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Abstract: An accurate and stable reservoir prediction model is essential for oil location and production.
We propose an predictive hybrid model ILSTM-BRVFL based on an improved long short-term
memory network (IAOS-LSTM) and a bidirectional random vector functional link (Bidirectional-
RVFL) for this problem. Firstly, the Atomic Orbit Search algorithm (AOS) is used to perform collective
optimization of the parameters to improve the stability and accuracy of the LSTM model for high-
dimensional feature extraction. At the same time, there is still room to improve the optimization
capability of the AOS. Therefore, an improvement scheme to further enhance the optimization
capability is proposed. Then, the LSTM-extracted high-dimensional features are fed into the random
vector functional link (RVFL) to improve the prediction of high-dimensional features by the RVFL,
which is modified as the bidirectional RVFL. The proposed ILSTM-BRVFL (IAOS) model achieves an
average prediction accuracy of 95.28%, compared to the experimental results. The model’s accuracy,
recall values, and F1 values also showed good performance, and the prediction ability achieved the
expected results. The comparative analysis and the degree of improvement in the model results show
that the high-dimensional extraction of the input data by LSTM is the most significant improvement
in prediction accuracy. Secondly, it introduces a double-ended mechanism for IAOS to LSTM and
RVFL for parameter search.

Keywords: AOS; LSTM; bidirectional; RVFL; oil layer prediction

1. Introduction

It is well known that oil is a non-renewable energy source. It is the most crucial
part of the world’s energy composition. It is used in a vast range of applications. More-
over, improving the accuracy of oil location forecasting directly affects the economics of
extraction and use. With decades of technological iterations and upgrades, especially
the widespread use of artificial intelligence in recent years, the efficiency of oil location
prediction underground has been improving yearly. This is evident from the frequent joint
ventures between multinational oil companies and IT companies worldwide in recent years
to explore intelligent oil. At present, intelligent exploration and exploitation in the oil and
gas industry is a popular direction for some time to come through the in-depth integration
of industry, academia, and research. Specifically, in the process of oil exploration and
positioning, the logging data from each region is characterized by a large volume of data
and multiple sources of heterogeneity. The process of processing log data from exploration
is subject to multiple difficulties such as uncertainty. As more and more oil and gas fields
are being explored around the world, and new discoveries become more and more difficult
to determine, the role of artificial intelligence is becoming more and more apparent. In
recent years, it has focused on curve reconstruction [1], reservoir parameter prediction [2],
lithology identification [3], imaging log interpretation [4], fracture and fracture hole fill-
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ing identification [5], and hydrocarbon-bearing properties evaluation [6], physical model
simulation calculation [7,8].

As a branch of artificial intelligence, the role of machine learning has become more crit-
ical. Especially in recent years, with the increasing maturity of neural network technology,
more and more scholars have started to use network models such as feedforward neural
networks (BP) [9] and recurrent neural networks (RNN) [10] in artificial neural networks
(ANN) to locate and predict oil reservoirs through the oil formation data obtained from
exploration. Taha et al. [11] continued on from previous studies in presenting the applica-
tion of artificial neural network for modeling maximum dry density and optimum water
content for soil stabilized with nano-materials. Triveni et al. [12] created two multilayer
feedforward neural network (MLFN) models to estimate petrophysical parameters with
implications for predicting petroleum reservoirs. Gilani et al. [13] used a back propagation
neural network (BPNN) model to predict aquifer sedimentology in logs. Jiang et al. [14]
used the boosting tree algorithm to build the Lithology identification model. Zhou et al. [15]
established a BiLSTM network model, which can accurately identify different types of
strata developed in storage space and significantly improve the accuracy of reservoir iden-
tification. Wu et al. [16] developed a code-based convolutional neural network model
that enables simultaneous geological fault detection and slope estimation. It significantly
outperformed traditional methods in both fault detection and reflection slope calculation.
Zhang et al. [17] proposed a method based on the long short-term memory network (LSTM)
to reconstruct logging curves, which was validated using natural logging curves and found
to be more accurate than the traditional method. Wang et al. [18] used historical data
on oilfield production as a benchmark. At the same time, he considered the connection
between production indicators and their influencing factors as well as production trends
and backward and forward correlations over time, and used the long short-term memory
network (LSTM) in the field of deep learning to construct the corresponding oilfield produc-
tion prediction model to achieve the goal of predicting oilfield production. Zeng et al. [19]
designed a bidirectional GRU network to extract key features from forward and backward
logging data along the depth direction, and also introduced an attention mechanism to
assign different weights to each hidden layer to improve the accuracy of logging prediction
and quantitative lithology identification.

In the further field of classification research, Huang et al. [20] proposed a single hidden
layer feed-forward neural network (SLFN) called extreme learning machine (ELM), which
was shown to have the advantages of high learning efficiency and generalization ability.
Duan et al. [21] proposed a hybrid architecture, including convolutional neural network
(CNN) and extreme learning machine (ELM) to handle age and Gender classification. The
experimental results showed that the hybrid architecture outperformed other studies on the
same dataset in terms of accuracy and efficiency. Kumar et al. [22] built a hybrid recurrent
neural network and feedforward neural network with RNN-ELM architecture for crime
hotspot classification. The learning speed and accuracy were significantly better than RNN.
Random vector functional link (RVFL) is also a SLFN network. The main difference between
RVFL and ELM is that RVFL includes a direct mapping from input to output. Although
the RVFL increases the complexity of the network compared to the ELM, its network
parameters are determined in the course of the network. However, it does not require
any iterative steps in the determination of the network parameters, which significantly
reduces the tuning time of the network parameters. Compared with traditional training
methods, this method has the advantages of fast learning speed and good generalization
performance [23]. RVFL has been widely used in classification, regression, clustering,
feature learning and other problems due to these advantages. Peng et al. [24] developed
the JOSRVFL (Joint Optimized Semi-Supervised RVFL) model to compare with JOSELM
(Joint Optimized Semi-Supervised ELM) to demonstrate the better performance of the
JOSRVFL model in practical applications. Malik et al. [25] proposed a novel ensemble
method, known as rotated random vector functional link neural network (RoF-RVFL),
which combines rotation forest (RoF) and RVFL classifiers, and the experimental results
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show that the proposed RoF-Rvfl method can generate a more robust network with better
generalization performance. Zhou et al. [26] proposed an improved incremental random
vector functional-link network (RVFL) with a compact structure and applies it to the quality
prediction of blast furnace (BF) ironmaking processes. Guo et al. [27] proposed a sparse
Laplace regularized random vector function link (SLapRVFL) neural network model, which
was used for weight assessment of hemodialysis patients to demonstrate higher accuracy
than other detection methods. Yu et al. [28] proposed an ensemble learning framework
based on the RVFL network model, and used it to perform crude oil price forecasting,
where the proposed multistage nonlinear RVFL network ensemble forecasting model
was consistently better than that of a single RVFL network model in terms of the same
measurements. Aggarwal et al. [29] used the RVFL model to make accurate predictions of
solar energy for the previous day and week in Sydney, Australia, in 2015. Chen et al. [30]
developed an intelligent system for water quality monitoring based on a fused random
vector functional link network (RVFL) and the group method of data processing (GMDH)
model. The proposed method had superior performance compared to other state-of-the-art
methods. Waheed et al. [31] proposed a Hunger Games Search (HGS) optimizer–optimized
random vector function link (RVFL) model, which was used for stir friction welding of
heterogeneous polymeric materials to obtain high accuracy rates.

The direct factors affecting the performance of a neural network model are its internal
parameters and hyperparameters. Therefore, we can improve its performance by opti-
mizing the network model parameters and hyperparameters. Parameter search through
intelligent optimization algorithms are a common optimization method, whereby intelli-
gent optimization algorithms include Genetic Algorithm (GA) [32], Differential Evolution
(DE) [33], Ant System (AS) [34], Particle Swarm Algorithm (PSO) [35], etc. The way these
intelligent optimization algorithms optimize neural networks is basically by setting the
fitness function to find the optimal pairing of the parameters of the neural network in
order to achieve the result with the lowest fitness function. In practical applications, Tariq
et al. [36] used optimization algorithms such as Differential Evolution (DE), Particle Swarm
Optimization (PSO) and Covariance Matrix Adaptive Evolution Strategy (CMAES) to
optimize the Functional Network model to build a reservoir water content saturation
prediction model using petrophysical logging data as input information. Costa et al. [37]
used a combination of neural network model and Genetic Algorithm to predict oilfield
production data.

The atomic orbit search algorithm (AOS) [38] used in this study is mainly based on
the basic principles of quantum mechanics. It simulates the trajectory of the electron
motion around the nucleus, focusing on the feature that the electron can change its motion
according to the energy increase or decrease. The proposed algorithm is verified in the
literature by comparing the benchmark function with other similar algorithms. In addition,
the results prove that the AOS has a good performance and can effectively jump out of
local optima to find the global optimum solution.

Inspired by the above literature, this paper proposes an LSTM network optimized
by an improved AOS algorithm, which is combined with a double-ended RVFL model to
establish an ILSTM-BRVFL model, which is validated by three sets of logging data, and
compared with catboost [39], xgboost [40], RVFL, BRVFL, LSTM-BRVFL, ILSTM-BRVFL
(PSO), ILSTM-BRVFL (MPA), ILSTM-BRVFL (AOS) and other models feature extraction and
prediction capabilities, the model effectively improves the accuracy of oil layer prediction.
The main innovation points of the algorithm model are as follows:

Inspired by the above literature, we develop a hybrid model ILSTM-BRVFL for oil
layer prediction. The main contributions are as follows.

(1) An AOS algorithm based on chaos theory and improved individual memory functions
is proposed. First, the population is initialized by chaos theory, and the randomness
of the population distribution is increased. Then, inspired by the PSO optimization al-
gorithm, the individual memory function is added during the algorithm development
phase to improve the optimization accuracy.
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(2) The poor robustness of the LSTM is attributed to the randomized generation of
hyperparameters such as the number of initial neurons in the hidden layer, the
learning rate, the number of iterations and the packet size. To better improve the
performance of the LSTM, the IAOS is combined with the LSTM to optimize the
performance of the LSTM by performing a global search for the above six parameters.

(3) Inspired by the Bidirectional Extreme Learning Machine (B-ELM) and the better
performance of RVFL over ELM [41,42], we propose a double-ended RVFL algorithm.
BRVFL computes the optimal value of the hidden layer neurons for finding the RVFL
to ensure that model minimizes the training elapsed time with training accuracy.

(4) In this study, a hybrid model ILSTM-BRVFL is used for the first time for oil layer
prediction. The model achieves feature extraction of the oil layer data by ILSTM.
BRVFL improves the accuracy of feature prediction, reduces the model running
time, and has a greater advantage in oil layer prediction. To verify the performance
of the proposed model, its convergence and stability are tested using evaluation
metrics (precision (P), recall (R), F1-score, and accuracy) and the confusion matrix,
respectively, and compared with similar algorithms. In addition, we analyze the effect
of the number of hidden nodes and the number of search groups on the accuracy of
the model.

The remainder of this paper is presented below. In Section 2 of this paper, the AOS
algorithm, LSTM, and RVFL models are presented. In Section 3, the AOS algorithm is
improved. The improved AOS algorithm is also used for LSTM hyper-parameter search,
and a hybrid ILSTM-BRVFL neural network model is developed and applied to oil layer
prediction. In Section 4, the optimization performance of the IAOS algorithm and the
performance of the ILSTM-BRVFL prediction model in terms of prediction accuracy and
stability. In addition, convergence is verified and improved from data processing analysis,
algorithm parameter settings, and experimental results. Section 5 concludes the thesis.

2. Preparatory Knowledge
2.1. Atomic Orbital Search (AOS) Algorithm

The main concept of the algorithm is based on some principles of quantum mechanics
and a quantum-based model of the atom in which electrons move around the nucleus
according to the orbits in which they are located. The AOS algorithm mainly simulates
the trajectories of electrons affected by the electron density configuration and the energy
absorbed or emitted by the electrons. Based on the fact that most previously developed
optimization algorithms use a population of candidate solutions evolved from different
stochastic processes, the proposed AOS algorithm considers many candidate solutions
representing the electrons around the quantum nucleus (X). The search space in this
algorithm is considered to be a cloud of electrons around the nucleus, which is divided into
thin, spherical, concentric layers.

Each electron is represented by a solution candidate (xi) in the search space, while

some decision variables (xj
i ) are also used to define the position of the solution candidate in

the search space. The mathematical equation for this purpose is as follows.

X =



X1
X2
...

Xi
...

Xm


=



X1
1 X2

1 · · · X j
1 · · · Xd

1
X1

2 X2
2 · · · X j

2 · · · Xd
2

...
... · · ·

...
. . .

...
X1

i
X2

i · · · X j
i · · · Xd

i
...

... · · ·
...

. . .
...

X1
m X2

m · · · X j
m · · · Xd

m


,
{

i = 1, 2, . . . , m.
j = 1, 2, . . . , d. (1)
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where m is the number of candidate solutions (electrons) within the search space (electron
cloud) and d is the problem dimension indicating the location of the candidates (electrons).

The initial position of the electrons inside the electron cloud is determined randomly
according to the following mathematical equation.

xj
i(0) = xj

i,min + rand · (xj
i,max − xj

i,min),
{

i = 1, 2, . . . , m.
j = 1, 2, . . . , d.

(2)

where xj
i(0) denotes the initial position of the candidate solution. xj

i,min and xj
i,max denote

the minimum and maximum bounds for the j th decision variable that is the i-th candidate
solution. rand is a uniformly distributed random number in the range [0,1].

It thinks electrons with higher energy levels are considered in the mathematical
model as solution candidates with poorer objective function values according to the details
provided for the quantum-based atomic model. The vector equation used to include the
objective function values (energy levels) for different candidate solutions (electrons) is
as follows.

E =



E1
E2
...

Ei
...

Em


, i = 1, 2, . . . , m. (3)

where E is the vector containing the values of the objective function. Ei is the energy level
of the i-th candidate solution. m is the number of candidate solutions (electrons) within the
search space (electron cloud).

To mathematically represent the imaginary layers around the nucleus, a random
integer n is assigned based on the number of spherical imaginary layers around the nucleus
L. The layers produced in the imagination represent the wave-like behavior of the electrons
around the nucleus. The layer L0 with the smallest radius represents the position of the
nucleus. The remaining layers Li represent the positions of the electrons, as shown in
Figure 1.
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Figure 1. Schematic presentation of imaginary layers around nucleus.

The AOS algorithm used a log-normal Gaussian distribution function to build the
mathematical model based on the quantum excitation model of the atom. Figure 2 repre-
sents the determined positions of the electrons (candidate solutions) with a log-normal
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Gaussian distribution function. In this distribution, the electron has a higher total presence
probability layer (L1 to L2) in the second space than the first layer (L0 to L1), which repre-
sents the true wave-like behavior of the electron in the quantum-based model of the atom,
as shown in Figure 2.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 30 
 

 

 
Figure 1. Schematic presentation of imaginary layers around nucleus. 

The AOS algorithm used a log-normal Gaussian distribution function to build the 
mathematical model based on the quantum excitation model of the atom. Figure 2 
represents the determined positions of the electrons (candidate solutions) with a log-
normal Gaussian distribution function. In this distribution, the electron has a higher total 
presence probability layer (

1L  to 
2L ) in the second space than the first layer (

0L  to 
1L

), which represents the true wave-like behavior of the electron in the quantum-based 
model of the atom, as shown in Figure 2. 

 
Figure 2. Position determination of electrons (solution candidates) with PDF distribution: (a) 
Position of electrons; (b) Distribution of electrons. 

Each imaginary created layer contains several candidate solutions according to the 
details provided for determining the electronic location by PDF. The vectors containing 
n  objects in the different layers kX  and their objective function kE  values are 

represented as follows. 
1 2

1 1 1 1 1
1 2

2 2 2 2 2

1 2

1 2

            
            

1,2,..., .
, 1,2,..., .

            1,2,...,

            

k j d

k j d

k
k j d
i i i i i

n j d
p p p p p

X X X X X
X X X X X

i m
X j d

X X X X X
k n

X X X X X

   
   
    =   
   = = =
   

=   
   
   
   

 
 

 
 

 
 

.







 

(4)

Figure 2. Position determination of electrons (solution candidates) with PDF distribution: (a) Position
of electrons; (b) Distribution of electrons.

Each imaginary created layer contains several candidate solutions according to the
details provided for determining the electronic location by PDF. The vectors containing
n objects in the different layers Xk and their objective function Ek values are represented
as follows.

Xk =



Xk
1

Xk
2

...
Xk

i
...

Xn
p


=



X1
1X2

1 · · ·X
j
1 · · ·Xd

1
X1

2X2
2 · · ·X

j
2 · · ·Xd

2
...

X1
i X2

i · · ·X
j
i · · ·X

d
i

...
X1

pX2
p · · ·X

j
p · · ·Xd

p


,


i = 1, 2, . . . , m.
j = 1, 2, . . . , d.
k = 1, 2, . . . , n.

(4)

Ek =



Ek
1

Ek
2
...

Ek
i
...

En
p


,
{

i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(5)

where Xk
i is the i-th candidate solution in the k-th virtual layer. n is the maximum number

of virtual creation layers. p is the total number of candidate solutions in the k-th virtual
layer. d is the problem dimension. Ek

i is the objective function value of the i-th candidate
solution in the k-th virtual layer.

The concepts of binding state and binding energy are mathematically modeled by
considering the position vector’s average value and the candidate solution’s objective
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function value based on principles of the atomic orbital model. For each of the considered
hypothetical layers, the binding states and binding energies are calculated as follows.

BSk =
∑

p
i=1 Xk

i
p

,
{

i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(6)

BEk =
∑

p
i=1 Ek

i
p

,
{

i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(7)

where BSk and BEk are the binding states and binding energies at the k-th level. Xk
i and Ek

i
are the positions and objective function values of the i-th candidate solutions in the k-th
level. In addition, m is the total number of candidate solutions in the search space.

Since the total energy level of an atom is evaluated by considering the bound states
and binding energies of all electrons, the mathematical representation of the average value
of the position vector and the objective function of the candidate solution in the whole
search space are as follows.

BS =
∑m

i=1 Xi
m

, i = 1, 2, . . . , m. (8)

BE =
∑m

i=1 Ei
m

, i = 1, 2, . . . , m. (9)

During the optimization process in the mathematical model of the AOS algorithm,
specifically, the positions of the candidate solutions in the imaginary spherical layer are
updated by considering the absorption or emission of photons and other interactions with
particles, taking into account the energy levels of the electrons and the binding energy of
the imaginary layer.

To facilitate the mathematical representation of the position update process in the
AOS algorithm, each electron is assigned a randomly generated number φ uniformly
distributed in the range [0,1], in order to represent the probability of action of photon or
other interactions. To distinguish between different electron interactions, a photon rate
PR parameter is introduced to represent the probability of different electron interactions.
For φ ≥ PR, photons act on electrons. In this case, the energy level Ek

i of the i-th electron
or candidate solution Xk

i in the k th layer is compared with the binding energy BEk of
the k-th layer. If Ek

i ≥ BEk, the candidate solution (electron) emits a certain amount of
energy (photon). Depending on the energy, the electron can reach the bound state BS. In
addition, the energy of the atom or even the lowest energy state in the atom is LE. The step
of updating the mathematical formula in this case is written as follows.

Xk
i+1 = Xk

i +
αi × (βi × LE− γi × BS)

k
,
{

i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(10)

where Xk
i+1 and Xk

i are the current and future positions of the i-th candidate solution at
the k-th level. LE is the candidate solution with the lowest energy level in the atom. BS
is the bound state of the atom. In addition, αi, βi and γi are vectors containing randomly
generated numbers that are uniformly distributed in the range (0,1) for determining the
emitted energy.

If the energy level of a candidate solution in a particular layer is lower than the binding
energy (Ek

i < BEk) of that layer, the photon absorption energy is considered. In this process,
the candidate solution tends to absorb photons with β and γ the considered energy in
order to reach both the bound state of the layer (BSk) and the electronic state with the
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lowest energy level (LEk) within the considered layer. The mathematical equation for the
candidate solution position updating process in this process is as follows.

Xk
i+1 = Xk

i + αi × (βi × LE− γi × BS),
{

i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(11)

If the random generation number (φ) of each electron is less than PR (φ < PR), photons
cannot act on the electrons, and therefore the movement of electrons between different
layers around the nucleus is considered based on some other effects, such as interactions
with particles or magnetic fields, which can also lead to energy absorption or emission.
In this respect, the process of updating the position of solution candidates based on these
effects is considered to be as follows.

Xk
i+1 = Xk

i + ri,
{

i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(12)

where ri is a vector containing randomly generated numbers that are uniformly distributed
in the range (0,1).

2.2. Basic LSTM

The long short-term memory network (LSTM) was proposed by Hochreiter and
Schmidhuber. It solves the problem that RNNs suffer from long-term dependency and
are unable to build predictive models for longer time spans. The LSTM network structure
consists of input gates, forgetting gates, output gates and cell states. The basic structure of
the network is shown in Figure 3.
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LSTM is a special kind of recurrent neural network. It avoids the problem of gradient
disappearance and gradient explosion caused by traditional recurrent neural networks by
carefully designing the “gate” structure, and can effectively learn the long-term dependence
relationship. Therefore, the LSTM model with memory function shows strong advantages
in dealing with time series prediction and classification problems.
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When the input sequence is set to (x1, x2, · · · , xT) and the hidden layer state is
(h1, h2, · · · , hT), the equation at moment t is as follows.

ft = σ
(

W f × [ht−1, xt] + b f

)
(13)

it = σ(Wi × [ht−1, xt] + bi) (14)

C̃t = tanh(WC × [ht−1, xt] + bC) (15)

Ct = ftCt−1 + itC̃t (16)

ot = σ(Wo × [ht−1, xt] + bo) (17)

ht = ottanh(Ct) (18)

where xt is the input vector of the LSTM cell. h is the cell output vector. ft, it, ot denote the
forgetting gate, input gate and output gate, respectively. Ct denotes the cell state. Subscript
t denotes the moment. σ, tanh are the activation functions. W and b denote the weight and
bias matrix, respectively.

The key to the LSTM is the cell state Ct, which is maintained in t memory at all times
and is regulated by forgetting gate ft and input gate it. The role of the forgetting gate is
to allow the cell to remember or forget its previous state Ct−1. The role of the input gate
is to allow or prevent the incoming signal from updating the cell state. The role of the
output gate is to control the output and transfer of the cell state Ct to the next cell. the
internal structure of the LSTM cell is made up of multiple perceptron. The backpropagation
algorithm is usually the most common training method.

2.3. Random Vector Functional Link Network (RVFL)

The backpropagation algorithm in ANN has the disadvantages of slow convergence
and long learning time. In contrast, the RVFL neural network randomly assigns input
weights and biases, uses least squares to train the output weights, and does not perform
the connection of processing units in the same layer or the feedback connection between
different layers, which can make up for the defects of ANN [43], with good nonlinear fitting
ability. The model structure is shown in Figure 4.
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In the following, each layer of the RVFL model is interpreted.

(1) Input layer

The main role of the input layer is to input a training set {(xn, yn)}with U training sam-
ples, u = 1, 2, . . . , U; x is the n-dimensional input variable, x ∈ Rn; y is the desired output
variable, y ∈ RU . The analysis in this paper yields a training sample space of {(xτ , yτ)}U

τ=1,
xτ is the five-dimensional input variable at time τ, xτ = (Tτ

ai
, Tτ

ei
, Tτ

wi
, Tτ

ai,in
, Tτ

ai,out
); yτ is the

output variable at time τ, yτ = Tτ+1
ei
− Tτ

ei
.

(2) Hidden layer

The implicit layer can establish the activation function h value of the output of each
implicit layer node, which is obtained in this paper by the sigmoid function h, which serves
to transform the input variables linearly and can be expressed as shown below.

h(x, w, b) =
1

1 + exp{−wTx + b}∗
(19)

where w and b are the weights and biases from the input layer to the hidden layer, respec-
tively, independent of the training data, and are determined before, ultimately, the implicit
layer kernel mapping matrix H is calculated as follows for the output layer component.

H =

h1(x1) . . . hL(x1)
... . . .

...
h1(xU) . . . hL(xU)

 (20)

where L denotes the number of nodes in the hidden layer.

(3) Output layer

Calculating the weights from the hidden layer to the output layer β is a central part of
the learning process of the RVFL neural network, and according to the standard regularized
least squares principle to find β.

β∗ = argmin
βR

1
2
‖Hβ−Y‖2

2 +
λ

2
‖β‖2

2 λ > 0 (21)

where Y is a column vector yu consisting of the training sample space corresponding to xu;
λ denotes a constant. The final weights β can be obtained as demonstrated below.

β = (HT H + λI)
−1

HTY (22)

where I denotes the unit matrix. At this point, the learning process is complete and the test
output of the RVFL model is obtained, as shown below.

ŷ =
L

∑
l=1

βlh(x, ωl , bl) (23)

The RVFL model has a rapid convergence speed and a short learning time.

3. Reservoir Prediction Model Based on ILSTM-BRVFL

This section will be divided into four subsections. It will provide a concise and precise
description of the ILSTM-BRVFL.

3.1. Improved Atomic Orbital Search Algorithm (IAOS)
3.1.1. Population Initialization Based on Chaos Theory

Chaotic mapping is a nonlinear theory with nonlinearity, universality, ergodicity,
and randomness characteristics. It can traverse all states without repetition within a
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certain range according to its properties and can help generate new solutions and increase
population diversity in intelligent algorithm optimization. Therefore, it is widely used [44].
Tent mapping iterates fast, and the chaotic sequence is uniformly distributed between [0,1]
with the expression as follows.

One of the widely used mapping mechanisms in chaos theory research is chaos
mapping Tent with fast iteration and a mathematical iteration equation as follows.

λt+1 =

{
λt/α, λt ∈ [0, α, )
(1− λt)/(1− α), λt ∈ [α, 1)

t = 0, 1, 2, · · · , T (24)

where λt is the amount of chaos generated at the t-th iteration. T is the maximum number
of iterations. α is a constant between [0,1]. We chose 0.6 in this paper, which is the best
chaotic state at this time.

3.1.2. Position Updating Based on Individual Memory Function

In the exploration phase of the AOS algorithm, analysis of Equation (1) shows that
only the current position information of the electron individual is considered in the iterative
position update process, which converges to the optimal solution by the random movement
of the electron individual. It indicates that its development phase is an algorithm lacking
the position memorability of the electron itself. To improve the local development capability
of the AOS algorithm, inspired by the particle swarm optimization (PSO) algorithm, the
idea of memory preservation of the optimal solution of the particle’s own motion history in
the PSO algorithm is introduced into the AOS algorithm. In addition, the memory function
of the individual is improved so that it can remember the lowest energy position in the
process of its own movement. To this end, this paper proposes a position update formula
based on the memory function of the electron individual itself to replace Equation (12),
expressed as follows.

Xk
i+1 = b1(Xk

i + ri) + b2 · rand · (Xk
HI − Xk

i ),
{

i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(25)

where b1, b2 ∈ [0, 1] is the individual memory coefficient. rand is a random number between
[0,1]. In addition, Xk

HI is the lowest energy position experienced by the k-th electron. Similar
to PSO algorithm, the effect of individual memory on the ability to develop the algorithm
can be reconciled by adjusting the value of b1, b2.

The main process of the IAVOA algorithm is as follows.

(1) Initialize the population, initialize the population size m, candidate positions xi, fitness
function Ei, determine the binding state (BS) and binding energy (BE) of the atom,
determine the candidate atom with the lowest energy level (LE) in the atom, maximum
number of iterations (Maximum).

(2) Sort the candidate solutions in ascending or descending order to form the solution
space by probability density function (PDF).

(3) Global exploration according to Equations (10) and (11) and local exploitation accord-
ing to Equation (25).

(4) The maximum number of iterations is reached, and the output is saved.

The pseudocode of the IAOS is shown in Algorithm 1.
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Algorithm 1 IAOS

Inputs: The population size m, initial positions of solution candidates (xi) based on chaos theory, Evaluate
fitness values for initial solution candidates, determine binding state (BS) and binding energy (BE) of atom,
determine candidate with lowest energy level in atom (LE)
Outputs: The lowest energy level in atom (LE)

While Iteration < Maximum number of iteration
Generate n as the number of imaginary layers
Create imaginary layers
Sort solution candidates in an ascending or descending order
Distribute solution candidates in the imaginary layers by PDF

For k = 1:n
Determine the binding state (BSk) and binding energy (BEk) of the kth layer

Determine the candidate with lowest energy level in the kth layer (LEk)
For i = 1:p

Generate ϕ, α, β, γ

Determine PR
If ϕ ≥ PR

If EK
i ≥ BEk

Run Equation (10)
Else if EK

i < BEk

Run Equation (11)
End

Else if ϕ < PR
Run Equation (25)

End
End

End
Update binding state (BS) and binding energy (BE) of atom
Update candidate with lowest energy level in atom (LE)

End while

3.2. LSTM Based on Improved IAOS (ILSTM)

As mentioned in the previous section, the parameters of the basic LSTM model are
artificially specified, which directly affects the prediction effect of the model. For this reason,
we propose an improved IAOS-LSTM model, the main idea of which is to use the good
parameter-finding ability of the above IAOS algorithm to optimally match the relevant
parameters of the LSTM to improve the prediction effect of the LSTM. The IAOS-LSTM
model modeling process is as follows.

(1) Initialize the relevant parameters, and initialize the IAOS algorithm parameters:
population size, fitness function, and other parameters assigned. Initialize the LSTM
algorithm parameters: set the time window, set the initial number of neurons in the
two-layer hidden layer, the initial learning rate, the initial number of epochs, and the
batch size. In addition, the error is used as the fitness function in this paper with the
following expressions.

f itness = 1− acc( f ; D) = 1− 1
m

m

∑
i=1

I( f (xi) = yi) (26)

where D denotes the training set, m is the number of samples in the training set, f (xi)
is the predicted sample label, yi is the original sample label, and I( f (xi) = yi) is a
function that takes the value of 1 if f (xi) = yi and 0 otherwise.

(2) Set the LSTM parameters to form the corresponding particles according to the need, and
the particle structure is (alpha, num_epochs, batch_size, hidden_nodes0, hidden_nodes1),
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where alpha denotes the LSTM learning rate, num_epochs denotes the number of
iterations, batch_size denotes the packet size, hidden_nodes0 denotes the number of
neurons in the first hidden layer of LSTM, hidden_nodes1 denotes the number of
neurons in the second hidden layer of LSTM, and the above particles are the IAOS
optimized LSTM super parameters.

(3) The electron energy is updated according to Equation (10), and then the fitness value
is calculated according to the new electron energy, and the lowest energy electron
individual optimal solution is updated.

(4) If the number of iterations reaches the maximum number of 100 iterations, the pre-
dicted values are output for the trained LSTM model according to the optimal solution,
and if the number of iterations does not reach the maximum, the process (3) is returned
to continue iterating.

(5) The optimal hyper-parameters are brought into the LSTM model, which is the IAOS-
LSTM model.

The pseudocode flow of IAOS optimized LSTM is shown in Algorithm 2.

Algorithm 2 Pseudocode of IAOS optimized LSTM

Input: Training samples set: trainsets, LSTM initialization parameters
Output: IAOS-LSTM model
1. Initialize the LSTM model:
assign parameters range = [lr,epoch,batch_size,hidden0,hidden1,] = [0.0001–0.01,25–100,0–256,0–128,0–128];
loss = ‘categorical_crossentropy’, optimizer = adam
2. Set IAOS equalization parameters and Import trainsets to Optimization:
parameters para = [lr,epoch,batch_size,hidden0,hidden1,]
→
C ave= fitness = 1-acc = Error Equation (26)
num_iteration = 100
IAOS-LSTM = LSTM(IAOS(para),trainsets)
save model:save(‘IAOS-LSTM’)
return para_best to LSTM model

3.3. Bidirectional RVFL (BRVFL)

Since the input weights and the deviations of the hidden layer neurons of RVFL
are obtained randomly, the hidden layer output matrix often has pathological problems
when there are outlier points or perturbations in the training data population, making
the overall generalization performance and prediction accuracy of the network degraded.
Although the RVFL algorithm has fast learning speed and good generalization performance,
it is necessary to artificially set the number of hidden layer nodes before training starts.
As a key research element in SLFNs, the number of hidden layer nodes has been an
important factor affecting the performance of the algorithm. To address this problem
and further improve the learning efficiency and reduce the number of hidden nodes and
computational cost, this section proposes a BRVFL based on the RVFL algorithm, drawing
on the ideas of incremental extreme learning machine (I-ELM) and bidirectional extreme
learning machine (B-ELM).

In the mechanism of BRVFL, when the number of hidden nodes is odd, the hidden
node parameters are generated randomly. In addition, when the number of hidden nodes is
even, the hidden node parameters are determined by an appropriate error function. In this
way, hidden nodes can be added automatically until the model meets a given accuracy or
the number of hidden nodes exceeds a given maximum. The B-ELM algorithm is detailed
as follows.

The objective function fB is assumed to be continuous, and Hr
2n+1 is a sequence of

randomly generated functions, and a sequence of error feedback functions He
2n, n ∈ Z is

obtained. For a neural network fBn containing n hidden layer nodes, the residual error
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function is en = fB − fBn. When the number of hidden layer nodes L ∈ {2n + 1, n ∈ Z},
the hidden node parameters a2n+1 and b2n+1 are determined randomly in the BRVFL.

Hr
2n+1 = H(a2n+1, b2n+1, x) (27)

β2n+1 =

〈
e2n, Hr

2n+1
〉

‖Hr
2n+1‖

2 (28)

When the number of nodes in the implicit layer L ∈ {2n, n ∈ Z}, the implicit node
parameters a2n and b2n are as follows.

He
2n = e2n−1(β2n−1)

−1 (29)

a2n = g−1(U(He
2n)) · x−1 (30)

b2n =
√

mse(g−1(U(He
2n))− a2n · x (31)

Ĥe
2n = U−1(g(a2n · x + b2n)) (32)

β2n =

〈
e2n−1, Ĥe

2n
〉

‖Ĥe
2n‖

(33)

where U : R→ [0, 1] is the normalization function. g−1 and U−1 are the pseudo-inverse
matrices of g and U, respectively. The algorithm of BRVFL is summarized as shown in
Algorithm 3.

Algorithm 3 Pseudocode of BRVFL

Input: training set: {xi, yi}Ms
i=1; Maximum number of hidden layer neurons. Lmax

Hidden layer mapping function g(x); training accuracy: εBRVFL.
Output: The trained BRVFL model parameters
Recursive training process.

Initial error matrix EB = Y, initial hidden layer node L = 0
When L < Lmax, and ‖EB‖ ≥ εBRVFL.

Set. L = L + 1
If L ∈ {2n + 1, n ∈ Z}

1. Random selection of neuron parameters and a2n+1b2n+1.
2. Calculate the randomly generated function sequence according to Hr

2n+1 Equation (27),
3. Calculate the output weight according to β2n+1 Equation (28)

If L ∈ {2n, n ∈ Z}
4. Calculate the error return function according to He

2n Equation (29)
5. Calculate the input weight and a2n bias b2n according to Equations (30) and (31).
6. Update Ĥe

2n according to Equation (32)
7. Calculate the output weight according to β2n Equation (33)

After adding a new node, calculate the error EB
EB = EB − GLβL
When L = Lmax

End

3.4. Actual Application in Oil Layer Prediction

Oil layer prediction is a critical research work in oil logging. To improve the accuracy
of oil layer prediction, we propose an ILSTM-BRVFL neural network model by analyzing
ILSTM and BRVFL networks. The algorithm combines ILSTM and BRVFL neural networks
to make predictions on the dataset. That is, this model has the ability of ILSTM to perform
fast and accurate feature extraction and the excellent prediction performance of the BRVFL
method. The algorithmic model uses ILSTM as a feature extraction tool to extract data
features. In addition, BRVFL is then used to predict the results of the extracted features
instead of the SoftMax layer of LSTM. Since BRVFL possesses a simpler structure than
the RVFL model with the same accuracy, it reduces the running time and improves its
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stability. The model structure of ILSTM-BRVFL (without IAOS) is shown in Figure 5. The
pseudocode of ILSTM-BRVFL is shown in Algorithm 4. The flowchart of oil layer prediction
is shown in Figure 6.
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As shown in Figure 5, the model comprises two LSTM layers, a dropout layer, FC layer,
and BRVFL. The IAOS algorithm is used to optimize the hyper-parameter of the model.
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Algorithm 4 Pseudocode of ILSTM-BRVFL

Input: Training set, test set, parameters of IAOS
Assign hyper-parameters range of ILSTM-BRVFL model = [lr,epoch,batch_size,hidden0,hidden1] =
[0.0001–0.01,0–128,0–256,0–256,0–256], T = 80, population of IAOS = 30, dim of IAOS = 5, k = 5,
loss of ILSTM-BRVFL model = ‘categorical_crossentropy’, optimizer of ILSTM-BRVFL model = adam,
Dropout = 0.5
Output: ILSTM-BRVFL model, test set accuracy, best hyper-parameters of ILSTM-BRVFL model.
1. use k-fold cross validation to split the training set into five identical data sets

For t = 1:k
Use four of the five data sets in the training set as the training set, one as the Validation Set, and select a

different one of the five as the Validation Set each iteration time.
2. Initialize the population of IAOS value based on the hyper-parameters range of ILSTM-BRVFL model:
3. Calculate the fitness function based on Equation (26) and find the current optimal solution
While t1 < T

For i = i: dim
Determine particle state and update particle position
End for
Updating the hyper-parameters of ILSTM = BRVFL models to predict Validation Set accuracy
t1 = t1 + 1
End while
End for
Record the best hyper-parameters of ILSTM = BRVFL models.
Build the ILSTM-BRVFL model
Use the ILSTM-BRVFL model to predict Test set.

As in the algorithmic procedure of ILSTM-BRVFL in Algorithm 4, we optimize the
hyperparameters using the IAOS algorithm proposed in this paper and introduce K-fold
cross-validation to verify the generalization performance of the model. The K value of
K-fold cross-validation is 5.

Oil layer prediction has four main processes as follows.

(1) Data collection and normalization

In the actual logging, the collected logging data are classified into two categories. One
is the labeled data obtained by core sampling and laboratory analysis, which is generally
used as the training set. The other is the unlabeled logging data, which are the data to
be predicted or forecasted, i.e., the test set. In data pre-processing, denoising is the main
operation. In addition, because the attributes have different magnitudes and different value
ranges, these data need to be normalized first so that the sample data range is between
[0,1]. In addition, the normalized influence factor data are substituted into the network for
training and testing to produce the results. One of the formulas for sample normalization
is shown below.

x =
(x− xmin)

xmax − xmin
(34)

where x ∈ [xmin, xmax], xmin is the minimum value of the data sample attribute. In addition,
xmax is the maximum value of the data sample attribute.

(2) Selection of the sample set and attribute simplification

The selection of the sample set used for training should be complete and comprehen-
sive and should be closely related to the formation assessment. In addition, since the degree
of determination of each condition attribute of the formation varies for the prediction of
the formation. There are dozens of logging condition attributes in the logging data, but
not all of them play a decisive role. Therefore, attribute approximation is necessary. In this
paper, we use an inflection point-based discretization algorithm followed by an attribute
dependence-based reduction method to reduce the logging attributes [45].

(3) ILSTM-BRVFL modeling
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Firstly, the ILSTM-BRVFL model is established, and the activation function, number
of hidden layer nodes, population size, and number of epochs in LSTM and RVFL are
determined. In addition, the information of the training set after attribute reduction is
input and the model’s hyper-parameters are trained using the training set based on k-fold
cross-validation. The prediction result error rate in the training sample is used as the fitness
function, see Equation (26).

(4) Comparison of algorithm results

The trained ILSTM-BRVFL model was used to predict the test set and output the
results. To verify the validity and stability of the models, we used the Catboost, Xgboost,
pre-built RVFL, BRVFL, LSTM-BRVFL, ILSTM-BRVFL (PSO), ILSTM-BRVFL (MPA), and
ILSTM-BRVFL (AOS) models as the subjects of comparison experiments.

4. Experiment and Result Analysis
4.1. Experimental Settings and Algorithm Parameters

The experimental environment is a PC with the following configuration: Windows 10
64-bit, Intel Core i5-3210M 2.50 GHz (Intel, Mountain View, CA, USA), 16 G RAM, and the
programming software is MATLAB 2018b (MathWorks, Natick, MA, USA).

4.2. Data-Sets of Oil Layer Preparation

To verify the effectiveness of the model in real logging prediction, three sets of logging
data from different wells were selected for training and prediction. Table 1 shows the
attribute simplification results for the data. These attributes are the valuable ones extracted
from a large number of redundant conditional attributes, which also simplifies the com-
plexity of the algorithm. The attribute reduction results of the logging data are shown in
Table 1, and Table 2 shows detailed data-set information on logging data. The Figure 7
shows the logging curves normalized by attribute reduction of the training set, with the
horizontal and vertical axes indicating the depth and standard values, respectively.

Table 1. Reduction results of logging data.

Well Attribute

Original Attribute (w1) GR, DT, SP, WQ, LLD, LLS, DEN, NPHI, PE, U, TH, K, CALL

Reduction results (w1) GR, DT, SP, LLD, LLS, DEN, K

Original Attribute (w2)
AC, CNL, DEN, GR, RT, RI, RXO, SP, R2M, R025, BZSP, RA2, C1,

C2, CALI, RINC, PORT, VCL, VMA1, VMA6, RHOG, SW, VO,
WO, PORE, VXO, VW, so, rnsy, rsly, rny, AC1

Reduction results (w2) AC, GR, RT, RXO, SP
Original Attribute (w3) AC, CALL, GR, NG, RA2, RA4, RI, RM, RT, RXO, SP
Reduction results (w3) AC, NG, RI, SP

Table 2. Detail of logging data.

Well

Training Set Test Set

Depth (m) Oil Layers Dry
Layers Depth (m) Oil Layers Dry

Layers

w1 3150~3340 112 1238 3340~3470 92 810
w2 1190~1230 65 430 1230~1300 63 330
w3 1160~1260 55 800 1260~1300 79 105



Electronics 2022, 11, 3343 18 of 29

Electronics 2022, 11, x FOR PEER REVIEW 19 of 30 
 

 

extracted from a large number of redundant conditional attributes, which also simplifies 
the complexity of the algorithm. The attribute reduction results of the logging data are 
shown in Table 1, and Table 2 shows detailed data-set information on logging data. The 
Figure 7 shows the logging curves normalized by attribute reduction of the training set, 
with the horizontal and vertical axes indicating the depth and standard values, 
respectively. 

Table 1. Reduction results of logging data. 

Well Attribute 
Original Attribute (w1) GR, DT, SP, WQ, LLD, LLS, DEN, NPHI, PE, U, TH, K, CALL 
Reduction results (w1) GR, DT, SP, LLD, LLS, DEN, K 

Original Attribute (w2) 
AC, CNL, DEN, GR, RT, RI, RXO, SP, R2M, R025, BZSP, RA2, C1, C2, CALI, RINC, PORT, VCL,  

VMA1, VMA6, RHOG, SW, VO, WO, PORE, VXO, VW, so, rnsy, rsly, rny, AC1 
Reduction results (w2) AC, GR, RT, RXO, SP 
Original Attribute (w3) AC, CALL, GR, NG, RA2, RA4, RI, RM, RT, RXO, SP 
Reduction results (w3) AC, NG, RI, SP 

Table 2. Detail of logging data. 

Well 
Training Set Test Set 

Depth (m) Oil Layers Dry Layers Depth (m) Oil Layers Dry Layers 
w1 3150~3340 112 1238 3340~3470 92 810 
w2 1190~1230 65 430 1230~1300 63 330 
w3 1160~1260 55 800 1260~1300 79 105 

 

 
(a) 

 
(b) 

Electronics 2022, 11, x FOR PEER REVIEW 20 of 30 
 

 

 
(c) 

Figure 7. Attribute normalization curves: (a) partial attribute normalization of w1; (b) partial 
attribute normalization curve of w2; (c) attribute normalization curve of w3. 

Table 1 lists the ranges of each property after the actual well properties are 
approximately reduced, where GR is natural gamma, DT is an acoustic time difference, 
SP is natural potential, LLD is deep lateral resistivity, LLS is shallow lateral resistivity, 
DEN is compensation density, K is potassium, NG is neutron gamma, and RI is intrusive 
layer resistivity, AC is acoustic wave, RT is true formation resistivity, RXO is flushed zone 
formation resistivity, NG is neutron-gamma, and RI is invaded zone resistivity. 

Table 2 shows the detail datasets of logging data. The training set is used to train the 
ILSTM-BRVFL model, and test sets are used to evaluate the performance of the model. 

4.3. Selecting the Activation Function of the RVFL 
A critical parameter affecting the prediction results of RVFL is its activation function. 

To verify the importance of the activation function in this experiment, the output results 
of different activation functions are compared again. Figure 8 shows the output of ILSTM-
BRVFL using different activation functions for the three logs. Each output is averaged 
over ten independent experiments. As can be seen from the plots of the three logs, overall, 
the sigmoid and hardlim functions as activation functions produce much higher outputs 
than the sin, tribas, and radbas functions, by an average of 10–20%. The sigmoid function 
is slightly higher than hardlim at the beginning of the operation. The output of sigmoid is 
slightly higher than the output of the sigmoid. As the model time increases, sigmoid 
becomes better than or equal to hardlim. Therefore, the sigmoid was chosen as the final 
activation function in this experiment. 

  
(a) (b) 
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Table 1 lists the ranges of each property after the actual well properties are approx-
imately reduced, where GR is natural gamma, DT is an acoustic time difference, SP is
natural potential, LLD is deep lateral resistivity, LLS is shallow lateral resistivity, DEN is
compensation density, K is potassium, NG is neutron gamma, and RI is intrusive layer resis-
tivity, AC is acoustic wave, RT is true formation resistivity, RXO is flushed zone formation
resistivity, NG is neutron-gamma, and RI is invaded zone resistivity.

Table 2 shows the detail datasets of logging data. The training set is used to train the
ILSTM-BRVFL model, and test sets are used to evaluate the performance of the model.
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4.3. Selecting the Activation Function of the RVFL

A critical parameter affecting the prediction results of RVFL is its activation function.
To verify the importance of the activation function in this experiment, the output results of
different activation functions are compared again. Figure 8 shows the output of ILSTM-
BRVFL using different activation functions for the three logs. Each output is averaged
over ten independent experiments. As can be seen from the plots of the three logs, overall,
the sigmoid and hardlim functions as activation functions produce much higher outputs
than the sin, tribas, and radbas functions, by an average of 10–20%. The sigmoid function
is slightly higher than hardlim at the beginning of the operation. The output of sigmoid
is slightly higher than the output of the sigmoid. As the model time increases, sigmoid
becomes better than or equal to hardlim. Therefore, the sigmoid was chosen as the final
activation function in this experiment.
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4.4. Research on the Parameters of the IAOS Algorithm

To explore the effect of IAOS parameters on the model, ablation experiments were
conducted on the number of iterations and population size. The accuracy of the logging
data was compared to the algorithm under different combinations of parameters, and this
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experiment was presented as a 3D graph using the well w1 data as input, as shown in
Figure 9.
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From Figure 9, we can find that the model’s prediction accuracy rises with the number
in the population and the number of iterations. The higher the number of particles randomly
distributed in the search range, the better the search ability and the higher the model output
accuracy. At the same time, as the number of iterations of the model increases, the more
mature the structure of the model becomes, and the higher and smoother the prediction
accuracy becomes. At the same time, the number of particles is not as high as it should
be. For an algorithm, an increase in the number of particles also means an increase in the
amount of computation. Losing a large amount of computation to obtain higher accuracy
is not worth the cost. The same holds true for the number of iterations. In addition, we
know that a linear increase in the number of iterations can lead to overfitting problems.
Therefore, we find a critical value. As can be seen from the graph, the optimal values for
population size and number of iterations are 30 and 80. At this point, the best results are
achieved, with the least amount of computation cost.

4.5. Set Parameters of the Whole Algorithm

Based on the above experiments, the relevant parameters of the model are derived,
and Table 3 shows the final parameters set of the whole algorithm.

Table 3. Set the final parameters of the algorithm.

Algorithm Parameters

PSO Population Size = 30, Maximum Iteration = 80, ω0 = 0.7, c1 = c2 = 1.5, dim = 5

MPA Population Size = 30, Maximum Iteration = 80, FADs Effect coefficient = 0.2, p = 0.5
dim = 5

AOS Population Size = 30, Maximum Iteration = 80, dim = 5
IAOS Population Size = 30, Maximum Iteration = 80, dim = 5

LSTM
Maximum number of training rounds: Maxpochs = 50, hidden_size = 256
Learning rate:initialLearnRate = 0.001, Optimization method: adam
Size of mini-bath:MiniBathSize = 64

RVFL
Number of hidden layer nodes: Number of Hidden Neurons = 105
Number of input layer nodes: Number of input Neurons = Number of training set
samples, Activation function: sigmoid

ILSTM-
BRVFL

hyper-parameters range of ILSTM-BRVFL model =
[lr,epoch,batch_size,hidden0,hidden1] = [0.0001–0.01,0–128,0–256,0–256,0–256]
loss of ILSTM-BRVFL model = categorical_crossentropy, optimizer of ILSTM-BRVFL
model = adam, Dropout = 0.5
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4.6. Evaluation Indicators of the Algorithm

To make the algorithm proposed in this paper more convincing, we use Macro-P,
Macro-R, Macro-F1 and Accuracy to evaluate the performance of the algorithm. Macro-P
is the number of samples predicted to be positive and correctly predicted divided by the
number of samples predicted to be positive, Macro-P is the number of correctly predicted
samples with a prediction of positive divided by the number of samples with a true case of
positive, Macro-F1 can be regarded as a weighted average of model accuracy and recall,
Accuracy is the total number of correctly identified individuals divided by the total number
of identified individuals. The equations of those evaluation indicators are shown below.

Marco− R =
TP

TP + FN
(35)

Macro− P =
FP

FP + TN
(36)

Macro− F1 =
2

1/Marco− R+1/Marco− P
(37)

accuracy =
TP + TN

TP + FP + TN + FN
(38)

where TN is the number of negative examples of correctly classified labels, and FP is
the number of positive examples of incorrectly classified labels, and TP is the number of
positive examples of correctly classified labels, and FN is the number of negative examples
of incorrectly classified labels.

4.7. Discussion of the Algorithm Results

In this study, the parameters of each algorithm model and the total dimensionality
of the test set features during the training process were compared and the corresponding
evaluation metrics were calculated to evaluate the algorithms. The best hyper-parameter of
the ILSTM-BRVFL model on three well logging data sets are shown in Table 4. The loss vs.
number of epochs on the training and validation datasets of based on best hyper-parameter
are shown in Figure 10. The convergence curve between PSO, MPA, AOS, and IAOS when
using the optimal ILSTM-model are shown in Figure 11. The confusion matrix for the best
test set results of the three sets of logging data using the proposed algorithm is shown in
Figure 12. The evaluation metrics for the three sets of logging data under each comparison
model are presented in Tables 5–7.

Table 4. Set the final parameters of the algorithm.

well Learing Rate Epoch Batch_size Hidden0 Hidden1

w1 0.0091 56 212 125 178
w2 0.0012 45 185 138 154
w3 0.0095 63 176 98 167
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Table 5. Evaluation indicators of the contrast model on w1.

Macro-P% Macro-R% Marco-F1% Accuracy%

Catboost 70.68 93.82 80.40 94.45
Xgboost 57.25 88.88 69.64 93.01
RVFL 53.69 86.95 66.38 91.05
BRVFL 54.00 88.04 66.94 91.17
LSTM-BRVFL 56.94 89.13 69.49 92.02
ILSTM-BRVFL (PSO) 61.20 89.13 72.57 93.12
ILSTM-BRVFL (MPA) 69.17 90.21 78.30 94.28
ILSTM-BRVFL (AOS) 64.61 91.30 75.67 93.98
ILSTM-BRVFL (IAOS) 71.52 95.71 81.86 95.63

Table 6. Evaluation indicators of the contrast model on w2.

Macro-P% Macro-R% Marco-F1% Accuracy%

Catboost 71.63 91.24 80.25 92.62
Xgboost 70.89 89.35 79.05 91.85
RVFL 63.29 79.37 70.42 89.31
BRVFL 65.82 82.54 72.38 90.36
LSTM-BRVFL 66.25 84.12 74.12 90.51
ILSTM-BRVFL (PSO) 66.26 87.30 75.34 90.94
ILSTM-BRVFL (MPA) 70.37 90.47 79.16 92.36
ILSTM-BRVFL (AOS) 69.51 90.47 78.62 92.02
ILSTM-BRVFL (IAOS) 73.41 92.13 81.73 93.63
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Table 7. Evaluation indicators of the contrast model on w3.

Macro-P% Macro-R% Marco-F1% Accuracy%

Catboost 94.51 94.65 94.57 95.33
Xgboost 94.93 94.28 94.60 95.85
RVFL 93.04 93.14 93.04 93.33
BRVFL 93.69 94.54 94.11 94.24
LSTM-BRVFL 93.48 93.71 93.59 93.63
ILSTM-BRVFL (PSO) 93.39 95.04 94.18 94.52
ILSTM-BRVFL (MPA) 93.31 94.71 94.16 95.54
ILSTM-BRVFL (AOS) 93.49 96.16 94.80 96.09
ILSTM-BRVFL (IAOS) 93.79 96.97 95.35 96.59

The loss vs. number of epochs on the training and validation datasets can show
whether the model is over-fitting or under-fitting. It can be seen from Figure 10 that the
ILSTM-BRVFL model has good generalization performance, and it can be extrapolated
from Figure 10a,c that the loss in the validation set is higher than in the training set. The
range of loss is within an acceptable range. The results presented in Figure 10 show that
the ILSTM-BRVFL model has outstanding generalization performance on the dataset of w2.

From Figure 11, it can be seen that the improvement strategy for the AOS algorithm is
effective. Comparing the performance of IAOS and AOS in Figure 11, it can be found that
the IAOS algorithm has a faster convergence speed and better merit-seeking capability.

The confusion matrix [46] represents the iterative results of the actual and predicted
data. The predicted data comprise the output after executing the model. In the confusion
matrix, the rows represent the predicted results, and the columns represent the actual
results. The diagonal cells indicate the match between actual and predicted. The non-
diagonal cells show the cases where the test results are wrong. The right column of the
confusion matrix shows the accuracy of each prediction class, while the bottom row of the
confusion matrix shows the accuracy of each real class, and the bottom right cell of the
confusion matrix shows the overall accuracy.

As can be seen from the confusion matrix in Figure 12, the true values (0 and 1) for the
three wells are not evenly distributed. In addition, the model prediction results for the first
two wells have a higher prediction accuracy for the true outcome 0 and a higher degree
of misspecification for 1, reaching up to 7.9%. Meanwhile, for the third well, the output
results for both the true outcomes 0 and 1 are higher, with an average prediction accuracy
of 96.2% for the three wells for the true value 0. The average prediction accuracy for the
true value 1 is 94.9% and for the overall prediction accuracy is 95.3%. These three values
show that the model has a strong generalization ability while having a higher prediction
accuracy for the outcome of output 0.

Combining Tables 5–7 and Figure 13, it can be seen that the models are sorted according
to prediction accuracy from low to high as, RVFL, BRVFL, LSTM-BRVFL, ILSTM-BRVFL
(PSO), Catboost, Xgboost, ILSTM-BRVFL (MPA), ILSTM-BRVFL (AOS), ILSTM-BRVFL
(IAOS). The low accuracy of RVFL network compared with the other comparison networks
indicates that performing feature extraction after the LSTM neural network is beneficial
to improving the output accuracy. In this experiment, the accuracy is lower than the
highest ILSTM-BRVFL (IAOS) by 4.05% on average. The average performance of the
Catboost and Xgboost models is higher than that of RVFL, BRVFL, ILSTM-BRVFL, and
ILSTM-BRVFL (PSO). The BRVFL network adds a double-ended mechanism compared
with the RVFL network, which has a more comprehensive prediction ability for the input
information, so the average accuracy is improved by 0.69% compared to RVFL. In addition,
the comparison of LSTM optimization capability in ILSTM-BRVFL by various types of
metaheuristic algorithms reveals that IAOS, proposed in this experiment, presents the
strongest optimization capability, with an accuracy on average 2.42% higher than that
of the model optimized by PSO algorithm and 1.25% higher than the 94.03% of AOS. It
indicates that the highest impact on RVFL model output accuracy improvement is the
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addition of LSTM feature extraction, the second highest improvement is the optimization
algorithm, and the lowest improvement is the introduction of the double-ended mechanism.
In terms of accuracy, the average prediction effect of the proposed model for the three
groups of logging data is 93.97%. In terms of Recall value, the average prediction effect of
the proposed model for the three groups of logging data is 94.93%. In terms of F1 value,
the average prediction effect of the proposed model for the three groups of logging data
is 86.31%. In terms of Accuracy, the average prediction effect of the proposed model for
the three groups of logging data is 95.28%, and the evaluation of all indicators reached
high values.
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Figure 13. Comparison of evaluation indicators for Catboost + Xgboost + RVFL + BRVFL + LSTM-
RVFL + ILSTM-RVFL (PSO) + ILSTM-RVFL (MPA) + ILSTM-RVFL (AOS) + ILSTM-BRVFL (IAOS)
on the three sets of logging data: (a) evaluation indicators of w1; (b) evaluation indicators of w2; (c)
evaluation indicators of w3.

Through the above ablation experiments and evaluation of this research algorithm,
it can be seen that the neural network with feature extraction by LSTM can effectively
improve the prediction accuracy. In addition, on this basis, the parameter seeking of LSTM
and RVFL with the introduction of a double-ended mechanism can improve the prediction
ability, proving that the proposed IAOS improvement mechanism can effectively improve
the parameter seeking ability. The experimental results demonstrate that the proposed
ILSTM-BRVFL for oil layer prediction is better than that of other algorithms.

5. Conclusions

A hybrid oil layer prediction model ILSTM-BRVFL based on optimized LSTM and
double-ended RVFL is proposed. From the experiments, we can conclude the following.
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(1) This paper presented a hybrid model—ILSTM-BRVFL—and the hyperparametric
optimization of the ILSTM-BRVFL model using the IAOS algorithm. The improvement
of the hybrid model was successful, as determined by the experimental results.

(2) An improved Atomic Orbit Search algorithm, IAOS, was proposed, and chaos theory
was introduced to increase the population’s diversity. The individual memory func-
tion was used to increase the optimization-seeking capability of AOS. The results of
the experiment show that IAOS can effectively optimize the hyperparameters of the
ILSTM-BRVFL model.

(3) The optimized LSTM was used to perform feature extraction of the data. The double-
ended RVFL was used to perform feature prediction. The effectiveness of ILSTM-
BRVFL was verified using three sets of logging data. It achieved prediction accuracies
of up to 95.63%, 93.63% and 96.59%. The average prediction accuracy was improved
to some extent over the RVFL, BRVFL, LSTM-BRVFL, ILSTM-BRVFL (PSO), ILSTM-
BRVFL (MPA) and ILSTM-BRVFL (AOS) algorithms.

(4) The confusion matrix and the evaluation metrics (precision (P), recall (R), F1-score,
Accuracy) show that the algorithm proposed in this paper has certain advantages over
the comparison algorithms in terms of stability, accuracy, and generalization ability.

This paper investigated the ILSTM-BRVFL hybrid model and its application to reser-
voir prediction. In the future, the computational speed and resource consumption level of
reservoir prediction models will be an exciting direction. Additionally, better and more
efficient neural networks will be innovatively designed to improve the predictive power
and generalization ability further, and will be an essential topic for further research.
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