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Abstract: In this paper, a sequential transient detection method for radio frequency (RF) fingerprinting
used in the identification of wireless devices is proposed. To the best knowledge of the authors,
sequential detection of transient signals for RF fingerprinting has not been considered in the literature.
The proposed method is based on an approximate implementation of the generalized likelihood ratio
algorithm. The method can be implemented online in a recursive manner with low computational and
memory requirements. The transients of wireless transmitters are detected by using the likelihood
ratio of the observations without the requirement of any a priori knowledge about the transmitted
signals. The performance of the method was evaluated using experimental data collected from 16
Wi-Fi transmitters and compared to those of two existing methods. The experimental test results
showed that the proposed method can be used to detect the transient signals with a low detection
delay. Our proposed method estimates transient starting points 20-times faster compared to an
existing robust method, as well as providing a classification performance of a mean accuracy close
to 95%.

Keywords: generalized likelihood ratio; RF fingerprinting; sequential change point detection;
transient signal; wireless security

1. Introduction

Radio frequency (RF) fingerprints carrying information about the unique hardware
characteristics of transmitters can be used for wireless device identification. The process
of identifying wireless devices by using these fingerprints is referred to as RF finger-
printing. In order to enhance the wireless security, RF fingerprints have been used for
the identification of various wireless devices so far, e.g., VHF [1,2], Wi-Fi [3–8], Blue-
tooth [9,10], and ZigBee [11–13] transmitters. Employing RF fingerprinting for the security
of systems employing multiple antennas is also discussed in the literature. For instance,
in [14], the identification of Wi-Fi transmitters based on the IEEE 802.11n multiple-input
multiple-output protocol was considered in an experimental study. More recent studies
in [15,16] also discussed an authentication scheme based on RF fingerprints for massive
multiple-input multiple-output uplink systems. Unlike traditional cryptographic methods,
the RF fingerprinting-based device identification approach does not require additional
computational resources at the transmitter [17,18]. This feature makes the RF fingerprint-
ing approach a potential candidate for enhancing wireless security, especially in mobile
applications such as Wi-Fi-based healthcare services. In addition to the security, high
throughput is an essential requirement for next-generation wireless networks [19]. RF
fingerprinting-based techniques can be employed to enhance wireless security without
throughput degradation since they do not rely on introducing additional overhead for
security [20].

An RF fingerprinting-based device identification system has three main stages, namely;
detection, feature extraction, and classification. The RF fingerprinting-based device identifi-
cation system block diagram is given in Figure 1. RF fingerprints are obtained by extracting
characteristic features from different parts of the transmissions such as transient, preamble,
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and data regions and then classified using a classifier [21]. In order to obtain distinctive
characteristic features, the signal parts used for feature extraction must be accurately de-
tected. In this work, the detection stage of the RF fingerprinting system is discussed and the
problem of detecting the transient signals of Wi-Fi transmitters in a sequential framework
is considered.

Figure 1. RF fingerprinting-based device identification system block diagram.

One of the detection approaches is to use the correlation properties of the preamble
signals. Using this approach, high detection performance can be achieved. However,
the requirement of receiving the preamble signal part for detection increases the latency.
On the other hand, transient detection methods have potential to achieve low latency
since transients are emitted before wireless devices transmit steady-state signal parts
such as preambles. However, detecting the transient signals following the channel noise
is a challenging problem. One approach to this problem is to characterize the degree
of irregularity of the transmitted signals by using a multifractal analysis and finding a
change within this characterization [1]. The authors showed that a change can be detected
by setting a threshold on the fractal trajectory obtained from the variance of the signal
amplitude. Transients of radio transmitters were separated from the channel noise by
using this approach. In [22], a method based on permutation entropy was proposed for
the detection of transients of wireless transmitters. The idea in the method is to use the
difference of the complexity of noise and signals, which was obtained by permutation
entropy. This method can achieve high performance; however, it has high computational
complexity. A detection technique based on the instantaneous phase characteristics of the
received signals was proposed in [9]. Transients of wireless transceivers were obtained
by comparing the difference in the variance of the phase characteristics with a threshold.
A similar approach was used in [23] to find the starting and end points of the transients
of wireless sensor nodes. The variance of the signal values was calculated to measure
the deviation of the signal values from the average, and a cumulative sum algorithm was
applied to the variance trajectory.

Transient detection has also been considered as a Bayesian change point detection
problem. For example, in [24,25], a robust Bayesian approach was proposed based on step
and linear ramp data models, respectively. In this approach, the detection is carried out
by obtaining the a posteriori probability distribution of the change point in a retrospective
manner. These two Bayesian methods have robust detection capability; however, they
cannot be implemented for all practical applications due to their high computational
complexity.

In a recent study [26], a transient detection approach based on the energy criterion
technique was introduced. The basic idea in the method is to characterize the received
signals by a variation of their energy content. The performance of the method was assessed
using Wi-Fi signals collected from a particular smartphone and compared to those of
existing methods. In [27], an extensive performance evaluation of this method was carried
out using Wi-Fi signals captured from smartphones of five brands under different SNR
conditions. The common transient detection techniques were reviewed in [28,29], and
their performances were analyzed using experimental data captured from various wireless
transmitters in [4,9,26,27,30,31]. Moreover, the effect of transient detection errors on device
identification performance was investigated for IEEE 802.11 transmitters in [4,31].
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RF fingerprinting, which is considered as a potential candidate to enhance wireless
security, should satisfy the requirements of emerging wireless technologies. In this context,
wireless security solutions are required to be implemented online with low latency, as
well as to be more robust. In order to exploit the latency advantage of the transient-based
systems in online applications, the transient is required to be detected in sequentially
observed data.

To the best of our knowledge, the problem of transient detection for RF fingerprinting
has not been considered in a sequential framework so far. The main contribution of
this paper is to present for the first time a sequential transient detection method for RF
fingerprinting. The proposed method is based on a sequential change point detection (also
referred to as online change point detection) approach. The method can be implemented
online in a recursive manner with low computational and memory requirements, as well
as low detection delay. The experimental test results showed that similar performance
in estimating the transient starting points can be achieved 20-times faster than a robust
Bayesian method [24]. Using the RF fingerprints detected by the proposed method, device
classification performance with a mean accuracy close to 95% was achieved.

The outline of the paper is as follows. In Section 2, the transient detection problem
is formulated as a sequential change point detection problem. The proposed method
based on an approximate generalized likelihood ratio algorithm is presented in Section 3.
The experimental setup for data acquisition is described in Section 4. Test results for the
transient detection and classification performance are presented in Section 5, and lastly,
Section 6 concludes the paper.

2. Problem Definition

The detection of the transients of wireless transmitters is considered as a sequential
change point detection problem. When a wireless transmission following the channel noise
is received, a change occurs in the parameter set of the instantaneous amplitude samples
of the received signal (see Figure 2). For a received complex baseband signal of the form
r[k]=rI [k] + jrQ[k], the instantaneous amplitude values are calculated as

x[k] =
√

rI2[k] + rQ
2[k] (1)

where rI [k] and rQ[k] are the real and imaginary parts of the received signal, respectively.
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Figure 2. Instantaneous amplitude of a captured IEEE 802.11n signal collected at the 2.4 GHz
ISM band.

The change in the parameter set of the instantaneous amplitude samples for the tran-
sient region following the channel noise is considered as an abrupt change since the change
occurs very fast considering the sampling rate of the receiver, as shown in Figure 2. Let the
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instantaneous amplitude samples {x[k]}1≤k≤n be a sequence of independent Gaussian ran-
dom variables whose distribution is based on the parameters θ0=(µ0, σ2

0 ) and θ1=(µ1, σ2
1 ),

which are defined as the parameters before and after the unknown change point m, respec-
tively. A standard approach for sequential change point detection is to define a decision
function g[k] based on the observations up to the current time k and compare it with a
threshold. This approach, first introduced in [32], is called the cumulative sum (CUSUM)
algorithm. In this algorithm, the alarm time at which the change is detected is defined as

Na = min{k : g[k] ≥ γ} (2)

where γ is a predefined threshold. As a function of the log-likelihood ratio for the parame-
ters before and after the change point, the decision function is defined as [33]

g[k] = S[k]− min
1≤j≤k

{
j

∑
i=1

ln
(

p(x[i]; θ1)

p(x[i]; θ0)

)}
(3)

where j denotes the possible change point and S[k] is the cumulative sum of log-likelihood
ratios:

S[k] =
k

∑
i=1

ln
(

p(x[i]; θ1)

p(x[i]; θ0)

)
(4)

Note that the ratio in (4) is calculated at each time instant; therefore, it may be referred
to as the instantaneous log-likelihood ratio. In order to reduce the computational cost and
memory requirements, the decision function may also be rewritten in a recursive manner
as [33]

g[k] =
{

g[k− 1] + ln
(

p(x[k]; θ1)

p(x[k]; θ0)

)}+

(5)

where {v}+= sup(0, v).
The decision function is compared with the threshold γ for each new observation for

online detection of a change in a stochastic process. A detailed review of sequential change
point detection methods for various applications can be found in [33–35]. This problem
may also be considered in the sequential hypothesis testing framework, in which the null
hypothesis H0 : θ=θ0 is tested against the alternative hypothesis H1 : θ=θ1 by comparing
the decision function with a threshold. A detailed analysis of the relationship between
these two problems was presented in [36], where the problem of sequential detection
of parameter changes in stochastic systems was considered by relating it to sequential
hypothesis testing.

For the known model parameters before and after the change, the decision function in
(3) or (5) is calculated directly, which is known as Page’s CUSUM algorithm [32]. However,
in practice, these parameters are generally unknown. In such cases, the parameters may be
defined by using a priori information, which results in suboptimal CUSUM algorithms [37].
When a priori information cannot be provided in a practical application, the parameters
have to be estimated.

In our work, considering the fact that transmission powers can be at different levels
and change randomly due to the nature of the wireless channel, it is obvious that defining
a priori information is not a practical solution for the parameter after change (θ1). For this
type of problem, Lorden [38] introduced the generalized likelihood ratio (GLR) algorithm,
in which the CUSUM method is generalized. In the standard GLR algorithm, the parameter
θ0 is assumed to be known or estimated from the available observations, whereas the
change point and the unknown parameter θ1 are estimated using the maximum likelihood
principle in the following double-maximization form [33]:
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g[k] = max
1≤j≤k

sup
θ1

k

∑
i=j

ln
(

p(x[i]; θ1)

p(x[i]; θ0)

)
(6)

Since the maximum likelihood estimation of parameter θ1 is obtained for each possible
change point j, the GLR algorithm has a high computational burden. Therefore, it is not al-
ways possible to implement this algorithm in practice [36]. Several approaches, e.g., [39–41],
have been introduced to simplify this algorithm while preserving the performance, some
of which were reviewed in [33,36,42].

3. Sequential Transient Detection for RF Fingerprinting

We introduce a sequential transient detection method based on an approximate im-
plementation of the GLR algorithm. In this implementation, considering the transient
characteristics of wireless devices and the requirements of RF fingerprinting, the main
principle of the two-model approach introduced in [40,41] was used. This approach has
been used for implementing the GLR algorithm in sequential segmentation of signals using
spectral analysis for speech, electroencephalogram, and electrocardiogram data. To the best
of our knowledge, this is the first study in which an approximate GLR algorithm based on
the two-model approach is used for the detection of the RF fingerprints.

In the proposed GLR-based sequential transient detection method, two time windows
called the reference and test window are defined in order to estimate the model parameters.
These windows are represented for a captured Wi-Fi signal following the channel noise in
Figure 3. The reference window is taken as a growing time window so that it includes all
the information about the channel noise, whereas the test window is a sliding window with
fixed size W. Model parameters before and after change, i.e., θ0=(µ0, σ2

0 ) and θ1=(µ1, σ2
1 ),

are estimated by using the samples within the reference and test windows, respectively.
At the current time k, the sample being tested as a change point is the one that is received
at time k−W+1 (see Figure 3). When a new sample is received, in order to include this
sample in the time windows, the fixed-size test window is shifted, whereas the reference
window is enlarged. Therefore, at each time instant, the current sample is the end point of
both time windows, as shown in Figure 3. The parameter estimates are updated at each
time instant using the current sample included within the time windows.

Time (samples)

A
m

p
lit

u
d
e

growing reference window

fixed-size sliding test window

Figure 3. Reference and test windows.

The details of the method including the estimation of the parameters, detection of
the transient, and estimation of the transient starting point are presented in the following
subsections, respectively.
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3.1. Parameter Estimation

The parameters before and after the change are estimated by calculating the sample
mean and variance of the samples within the reference and test windows, respectively. The
estimates of the parameters are updated at each time instant when a new observation is
received. The parameter estimates are obtained as

µ̂0[k] =
1
k

k

∑
i=1

x[i] (7)

σ̂2
0 [k] =

1
k

k

∑
i=1

(x[i]−µ̂0[i])
2 (8)

µ̂1[k] =
1

W

k

∑
i=k−W+1

x[i] (9)

σ̂2
1 [k] =

1
W

k

∑
i=k−W+1

(x[i]−µ̂1[i])
2 (10)

where W is the size of the sliding test window and k > W by definition.
The estimations defined in (7)–(10) are carried out in recursive forms as follows:

µ̂0[k] =
k− 1

k
µ̂0[k−1] +

1
k

x[k] (11)

σ̂2
0 [k] =

k− 1
k

σ̂2
0 [k−1] +

1
k
(x[k]− µ̂0[k])

2 (12)

µ̂1[k] = µ̂1[k−1] +
(x[k]−x[k−W])

W
(13)

σ̂2
1 [k]=σ̂2

1 [k−1]+
(x[k]−µ̂1[k])2−(x[k−W]−µ̂1[k−1])2

W
(14)

where k >W by definition. In this work, for 1≤ k≤W, the initial values of the parameters
were taken as zero without using any a priori information. If a priori information about the
channel noise is provided, the initial values of µ̂0 and σ̂2

0 may also be determined based on
this information.

In this work, we updated the estimate of the parameter before change (θ0) for each
new observation, instead of assuming that this parameter is known and remains constant
throughout the analysis, which is one of the approaches for implementing the GLR algo-
rithm. By doing so, we aimed to take into account the instantaneous variations of the noise
floor and, therefore, achieve high detection and estimation accuracy.

In the standard GLR algorithm, as can be seen from the decision function calculation
in (6), the number of maximizations of the log-likelihood over the parameter after change
(θ1) at time k grows to infinity with k [34,36]. That means the number of computations grows
to infinity with k. On the other hand, in the proposed transient detection method, which
is a simplified implementation of the GLR algorithm, the second maximization over θ1 is
canceled and the parameters are estimated using (11)–(14). Therefore, the proposed method
can be implemented with low computational complexity. The complexity evaluation of the
proposed method was performed in terms of the computation time by using simulation
and experimental data in Section 5.3.

3.2. Transient Detection

Transient detection was carried out by detecting a change in the mean and variance
of the instantaneous amplitude samples of the received signals. The decision function is
formed by using the estimates of the model parameters which were obtained as explained
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in the previous subsection. In this case, the recursive decision function in (5) can be
rewritten as

g[k] = max{0, g[k−1]+L[k]}, k > W (15)

where L[k] represents the log-likelihood ratio and g[k]=0 for 1≤k≤W by definition. Using
the parameter estimates, the log-likelihood ratio for Gaussian random variables with
different means and variances is given as

L[k] = ln
p
(
x[k−W+1]; θ̂1[k]

)
p
(
x[k−W+1]; θ̂0[k]

)
= ln

σ̂0[k]
σ̂1[k]

+
(x[k−W+1]−µ̂0[k])

2σ̂2
0[k]

2

− (x[k−W+1]−µ̂1[k])
2σ̂2

1 [k]

2

(16)

For the derivation of this equation, see Appendix A. Since the sample being tested as a
change point at the current time k is the one that is received at time k−W+1 (see Figure 3),
the sample x[k−W+1] is used in (16). The decision function is calculated after receiving
samples with a size of W in this method. For the time interval with a length of sliding
window size W, which is referred to as the dead zone [33], the decision function is not
calculated and taken as zero. The size of the sliding test window was taken as 50 samples,
which corresponds approximately to 0.8 µs.

The transient detection was performed by comparing the decision function g[k] with a
threshold γ, as given in (2). Detection occurs at the alarm time Na at which g[k] exceeds the
threshold value. For a captured Wi-Fi signal, the decision function g[k] obtained by using
(15) and the alarm time Na are given in Figure 4.
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Figure 4. Decision function.

3.3. Estimation of Transient Starting Point

Once a transient is detected, the transient starting point considered as a change point
can be estimated by using the observations up to alarm time Na. Maximum likelihood
estimation of the change point is obtained by finding the time index where the cumulative
sum of log-likelihood ratios takes its minimum value [33]. In the formulation of this work,
the current sample is the end point of the test window, whereas the sample being tested as
a possible change point is the starting point of this window (see Figure 3). Therefore, using
the observations up to the alarm time Na, transient starting point estimation is defined as
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m̂ = arg min
W+1<j≤Na

{S[j−1]} −W + 1 (17)

The estimation defined in (17) may be performed by recording all cumulative sum
values, which requires additional memory. Considering the typical behavior of the cumu-
lative sum S[k] given in Figure 5, we propose to perform this task in a recursive manner,
which reduces the memory requirement. In this recursive procedure, the current value of
the cumulative sum is compared with its minimum value up to the current time. Once the
current value of the cumulative sum is lower than the minimum value, the minimum value
and its index are updated. The memory requirement is reduced since only the minimum
value and its index are held in the memory instead of all cumulative sum values.

50 100 150 200 250 300 350 400

Time (samples)

-40
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Case-I Case-II

Figure 5. Cumulative sum of log-likelihood ratios.

The underlying reason for the typical behavior of the cumulative sum observed for
Wi-Fi signals can be explained as follows. Until the transient signal enters the test window,
the estimates of θ0 and θ1 are close to each other since both the test and reference windows
include only noise samples. Therefore, the log-likelihood ratios defined in (16) take values
close to zero and their cumulative sum S[k] fluctuates around zero, as shown in Figure 5.
When the change point is between the start and end points of the test window, the estimates
of θ1 increase due to the samples of the transient signal within the test window. We refer to
this case as Case-I, for which an example representation of the reference and test windows
is shown in Figure 6. In this case, since the sample being tested as a possible change point is
a noise sample with parameter θ0, the log-likelihood ratios take values lower than one, and
therefore, the cumulative sum exhibits a negative drift (Figure 5). After the change point
leaves the test window, the sample being tested as a possible change point is a transient
sample with parameter θ1, as shown in Figure 6. We refer to this case as Case-II, where
the log-likelihood ratios take values greater than one, and therefore, their cumulative sum
exhibits a positive drift (Figure 5).

For a captured Wi-Fi signal, the estimated transient starting point m̂ obtained by using
(17) is represented in Figure 7. The difference between time instants at which the alarm
and change occur (Na − m̂) is referred to as detection delay and desired to be small for
online implementations. The detection delay for the signal in Figure 7 is 68 samples, which
corresponds approximately to 1.1 µs. In order to provide a visual comparison with the
IEEE 802.11n preamble with a length of 20 µs, m̂ and Na are represented on a long part of a
captured Wi-Fi waveform in Figure 8.
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Figure 6. Growing reference window (solid lines) and sliding test window (dashed lines) for two
different time instants k1 (Case-I) and k2 (Case-II).
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Figure 7. Estimated transient starting point m̂ and alarm time Na.
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Figure 8. Estimated transient starting point m̂ and alarm time Na over a long part of a captured Wi-Fi
waveform.

The memory requirement of the proposed method at time k does not increase with k
since the calculation of the decision function, as well as the estimation of the parameters
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and change point are performed in a recursive manner. At each time instant, only the
current data value, the last values of the parameters, the minimum cumulative sum value,
and its index are held in the memory. This demonstrates the advantage of the method in
terms of memory requirements compared to the standard [38] and window-limited [39]
GLR algorithms, which require the full dataset and the data values within the window,
respectively, at every time instant.

4. Experimental Setup

An experimental setup consisting of wireless USB adapters, an access point, and a
software-defined radio (SDR) was designed to collect Wi-Fi signals. These devices were
located 3 m apart from each other with a line-of-sight between them, as shown in Figure 9.
Sixteen wireless USB adapters of three different models from two different brands were
used as the Wi-Fi transmitters. The chipsets and supported Wi-Fi standards of these
adapters are given in Table 1. They were connected to a computer via USB hubs and
configured to transmit data through a wireless network.

A wireless local area network (WLAN) was designed for wireless communication
between the access point and Wi-Fi transmitters. The WLAN was managed by an access
point that was configured to communicate over the IEEE 802.11n standard with a 20 MHz
bandwidth. The Wi-Fi channel was set to 12 with a center frequency of 2.467 GHz. IEEE
802.11n signals with a 20 MHz bandwidth were captured from the Wi-Fi transmitters
using an SDR, Analog Devices ADALM Pluto [43]. This SDR has a direct conversion
transceiver chip operating in a 325 MHz to 3.8 GHz frequency range and supports up to a
20 MHz channel bandwidth. Captured signals were sampled at 60 MSamples/s with 12-bit
resolution. Three-hundred fifty transmissions were collected from each of the 16 Wi-Fi
transmitters, resulting in a dataset of 5600 transmissions.

Figure 9. Experimental setup for data acquisition.

In order to obtain the received signals with different signal-to-noise ratio (SNR) values,
the gain of the SDR receiver was set to two different levels. Average SNR levels over all
transmissions were calculated to be 25 dB and 37 dB for low and high receiver gain values,
respectively. These receiver gains and corresponding SNR values were selected considering
the fact that the minimum SNR value recommended for most applications in IEEE 802.11
wireless local area networks is around 20 dB in practice [44].

Table 1. Wi-Fi transmitters used in the experiments.

Model Standards Quantity Chipset

TP-Link WN722N 802.11 b/g/n 13 Realtek RTL8188EUS
TP-Link WN725N 802.11 b/g/n 2 Realtek RTL8188EUS

Mercusys MW150US 802.11 b/g/n 1 Realtek RTL8188EU
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5. Experimental Performance Evaluation

The performance of the proposed method was assessed using experimental data
collected from 16 Wi-Fi transmitters. The performance evaluation was performed in
terms of detection delay, estimation error, and computation time. Besides, to demonstrate
the usability of the proposed transient detection method in an RF fingerprinting system,
the classification performance for the RF fingerprints detected by the proposed method
was analyzed.

In order to provide a baseline comparison, the estimation performance of the standard
threshold detector was examined, which can be used for the detection of the transients of
wireless transmitters [5]. The main idea of this detector is to compare the raw data values
with a threshold. The threshold detector can easily be applied to sequentially observed
data; however, it is highly prone to errors due to measurement noise.

We also compared the estimation performance of the proposed method with a robust
Bayesian approach [24,25]. It was reported in [25] that a Bayesian ramp detector has high
performance for IEEE 802.11b signals sampled at 5 GSamples/s. However, when the
sampling rate is at lower levels, as in the case of our work where the sampling rate was
60 MSamples/s, the change in the parameter of the random process can be considered as
an abrupt change [33]. In this case, the change occurs very fast considering the sampling
period of the receiver. That means the step model is more accurate for the instantaneous
amplitudes of transmissions considered herein. Therefore, we analyzed the performance
of a Bayesian step detector [24] and compared its performance with that of the proposed
method. Test results for performance analysis are presented in the following subsections.

5.1. Detection Performance

In the sequential change point analysis, the aim was to perform the change point
detection as soon as possible under a false alarm constraint. A test was performed to
calculate the false alarms and detection delays for different threshold values for two
different SNR levels. According to the test results presented in Table 2, the false alarm
rate was reduced substantially for the threshold values above 30. Since the increase in
detection delay was not high above this value, the threshold was set to γ = 50, for which
the false alarm did not occur and the average detection delay was approximately 1 µs.
This is less than the power-on duration of 2 µs defined for Wi-Fi transmitters in the IEEE
standard [45]. This means that the transients of Wi-Fi transmitters can be detected by the
proposed method within the duration that is defined for Wi-Fi transmitters to increase their
power to a predefined level. Furthermore, when compared to the IEEE 802.11n preamble,
which has a length of 20 µs, this delay is very small, as shown in Figure 8.

Table 2. Average detection delay and number of false alarms for different threshold values.

Threshold Average Detection Delay (µs) Number of False Alarms

25 dB 37 dB 25 dB 37 dB

10 0.88 0.88 1538 1240
20 0.92 0.91 48 67
30 0.95 0.95 2 11
40 0.98 0.97 1 4
50 1.03 1.01 0 0

The histograms of the detection delay values obtained for the experimental data at
two different SNR levels for the threshold value of 50 are given in Figure 10. As can be seen
from this figure, detection delays had small standard deviations at both SNR levels.
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Figure 10. Histogram of detection delay values.

5.2. Estimation Performance

The performance of the estimation stage was evaluated by calculating the estimation
error for each transmission. Starting points of Wi-Fi signals, which were obtained using a
symbol timing synchronization scheme given in [46], were used as reference starting points
for performance evaluation. This synchronization scheme requires the demodulation and
decoding of the short and long training fields of the IEEE 802.11 preamble defined in [45].
Estimation error is defined as the difference between the estimated transient starting point
obtained by a transient detection method and the reference starting point.

Estimation errors obtained over 5600 transmissions from the Wi-Fi transmitters are
summarized in the form of boxplots in Figure 11. This figure demonstrates that the Bayesian
step detector had an estimation error distribution with a mean close to zero and a small
standard deviation at both SNR levels. A similar estimation performance can be achieved
by the proposed GLR-based detector for both SNR values, as shown in Figure 11.
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Figure 11. Boxplots of the estimation errors for two different average SNR values. The line in the
center of a box is the median; the box edges indicate the 25th and 75th percentiles; the whiskers
represent the lowest and highest values without considering outliers; the outliers are represented by
the point “·” marker symbol.

Compared to these two detectors, the threshold detector had lower performance with
large estimation errors (Figure 11). In addition, the estimation bias of the threshold detector
increased as the SNR level decreased. In order to avoid reducing the clarity of visualization,
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estimation errors below−50 samples occurred in the threshold detector, i.e., 70 and 73 error
values at 25 dB and 37 dB SNR, respectively, are not represented in Figure 11.

5.3. Computation Time

The main aim of this test was to compare the computational performance of the
detectors for processing data with a fixed length. The proposed GLR-based detector was
compared with the threshold detector and Bayesian step detector in terms of computation
time using experimental data. The results achieved by averaging over 5600 transmissions
are given in Table 3. As can be seen from this table, the fastest detector was the threshold
detector, as expected, in which the raw data samples were compared with a threshold. The
proposed method was 20-times faster than the Bayesian step detector. This advantage was
due to the recursive and simplified implementation structure of the proposed method.

In order to evaluate the computation performance of the proposed method for larger
data sizes, the proposed method was also applied to the simulated data in addition to the
experimental data. Compared to the Bayesian step detector, the proposed GLR method
was approximately 30- and 230-times faster for the simulated data with sizes of 1K and
10K samples, respectively. The mean squared estimation error for the proposed GLR and
Bayesian step detectors were found to be 0.33 and 0.46, respectively. These results showed
that the proposed method had a significant complexity advantage while maintaining high
performance, especially when the data size was large.

Table 3. Computation time.

Detector Computation Time (µs)

Proposed GLR detector 84.33
Bayesian step detector 1694.71

Threshold detector 13.57

5.4. Classification Performance

Device classification performance for the RF fingerprints detected by the proposed
method was assessed using experimental data. The instantaneous amplitude characteristics
of the identification signals were used as features in the classification system. In this
work, the identification signals were taken as the signal parts starting from the estimated
transient starting points. Therefore, the estimation performance significantly affected
the overall performance of the classification system. If the estimation performance was
low, the alignment accuracy would decrease, resulting in a classification performance
loss. The instantaneous amplitude characteristics of the identification signals obtained by
the proposed method from four different Wi-Fi transmitters are represented in Figure 12,
where an overlay of 50 signals for each transmitter is shown. This figure shows that the
identification signals obtained by the proposed method were properly aligned. From this
figure, it can also be seen that the instantaneous amplitude characteristics can be used to
represent the characteristic differences between measurements from different Wi-Fi devices
and the similarities of different measurements from a fixed device. In order to avoid using
the transmission power level as a feature in the classification system, transmission signals
were normalized so that their average power was equal to one.

In order to classify the instantaneous amplitude features, a probabilistic-neural-
network (PNN)-based [47] classifier was used. In this classifier, the distribution of each
class is estimated based on the Parzen window approach using the training data. In the
testing stage, the class with maximum posterior probability was assigned to new input
data. A detailed description of PNN classifier can be found in [48].
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Figure 12. Instantaneous amplitude characteristics obtained from four different Wi-Fi transmitters.

The classification performance evaluation was carried out through Monte Carlo cross-
validation in order to accurately measure the performance. In each Monte Carlo trial, half of
the signals from each transmitter were randomly selected and used in the training. The first
classification test was performed to analyze the effect of the identification signal duration
on classification accuracy. The results of one hundred trials for each duration value are
represented in Figure 13. This figure demonstrates that the classification accuracy increased
as the signal duration increased up to approximately 600 ns at both SNR levels. Increasing
the duration beyond this value did not yield substantial performance improvement. There-
fore, the identification signal duration was taken as 600 ns for the classification tests, which
corresponds to 36 samples for the sampling rate of 60 MSamples/s. As can be seen from
Figure 13, shortening the signal duration had a more detrimental effect on the classification
performance for the signals with lower SNR values.
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Figure 13. Classification accuracy versus identification signal duration.

Once the identification signal duration was determined, classification tests were run to
compare the performance of the RF fingerprints detected by the proposed and two existing
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methods. Confusion matrices were obtained for each classification test at two different
SNR levels, and the average values over trials are presented in Figure 14. The classification
results of one-hundred trials obtained at 25 dB and 37 dB average SNR levels are given
in Figure 15 and Figure 16, respectively. Furthermore, the classification performance was
assessed in terms of average accuracy, precision, recall, and F1 score, and the results
are given in Table 4. From these figures and tables, the effect of the transient detection
method on classification performance can be observed. The RF fingerprints obtained by
the proposed GLR-based detector achieved a classification performance close to 95% at
25 dB and slightly higher than 97% at 37 dB in terms of all the metrics given in Table 4. The
proposed method provided classification performance improvement of approximately 16%
compared to the threshold detector at 25 dB. A similar classification performance can be
achieved with the Bayesian step detector; however, it required a higher computation time.

When the classification accuracies at two different SNR levels were compared, it can
be seen from Figures 15 and 16 that the classification performances degraded at lower SNR
values. The performance loss was caused by both the detection and classification stages
since the decrease in SNR not only degraded the detection performance, but also made the
classification task difficult. A high performance loss was observed for the threshold detector.
On the other hand, the performance loss due to SNR degradation was negligible for the
proposed detector and Bayesian detector since they had high estimation performance at
both SNR levels, as shown in Figure 11.
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Figure 14. Confusion matrices for device classification using the RF fingerprints detected by three
different detection methods at 25 dB (left panel) and 37 dB (right panel) SNR.
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Figure 16. Histogram of classification accuracy at 37 dB SNR.

Table 4. Classification metrics for three different methods at 25 dB and 37 dB SNR.

SNR 25 dB SNR 37 dB
GLR

(Proposed)
Bayesian

Step Threshold GLR
(Proposed)

Bayesian
Step Threshold

Accuracy 0.9464 0.9457 0.7896 0.9718 0.9721 0.9157

Precision 0.9507 0.9502 0.7997 0.9721 0.9724 0.9160

Recall 0.9464 0.9457 0.7896 0.9718 0.9721 0.9157

F1 score 0.9462 0.9456 0.7921 0.9718 0.9721 0.9156

6. Conclusions

This paper proposed a GLR-based sequential transient detection method, which
can be implemented online for RF fingerprinting. The performance of the method was
evaluated using experimental data collected from Wi-Fi transmitters that are widely used
in wireless networks. The experimental results showed that the proposed method can
achieve similar performance in estimating the transient starting points 20-times faster than
an existing robust method. A Wi-Fi transmitter classification performance with a mean
accuracy close to 95% was achieved using the RF fingerprints detected by the proposed
method. Since the detection was performed using transients that were emitted before the
wireless devices transmitted any information, the proposed method can be used to detect
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the RF fingerprints as soon as possible when the data transmission starts. This feature is
particularly desirable in wireless applications that demand low latency. Besides, the method
has low detection delay, as well as low computation time, which are desirable properties
for online implementations. In this study, the experimental results were obtained from 16
Wi-Fi transmitters operating in the 2.4 GHz ISM band. The performance evaluation of the
proposed transient detection method for Wi-Fi transmitters operating at different frequency
bands, as well as the impact of the number of Wi-Fi transmitters on the performance will
be considered in future work.
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Appendix A

The likelihood ratio for two Gaussian random variables with different parameter
values can be obtained as follows:
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p
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