and 7.78 GHz in MODE 1, depicted in Figure 11a, with a gain of 2.23 dBi and
4.78 dBi with a radiation efficiency of 97.66% and 78.39%, respectively. This is achieved in
MODE 2, depicted in Figure 11b, with dual-band 3.56 and 6.89 GHz giving a gain of 2.29
and 2.79 dBi and radiation efficiencies of 88.44% and 70%, respectively.

The antenna worked at 3 and 6.2 GHz in MODE 3, as depicted in Figure 11c; the peak
gains were at 1.76 and 2.21 dBi with radiation efficiencies of 95.7% and 80.14%, respectively.
With MODE 4 depicted in Figure 11d, the suggested structure worked at 2.88, 5.87, and
8.17 GHz, and peak gains of 1.81, 1.38, and 3.16 dBi with radiation efficiencies were 94.53%,
78.06%, and 82.36%, respectively. Resonant frequencies are shown in three-dimensional
gain plots to better understand the antenna’s radiation qualities in Figure 11.
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Figure 10. Simulation results of the radiation pattern of the proposed antenna at different frequencies
and switching states; (a) 4.36 GHz (MODE 1), (b) 7.78 GHz (MODE 1), (c) 3.56 GHz (MODE 2),
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(h) 5.87 GHz (MODE 4) and (i) 8.17 GHz (MODE 4).
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Figure 11. The two-dimensional gain pattern plots for the antenna at frequencies (a) 4.36 GHz,
7.78 GHz (MODE 1), (b) 3.56 GHz, 6.89 GHz (MODE 2), (c) 3 GHz, 6.2 GHz (MODE 3), (d) 2.88 GHz,
5.87 GHz, and 8.17 GHz (MODE 4).

3.3. Surface Currents

Figure 12 depicts the antenna radiating structure’s surface current distribution for
several frequency bands. Figure 12a,b depict MODE 1, where the antenna worked in dual-
band operations (i.e., 4.36 and 7.78 GHz); the density of the surface currents was higher on
the main radiator, which contributes to radiation at 4.36 and 7.78 GHz. Figure 12c—f depict
MODE 2 and 3, respectively, where the antenna worked at dual-band operations (i.e., 3.56,
6.89, 3, and 6.2 GHz). In the higher bands, the surface currents imply a dominating
contribution from the bigger area of the radiator and a larger surface current density
throughout the radiator’s whole length. Figure 12g—i depict MODE 4 (i.e., 2.88, 5.87, and
8.17 GHz), indicating that the entire metallic radiator contributes to radiation in the lower
frequency region (i.e., 2.88 GHz). It is worth noting that the radiator’s higher band radiation
comes from smaller sections (5.87 and 8.17 GHz). These surface currents indicate that the
contributing resonant length for respective frequencies decreases as resonant frequency
increases, thus proving the inverse relation of the frequency with resonant length. We
note in the current distribution that there is an effect of the bias circuit, as we mentioned
earlier, as it improves the reflection coefficient and has less effect on the frequency bands
and bandwidth. Performance metrics for the suggested antenna are summarized in Table 3.

Table 3. Summary of antenna results.

D (1,2,3) D (1 ON and D (1,2 ON and 3 OFF)
Parameters OFF MODE 1 2,3 OFF) MODE 2 MODE 3 D (1,2,3) ON MODE 4

Frequencies (GHz) 4.36 7.78 3.56 6.89 3 6.2 2.88 5.87 8.17

Gain (dBi) 223 478 2.29 2.79 1.76 221 1.81 1.38 3.16
S-parameter ~18.37 ~2829 235 ~14.19 148 —43.46 ~15.17 ~35.85 ~15.61

Directivity (dBi) 2.35 5.94 2.52 3.8 2.17 2.99 2.24 246 3.96

VSWR 127 1.08 1.14 1.49 1.44 1.01 1.42 1.03 1.39

Bandwidth% 24.08 19.53 18.82 15.96 8.66 29.83 7.98 31.17 5.50

Efficiencies% 97.66 78.39 88.44 70 95.7 80.14 94.53 78.06 82.36
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Figure 12. The surface current of the proposed antenna in various modes (a) 4.36 GHz (MODE 1),
(b) 7.78 GHz (MODE 1), (c) 3.56 GHz (MODE 2), (d) 6.89 GHz (MODE 2), (e) 3 GHz (MODE 3),
(f) 6.2 GHz (MODE 3), (g) 2.88 GHz (MODE 4), and (h) 5.87 GHz (MODE 4) and (i) 8.17 GHz
(MODE 4).

The proposed antenna was compared with the published literature; all studies used
RT-Rogers Duroid 5880 substrates with ¢, of 2.2 (dielectric constant) and & = 0.0009 (loss
tangent), with differences in the thickness of the substrates (h): h = 0.508 [31], h = 0.787 [32],
h =079 [33], h = 1.6 [34], and k = 1.575 mm [35,36]. Our suggested antenna is more
compact than the antennas described in Refs. [31-36] in dimensions. With a 230-1850 MHz
bandwidth, the proposed antenna has more bandwidth than all antennas constructed in
Refs. [31-36], has higher gain than Refs. [31,34,36], and has a higher radiation efficiency
than antennas designed in Refs. [34-36]. Compared to other potential antennas, the most
notable difference is that the suggested antenna can function over nine different frequency
bands, which is more than any other antenna has been able to do. This comparison is
shown in Table 4.
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Table 4. The comparison between our antenna and other antennas.

Reference Dimensions Tota.l No of Oper.ating Bandwidth Peak G'ains R.a.diation
(mm?®) Operating Bands Frequencies (GHz) (MHz) (dBi) Efficiency (%)
[31] 30 x 284 5 42,43,51,5.5,7.5 600-1000 2.57-4.27 94.8-98.8
[32] 55 x 56 2 2.64,3.52 69.5-76.5 9.14-10.49 94.9-98.1
[33] 40 x 30 4 2.3,3.89,4.96,5.7 110-650 1.85-5.54 96.2-97.83
[34] 35 x 35 2 24,35 150-300 0.14-2.9 -
[35] 53.5 x 53.5 2 5.86,2.416 18-322 2.37-6.74 70-90
[36] 53 x 35 3 2.45,3.50,5.20 147-1820 1.7-3.4 85-90
Current work 28 x 26.35 9 22%/%295,6%4;;%51’;37’ 230-1850 1.38-4.78 70-97.66
4. Conclusions
This study presents a unique frequency reconfigurable antenna that may be the first
to use a dip switch and a bias circuit integrated on the same substrate in a frequency-
reconfigurable antenna. The PIN diode switches change the configuration of the reposed
antenna. Antenna coverage is limited to a single frequency when all switches are off
(4.43 GHz). Dual bands of 3.5 GHz and 5.66 GHz are possible when SW1 is activated.
During dual-band operation, the prototype is activated by turning on both SW1 and SW2
(3.1 GHz and 5.5 GHz). When all switches are switched on, the antenna may function at
three different frequencies (2.9, 5.14, and 5.7 GHz) simultaneously. In addition to its compact
size, low cost, and low weight, the proposed antenna has a wide range of applications,
including GSM, UMTS, 4G-LTE, WiMAX, and WLAN Wireless networks, as well as fixed
satellite services in the 6 GHz frequency band. The antenna also supports the sub-6GHz
5G bands (2.88, 3, 3.56, 4.36, and 5.87 GHz). The 6 GHz fixed satellite services, as well as
IoT-enabled wireless terminals and systems in smart cities, are valuable additions to the
small electronic devices that operate at various frequency bands, such as smart cellular
devices and tablets.
Author Contributions: Conceptualization, A K.A. and ].M.R.; methodology, A.K.A.; soft-ware,
A KA. and J M.R;; validation, A.K.A. and ] M.R; formal analysis, A.K.A., JM.R. and Z.-A.S.AR;
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JM.R. and Y.LA.A.-Y. All authors have read and agreed to the published version of the manuscript.
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