
Citation: Zhang, H.; Song, Z.; Xing,

Q.; Feng, B.; Lin, X. A Generative

Learning Steganalysis Network

against the Problem of

Training-Images-Shortage. Electronics

2022, 11, 3331. https://doi.org/

10.3390/electronics11203331

Academic Editor: Andrei Kelarev

Received: 28 August 2022

Accepted: 5 October 2022

Published: 16 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Generative Learning Steganalysis Network against the
Problem of Training-Images-Shortage
Han Zhang 1,†, Zhihua Song 2,*,†, Qinghua Xing 2, Boyu Feng 1 and Xiangyang Lin 2

1 EM and UAV Engineering College, Air Force Engineering University, Xi’an 710051, China
2 Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
* Correspondence: szhele@163.com; Tel.: +159-2972-7388
† This authors contributed equally to this work.

Abstract: In recent years, several steganalysis neural networks have been proposed and achieved
satisfactory performances. However, these deep learning methods all encounter the problem of
Training-Images-Shortage (TIS). In most cases, it is difficult for steganalyses to obtain enough signals
about steganography from a game opponent. In order to solve the problem of TIS for steganalysis,
we propose a novel steganalysis method based on generative learning and deep residual convolu-
tional neural networks. Comparative experiments show that the proposed architecture can achieve
promising performance in response to spatial domain steganalysis despite a lack of training images.

Keywords: generative learning; steganalysis; steganography; image generation

1. Introduction

Steganalysis and steganography are two sides of the same coin. Steganography
attempts to achieve confidential communication by hiding secret information in a public
carrier, such as an image on the internet. Steganalysis attempts to distinguish whether the
communicating parties use steganography. They are not supposed to be known exactly for
both players in a communication game, but they cannot be studied separately.

Steganography poses an increasing threat to network security because steganographic
carriers are increasingly available on the internet and the payloads of steganography are
more severe than ever before. With the widespread use of smartphones, the number of
images transmitted on the internet continually grows. This provides a very convenient
channel for the misuse of steganography, such as planning and coordinating criminal
activities. The capabilities of steganography have also developed from hiding a small
message within the Least Significant Bits (LSB) of an image to place a full-sized image
within another image across all of the available bits [1]. We focus on steganalysis and
detecting targets that include message-into-image steganography and image-into-image
steganography. The former hides a secret text message in a cover image, whereas the
latter hides a secret image in a cover image. Other types of steganography, such as hiding
messages or images in voice or video recordings, are beyond the scope of this study.

Steganographic algorithms have developed from the earliest LSB, through UNI-
WARD (Universal Wavelet Relative Distortion) [2], WOW (Wavelet Obtained Weights) [3],
HUGO [4], MG (Multivariate Generalized) [5], etc., to state-of-the-art technology based on
deep learning. Deep-learning-based steganography can be divided into three types. The
first type operates in an image-into-image way. The authors of [1] tried hiding a full-sized
secret image within a cover image of the same size using a neural network directly in
an end-to-end way. Hu et al. [6] proposed an image steganography without embedding
method. The secret image was mapped into a noise vector and stego images were generated
based on the noise vector by the trained generator neural network model. No modification
or embedding operations were required during the process of image generation, and the
information contained in the image was extracted successfully by another neural network,

Electronics 2022, 11, 3331. https://doi.org/10.3390/electronics11203331 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11203331
https://doi.org/10.3390/electronics11203331
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11203331
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11203331?type=check_update&version=2

Electronics 2022, 11, 3331 2 of 9

called the extractor, after training. The second type operates in a message-into-generated-
cover way. In [7], a secure steganography method based on neural network generated
images from noise and then hid the secret message in them via a traditional embedding
algorithm. The third type uses the neural network as an assessment method. In [8], the
neural network automatically learned embedding change probabilities for every pixel
in a given spatial cover image. The learned embedding change probabilities were then
converted to embedding distortions, which were adopted in the existing framework of
minimal-distortion embedding. Steganographic neural networks based on adversarial
training have evolved continuously and have made stego images increasingly difficult to
detect, which poses a great challenge to steganalysis.

Steganalysis algorithms have also evolved from manually defined features analysis
between cover images and stego images, including quality metrics [9], binary similarity [10],
ensemble classifiers [11], rich model [12], embedding probabilities [13], and so on, to deep
learning. Various means are used to enhance the detection accuracy of deep learning for
steganography. These means include transfer learning [14,15], residual architecture [16,17],
absolute values [18], channel selection [19], diverse activation [20], attention augmenta-
tion [21], feature-guided adaptation [22], etc. Deep learning is a promising framework
providing state-of-the-art performance for steganalysis; however, it is generally difficult to
obtain all the signals about steganographic algorithms from an adversary. Thus, TIS is an
unavoidable scenario and should be dealt with in advance.

There are two ways to solve the problem of TIS, one is data augmentation [23,24]
and the other is to generate new images. The former increases the training set size by
transforming the available images. Typical ways include padding, rotating, re-scaling,
flipping, translation, cropping, zooming, channel shuffle, dropout, and so on. However,
only those that do not remove or suppress the fragile steganography signals are desirable
for steganalysis applications. Indeed, these desirable ways for steganalysis include rotations
by integer multiples of 90 degrees and vertical or horizontal flipping. Advanced methods
include BitMix [24] and Pixels-off [25]. They focus on completely mining existing images
rather than generating brand new images with different features. In this paper, we seek a
breakthrough in the latter method.

The motivation behind this research was to generate new training images for spatial
domain steganalysis. For convenience, we call the proposed network GLSNet, which is an
abbreviation of Generative Learning Steganalysis Network. The main contributions are as
follows: (1) We designed a new type of normalization layer to preserve the fragile pseudo
stego signals for the generator and to accelerate the training. (2) Three shortcut connections
from the input to three types of output layers were added to enhance recognition of the
difference between cover image and stego image. (3) The ReLU activation function was
replaced with Tanh to produce negative signals in the stego image. Such a structure is good
for preserving the noise-like stego signals.

The rest of the paper is arranged as follows: In Section 2, we propose the architecture
of GLSNet, dataset, the steganographic method, training details, and evaluation metrics. In
Section 3, we present the experimental results. Finally, Section 4 mentions the conclusion
and the future of the work.

2. Materials and Methods

The architecture of GLSNet, the dataset and steganographic method, and training
details and evaluation metrics are addressed in this section.

2.1. Architecture

We began with a small set of cover images C = {ci, i = 1, · · · , n} and its corresponding
stego images set S = {si|si = F(ci), i = 1, · · · , n}, which usually lead to the problem of
over-fitting for steganalysis.

Our goal was to help expand the training images dataset, which could then help to
improve the diversity of the training data and delay the premature convergence of the

Electronics 2022, 11, 3331 3 of 9

steganalysis network. We therefore sought a neural network structure, which we called
a generator G : X → Y , that could learn to map a cover image to its corresponding stego
image.

In theory, the optimal generator G should produce an output distribution pY(ŷ), ŷ =
G(x), x ∈ X, identical to the empirical distribution pS(s), s = F(c), c ∈ C. However, such a
generator was not easy to train because of the extremely subtle difference between the cover
and the stego–the steganography will always try to minimize the difference between the
cover and stego images. These issues required a residual network, which better captures
the subtle difference between the input and the output.

We designed a generator based on residual convolution blocks and added three
shortcuts between the blocks to strengthen the retention of subtle differences. The details
of the proposed generator are described in Section 2.

The overall architecture is called GLSNet-Generative Learning Steganalysis Network.
The concept “generative learning” refers to both the training strategy of steganalysis when
confronted with a training data shortage and the stego images generator in front of the
steganalysis module. The proposed GLSNet, as shown in Figure 1, is composed of the
following two segments: the front segment whose goal is to generate stego images, which
is outlined in the figure by the left segment, and the last segment responsible for detecting
the stego images, which is a deep residual convolution network called SRNet [16]. The
SRNet provided state-of-the-art detection accuracy for spatial domain steganalysis and
minimized the use of heuristics and externally enforced elements that are universal. If we
consider steganalysis as a binary classification problem, to be an original image or a stego
image, the detection accuracy is the ratio of correct classifications when the input dataset is
a 1:1 mixture of cover images and stego images.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 10

We began with a small set of cover images 𝐶 = 𝑐 , 𝑖 = 1, ⋯ , 𝑛 and its correspond-
ing stego images set 𝑆 = 𝑠 |𝑠 = 𝐹(𝑐), 𝑖 = 1, ⋯ , 𝑛 , which usually lead to the problem of
over-fitting for steganalysis.

Our goal was to help expand the training images dataset, which could then help to
improve the diversity of the training data and delay the premature convergence of the
steganalysis network. We therefore sought a neural network structure, which we called a
generator 𝐺: 𝑋 → 𝑌, that could learn to map a cover image to its corresponding stego im-
age.

In theory, the optimal generator 𝐺 should produce an output distribution 𝑝 (𝑦), 𝑦 = 𝐺(𝑥), 𝑥 ∈ 𝑋, identical to the empirical distribution 𝑝 (𝑠), 𝑠 = 𝐹(𝑐), 𝑐 ∈ 𝐶. How-
ever, such a generator was not easy to train because of the extremely subtle difference
between the cover and the stego–the steganography will always try to minimize the dif-
ference between the cover and stego images. These issues required a residual network,
which better captures the subtle difference between the input and the output.

We designed a generator based on residual convolution blocks and added three
shortcuts between the blocks to strengthen the retention of subtle differences. The details
of the proposed generator are described in Section 2.

The overall architecture is called GLSNet- Generative Learning Steganalysis Net-
work. The concept “generative learning” refers to both the training strategy of steganaly-
sis when confronted with a training data shortage and the stego images generator in front
of the steganalysis module. The proposed GLSNet, as shown in Figure 1, is composed of
the following two segments: the front segment whose goal is to generate stego images,
which is outlined in the figure by the left segment, and the last segment responsible for
detecting the stego images, which is a deep residual convolution network called SRNet
[16]. The SRNet provided state-of-the-art detection accuracy for spatial domain steganal-
ysis and minimized the use of heuristics and externally enforced elements that are univer-
sal. If we consider steganalysis as a binary classification problem, to be an original image
or a stego image, the detection accuracy is the ratio of correct classifications when the
input dataset is a 1:1 mixture of cover images and stego images.

Figure 1. Architecture of the proposed GLSNet.

In order to conduct a comparative study, we tested three kinds of generators, includ-
ing a fully connected generator, as shown in Figure 2, a CNN (Convolutional Neural Net-
work) generator, as shown in Figure 3, and a residual CNN generator named RES, as
shown in Figure 4, to evaluate the proposed architecture. The input of the generator was
assumed to be a 256 × 256 original cover image. The output of the generator was a 256 ×
256 generated stego image. The generator was trained with a small number of paired
cover images and stego images. The generator was trained by reducing the error shown
below (𝑔𝑠 and 𝑐 are the generated stego image and original cover image, respectively, 𝑠 is the real stego image.) ℒ (𝑔𝑠, 𝑠, 𝑐) = ‖𝑔𝑠 − 𝑠‖

Figure 1. Architecture of the proposed GLSNet.

In order to conduct a comparative study, we tested three kinds of generators, including
a fully connected generator, as shown in Figure 2, a CNN (Convolutional Neural Network)
generator, as shown in Figure 3, and a residual CNN generator named RES, as shown in
Figure 4, to evaluate the proposed architecture. The input of the generator was assumed to
be a 256× 256 original cover image. The output of the generator was a 256× 256 generated
stego image. The generator was trained with a small number of paired cover images and
stego images. The generator was trained by reducing the error shown below (gs and c are
the generated stego image and original cover image, respectively, s is the real stego image.)

Lg(gs, s, c) = ‖gs− s‖
Electronics 2022, 11, x FOR PEER REVIEW 4 of 10

Figure 2. Structure of the fully connected generator.

Figure 3. Structure of the CNN generator.

Figure 4. Structure of the RES generator.

2.2. Details of the Generator
The RES generator borrows heavily from SRNet [16], however, there are three im-

provements for this special application: (1) A new type of normalization layer was de-
signed to preserve the fragile pseudo stego signals. (2) Three shortcut connections from
the input to three types of output layers were added to enhance the learning of the differ-
ence between cover image and stego image, as depicted in Figure 4. (3) The ReLU activa-
tion function was replaced with Tanh to produce negative signals as in the stego image.
Such a structure can better preserve the noise-like stego signals.

The RES generator consisted of 12 layers, as shown in Figure 4, and the details of each
layer of the generator are shown in Table 1.

Table 1. Details of each layer of the generator.

Input 1 × 256 × 256
Layer1 Conv2D(1,16,3,1,1)→IVN (16) → Tanh
Layer2 Conv2D(16,32,3,1,1) →IVN (32) → Tanh
Layer3 Conv2D(32,32,1,1,0) →IVN (32) →Tanh→Conv2D(16,32,3,1,1) →IVN (32) →Tanh
Layer4 Conv2D(32,32,1,1,0) →IVN (32) →Tanh →Conv2D(32,32,1,1,0) →IVN (32) →Tanh
Layer5 Conv2D(32,32,1,1,0) →IVN (32) →Tanh →Conv2D(32,32,1,1,0) →IVN (32) →Tanh
Layer6 Conv2D(32,32,1,1,0) →IVN (32) →Tanh →Conv2D(32,64,3,1,1) →IVN (64) →Tanh

Layer7 Conv2D(64,64,1,1,0) → IVN (64) → Tanh → Conv2D(64,64,1,1,0) → IVN (64) →Tanh→maxPool2D (3,1)

Layer8 Conv2D(64,64,1,1,0) → IVN (64) → Tanh → Conv2D(64,128,1,1,0) → IVN (128) →Tanh→maxPool2D (3,1)

Layer9 Conv2D(128,128,1,1,0) → IVN (128) → Tanh → Conv2D(128,128,1,1,0) → IVN (128) →Tanh→maxPool2D (3,1)

Layer10 Conv2D(128,128,1,1,0) → IVN (128) → Tanh → Conv2D(128,256,3,1,1) → IVN (256) →Tanh→maxPool2D (3,1)

Layer11 Conv2D(256,256,1,1,0) → IVN (256) → Tanh → Conv2D(256,256,1,1,0) → IVN (256) →Tanh→maxPool2D (3,1)

Figure 2. Structure of the fully connected generator.

Electronics 2022, 11, 3331 4 of 9

Electronics 2022, 11, x FOR PEER REVIEW 4 of 10

Figure 2. Structure of the fully connected generator.

Figure 3. Structure of the CNN generator.

Figure 4. Structure of the RES generator.

2.2. Details of the Generator
The RES generator borrows heavily from SRNet [16], however, there are three im-

provements for this special application: (1) A new type of normalization layer was de-
signed to preserve the fragile pseudo stego signals. (2) Three shortcut connections from
the input to three types of output layers were added to enhance the learning of the differ-
ence between cover image and stego image, as depicted in Figure 4. (3) The ReLU activa-
tion function was replaced with Tanh to produce negative signals as in the stego image.
Such a structure can better preserve the noise-like stego signals.

The RES generator consisted of 12 layers, as shown in Figure 4, and the details of each
layer of the generator are shown in Table 1.

Table 1. Details of each layer of the generator.

Input 1 × 256 × 256
Layer1 Conv2D(1,16,3,1,1)→IVN (16) → Tanh
Layer2 Conv2D(16,32,3,1,1) →IVN (32) → Tanh
Layer3 Conv2D(32,32,1,1,0) →IVN (32) →Tanh→Conv2D(16,32,3,1,1) →IVN (32) →Tanh
Layer4 Conv2D(32,32,1,1,0) →IVN (32) →Tanh →Conv2D(32,32,1,1,0) →IVN (32) →Tanh
Layer5 Conv2D(32,32,1,1,0) →IVN (32) →Tanh →Conv2D(32,32,1,1,0) →IVN (32) →Tanh
Layer6 Conv2D(32,32,1,1,0) →IVN (32) →Tanh →Conv2D(32,64,3,1,1) →IVN (64) →Tanh

Layer7 Conv2D(64,64,1,1,0) → IVN (64) → Tanh → Conv2D(64,64,1,1,0) → IVN (64) →Tanh→maxPool2D (3,1)

Layer8 Conv2D(64,64,1,1,0) → IVN (64) → Tanh → Conv2D(64,128,1,1,0) → IVN (128) →Tanh→maxPool2D (3,1)

Layer9 Conv2D(128,128,1,1,0) → IVN (128) → Tanh → Conv2D(128,128,1,1,0) → IVN (128) →Tanh→maxPool2D (3,1)

Layer10 Conv2D(128,128,1,1,0) → IVN (128) → Tanh → Conv2D(128,256,3,1,1) → IVN (256) →Tanh→maxPool2D (3,1)

Layer11 Conv2D(256,256,1,1,0) → IVN (256) → Tanh → Conv2D(256,256,1,1,0) → IVN (256) →Tanh→maxPool2D (3,1)

Figure 3. Structure of the CNN generator.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 10

Figure 2. Structure of the fully connected generator.

Figure 3. Structure of the CNN generator.

Figure 4. Structure of the RES generator.

2.2. Details of the Generator
The RES generator borrows heavily from SRNet [16], however, there are three im-

provements for this special application: (1) A new type of normalization layer was de-
signed to preserve the fragile pseudo stego signals. (2) Three shortcut connections from
the input to three types of output layers were added to enhance the learning of the differ-
ence between cover image and stego image, as depicted in Figure 4. (3) The ReLU activa-
tion function was replaced with Tanh to produce negative signals as in the stego image.
Such a structure can better preserve the noise-like stego signals.

The RES generator consisted of 12 layers, as shown in Figure 4, and the details of each
layer of the generator are shown in Table 1.

Table 1. Details of each layer of the generator.

Input 1 × 256 × 256
Layer1 Conv2D(1,16,3,1,1)→IVN (16) → Tanh
Layer2 Conv2D(16,32,3,1,1) →IVN (32) → Tanh
Layer3 Conv2D(32,32,1,1,0) →IVN (32) →Tanh→Conv2D(16,32,3,1,1) →IVN (32) →Tanh
Layer4 Conv2D(32,32,1,1,0) →IVN (32) →Tanh →Conv2D(32,32,1,1,0) →IVN (32) →Tanh
Layer5 Conv2D(32,32,1,1,0) →IVN (32) →Tanh →Conv2D(32,32,1,1,0) →IVN (32) →Tanh
Layer6 Conv2D(32,32,1,1,0) →IVN (32) →Tanh →Conv2D(32,64,3,1,1) →IVN (64) →Tanh

Layer7 Conv2D(64,64,1,1,0) → IVN (64) → Tanh → Conv2D(64,64,1,1,0) → IVN (64) →Tanh→maxPool2D (3,1)

Layer8 Conv2D(64,64,1,1,0) → IVN (64) → Tanh → Conv2D(64,128,1,1,0) → IVN (128) →Tanh→maxPool2D (3,1)

Layer9 Conv2D(128,128,1,1,0) → IVN (128) → Tanh → Conv2D(128,128,1,1,0) → IVN (128) →Tanh→maxPool2D (3,1)

Layer10 Conv2D(128,128,1,1,0) → IVN (128) → Tanh → Conv2D(128,256,3,1,1) → IVN (256) →Tanh→maxPool2D (3,1)

Layer11 Conv2D(256,256,1,1,0) → IVN (256) → Tanh → Conv2D(256,256,1,1,0) → IVN (256) →Tanh→maxPool2D (3,1)

Figure 4. Structure of the RES generator.

2.2. Details of the Generator

The RES generator borrows heavily from SRNet [16], however, there are three improve-
ments for this special application: (1) A new type of normalization layer was designed to
preserve the fragile pseudo stego signals. (2) Three shortcut connections from the input to
three types of output layers were added to enhance the learning of the difference between
cover image and stego image, as depicted in Figure 4. (3) The ReLU activation function
was replaced with Tanh to produce negative signals as in the stego image. Such a structure
can better preserve the noise-like stego signals.

The RES generator consisted of 12 layers, as shown in Figure 4, and the details of each
layer of the generator are shown in Table 1.

Table 1. Details of each layer of the generator.

Input 1 × 256 × 256

Layer1 Conv2D(1, 16, 3, 1, 1)→IVN (16)→ Tanh

Layer2 Conv2D(16, 32, 3, 1, 1)→IVN (32)→ Tanh

Layer3 Conv2D(32, 32, 1, 1, 0)→IVN (32)→Tanh→Conv2D(16, 32, 3, 1, 1)→IVN (32)→ Tanh

Layer4 Conv2D(32, 32, 1, 1, 0)→IVN (32)→Tanh→Conv2D(32, 32, 1, 1, 0)→IVN (32)→ Tanh

Layer5 Conv2D(32, 32, 1, 1, 0)→IVN (32)→Tanh→Conv2D(32, 32, 1, 1, 0)→IVN (32)→ Tanh

Layer6 Conv2D(32, 32, 1, 1, 0)→IVN (32)→Tanh→Conv2D(32, 64, 3, 1, 1)→IVN (64)→ Tanh

Layer7 Conv2D(64, 64, 1, 1, 0)→IVN (64)→Tanh→Conv2D(64, 64, 1, 1, 0)→IVN (64)→Tanh→ maxPool2D (3,1)

Layer8 Conv2D(64, 64, 1, 1, 0)→IVN (64)→Tanh→Conv2D(64, 128, 1, 1, 0)→IVN (128)→Tanh→ maxPool2D (3,1)

Layer9 Conv2D(128, 128, 1, 1, 0)→IVN (128)→Tanh→Conv2D(128, 128, 1, 1, 0)→IVN (128)→Tanh→ maxPool2D (3,1)

Layer10 Conv2D(128, 128, 1, 1, 0)→IVN (128)→Tanh→Conv2D(128, 256, 3, 1, 1)→IVN (256)→Tanh→ maxPool2D (3,1)

Layer11 Conv2D(256, 256, 1, 1, 0)→IVN (256)→Tanh→Conv2D(256, 256, 1, 1, 0)→IVN (256)→Tanh→ maxPool2D (3,1)

Layer12 Conv2D(256, 256, 1, 1, 0)→IVN (256)→Tanh→Conv2D(256, 1, 1, 1, 0)→IVN (1)→Tanh→ maxPool2D(3,1)

Output 1 × 256 × 256

Notes

• Conv2D(I,O,K,S,P) is a convolution layer, where I stands for the number of input channels, O stands for the number of
output channels, K stands for the kernel size, S stands for the stride number, and P stands for the padding size.

• IVN (32) stands for an instance variance normalization layer with 32 channels.
• Tanh stands for the Tanh activation layer.
• maxPool2D (3,1) stands for a maximize pool layer, where the kernel size is 3 and padding is 1.

Existing normalization techniques, such as Batch Normalization [26], Layer Normal-
ization [27], Instance Normalization [28], Group Normalization [29], etc., were undesirable
for the generator because they changed the mean and variance of the input simultaneously,

Electronics 2022, 11, 3331 5 of 9

resulting in destructive proportional distortion, which, in other words, is the destruction of
the prior conditions for the generation of pseudo steganography signals.

We designed a new normalization method, IVN: instance variance normalization, and
it achieved more satisfactory results in the generation of pseudo steganography images.

The input of a network layer can be expressed as a multidimensional array

Input = Xijkl , i ≤ N, j ≤ C, k ≤ H, l ≤W

where N(N < M) is the number of images in a batch, C is the number of channels for each
image, H is the height of the image, and W is the width of the image.

The mean of an instance xij =
(

x(1,1), · · · , x(H,W)
)

is

µ =
1

HW

H

∑
k=1

W

∑
l=1

x(k,l)

and its variance is

σ2 = Var
[
xij

]
=

1
HW

H

∑
k=1

W

∑
l=1

(
x(k,l) − µ

)2

We will normalize each pixel of the instance

y(k.l) =
x(k,l)
√

σ2 + ε

where ε is a small value that prevents the denominator from being zero.
The IVN transform was a differentiable transformation that introduced variance

normalized activations into the network. The gradient was computed using the chain rule
as follows:

∂Loss
∂µ

=
H

∑
k=1

W

∑
l=1

∂Loss
y(k.l)

· −1√
σ2 + ε

∂Loss
∂σ2 =

H

∑
k=1

W

∑
l=1

∂Loss
y(k.l)

·
(

x(k,l) − µ
)
·−1

2

(
σ2 + ε

)− 3
2

∂Loss
∂x(k,l)

=
∂Loss
∂y(k.l)

· −1√
σ2 + ε

+
∂Loss
∂σ2 ·

2
(

x(k,l)
)

HW
+

∂Loss
∂µ

1
m

Unlike the SRNet, we used Tanh as the activation function because it matched the
residuals better as it may be positive or negative. The formula of Tanh is as follows:

tanh =
ex − e−x

ex + e−x

2.3. Dataset and Steganographic Method

The proposed architecture was evaluated and contrasted with different generators
on the commonly used publicly available source BOSSBase 1.01, which contains 10,000
grayscale images selected from seven types of cameras.

The experiments were executed for S-UNIWARD and Baluja-Net [1] to cover both the
classic steganographic algorithm and the state-of-the-art deep-learning-based embedding
network. S-UNIWARD is a well-known content adaptive steganographic algorithm that
hides a small message within the texture or noisy regions of a larger image. Baluja-Net
is a deep-learning-based steganography method that can place a full-sized image within
another image of the same size. Unlike many popular steganographic methods that encode
the secret message within the LSB of the cover image, Baluja-Net compresses and distributes
the secret image’s representation across all of the available bits.

Electronics 2022, 11, 3331 6 of 9

We place greater emphasis on Baluja-Net because the deep learning steganographic
method is highly variable and makes it more difficult to obtain highly authentic cover and
stego image pairs compared with other low payload classic algorithms. In order to prepare
training stego images for the generator, Baluja-Net was trained for 100 epochs with a batch
size of 2. The training details are explained below: For an image i, we randomly selected
any other image j ∈ {k|1 ≤ k ≤ 10, 000, k 6= i, k ∈ Z} as a secret image for steganography.
In this way, 5000 real stego images were generated. An Adam optimizer was used with
a learning rate lr = 0.002 and coefficient betas = (0.5, 0.999). Baluja contained a hiding
network H and a reveal network R. After about forty iterations of training on the full
dataset of the original cover images, the loss values of these two networks tended to
stabilize and converge, as shown in Figure 5.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 10

The proposed architecture was evaluated and contrasted with different generators
on the commonly used publicly available source BOSSBase 1.01, which contains 10,000
grayscale images selected from seven types of cameras.

The experiments were executed for S-UNIWARD and Baluja-Net [1] to cover both
the classic steganographic algorithm and the state-of-the-art deep-learning-based embed-
ding network. S-UNIWARD is a well-known content adaptive steganographic algorithm
that hides a small message within the texture or noisy regions of a larger image. Baluja-
Net is a deep-learning-based steganography method that can place a full-sized image
within another image of the same size. Unlike many popular steganographic methods that
encode the secret message within the LSB of the cover image, Baluja-Net compresses and
distributes the secret image’s representation across all of the available bits.

We place greater emphasis on Baluja-Net because the deep learning steganographic
method is highly variable and makes it more difficult to obtain highly authentic cover and
stego image pairs compared with other low payload classic algorithms. In order to pre-
pare training stego images for the generator, Baluja-Net was trained for 100 epochs with
a batch size of 2. The training details are explained below: For an image 𝑖, we randomly
selected any other image 𝑗 ∈ 𝑘|1 ≤ 𝑘 ≤ 10000, 𝑘 ≠ 𝑖, 𝑘 ∈ 𝑍 as a secret image for ste-
ganography. In this way, 5000 real stego images were generated. An Adam optimizer was
used with a learning rate 𝑙𝑟 = 0.002 and coefficient 𝑏𝑒𝑡𝑎𝑠 = (0.5, 0.999). Baluja con-
tained a hiding network 𝐻 and a reveal network 𝑅. After about forty iterations of train-
ing on the full dataset of the original cover images, the loss values of these two networks
tended to stabilize and converge, as shown in Figure 5.

Figure 5. Loss of network 𝐻, network 𝑅, and the total loss of these two networks in the deep neural
network with different iterations of training.

Figure 6 shows different scenes selected from BOSSBase. The third column is the re-
sidual between the cover and the stego, and these residuals are focused mainly on the
position with a complex texture.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Sum loss average H loss average R loss

Figure 5. Loss of network H, network R, and the total loss of these two networks in the deep neural
network with different iterations of training.

Figure 6 shows different scenes selected from BOSSBase. The third column is the
residual between the cover and the stego, and these residuals are focused mainly on the
position with a complex texture.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 10

Figure 6. Samples generated by Baluja-Net from several categories in BOSSBase dataset. The first
column is the original cover image. The second column is the stego images. The third column is the
difference value between the stego image and cover image. The fourth column is the secret image
that embedded with the cover image to make a stego image.

2.4. Parameters and Evaluation Metric
The network was trained on a PC with an Intel (R) Core(TM) i7-9700K CPU @

3.60GHZ, 32GB DDR4 memory, graphics processing unit (GPU) NVIDIA GeForce
RTX2080Ti, and 11 GB of memory.

Due to limited hardware performance, the input size of our model was set to 256 × 256. Thus, we resized images of BOSSBase from their original size 512 × 512 to 256 × 256 using cv2.resize with “interpolation = INTER_NEAREST”. We generated 5000
cover and stego image pairs using S-UNIWARD and Baluja-Net each, and split them into
the following two sets~: 2 × 300 cover and stego image pairs for training; and 2 × 4700
for testing.

The performance of the GLSNet was measured with the total classification error
probability on the testing set, 𝑃 = (𝑁 + 𝑁)/4700

where 𝑁 is the number of cover images that are identified as stego images, and 𝑁 is
the number of stego images that are identified as cover images.

3. Results
We conducted several comparative experiments and display the results in Table 2.

“Non” in the second column represents the steganalyses trained with the real cover and
stego image pairs without using the pseudo stego image.

Table 2. Performance comparisons of proposed GLSNet with different generators and without gen-
erator.

Steganogra-
phy

Genera-
tor

No. of Original Cover-Stego Image Pairs
1 2 5 10 20 50 100 300

Baluja-Net
RES 77.75% 81.92 86.33% 88.11% 89.08% 90.75% 85.58% 91.33%
FC 50.00% 50.00% 50.00% 50.12% 50.26% 51.51% 50.21% 51.18%

CNN 50.56% 51% 55.69% 63.32% 64.96% 66.26% 67.56% 68.66%

Figure 6. Samples generated by Baluja-Net from several categories in BOSSBase dataset. The first
column is the original cover image. The second column is the stego images. The third column is the
difference value between the stego image and cover image. The fourth column is the secret image
that embedded with the cover image to make a stego image.

Electronics 2022, 11, 3331 7 of 9

2.4. Parameters and Evaluation Metric

The network was trained on a PC with an Intel (R) Core(TM) i7-9700K CPU @ 3.60GHZ,
32GB DDR4 memory, graphics processing unit (GPU) NVIDIA GeForce RTX2080Ti, and 11
GB of memory.

Due to limited hardware performance, the input size of our model was set to 256× 256.
Thus, we resized images of BOSSBase from their original size 512× 512 to 256× 256 using
cv2.resize with “interpolation = INTER_NEAREST”. We generated 5000 cover and stego
image pairs using S-UNIWARD and Baluja-Net each, and split them into the following two
sets~: 2× 300 cover and stego image pairs for training; and 2× 4700 for testing.

The performance of the GLSNet was measured with the total classification error
probability on the testing set,

P = (Ncs + Nsc)/4700

where Ncs is the number of cover images that are identified as stego images, and Nsc is the
number of stego images that are identified as cover images.

3. Results

We conducted several comparative experiments and display the results in Table 2.
“Non” in the second column represents the steganalyses trained with the real cover and
stego image pairs without using the pseudo stego image.

Table 2. Performance comparisons of proposed GLSNet with different generators and without
generator.

Steganography Generator
No. of Original Cover-Stego Image Pairs

1 2 5 10 20 50 100 300

Baluja-Net

RES 77.75% 81.92 86.33% 88.11% 89.08% 90.75% 85.58% 91.33%
FC 50.00% 50.00% 50.00% 50.12% 50.26% 51.51% 50.21% 51.18%

CNN 50.56% 51% 55.69% 63.32% 64.96% 66.26% 67.56% 68.66%
Non 62.83% 68.17% 71.37% 79.92% 79.68% 94.78% 95.00% 92.59%

S_UNIWARD
(0.2 bpp)

RES 59.37% 59.93% 63.38% 64.05% 69.36% 72.73% 81.50% 87.75%
FC 50.00% 50.00% 50.00% 50.00% 50.11% 50.15% 51.25% 51.63%

CNN 50.00% 50.00% 50.00% 50.00% 52.43% 58.29% 59.58% 58.66%
Non 50.00% 50.00% 52.13% 52.59% 58.01% 59.35% 67.57% 83.39%

S_UNIWARD
(0.4 bpp)

RES 63.17% 63.68% 66.83% 64.17% 71.00% 79.33% 88.50% 91%
FC 50.00% 50.00% 50.00% 50.00% 51.17% 51.11% 52.00% 52.36%

CNN 50.00% 50.00% 50.00% 50.05% 60.36% 65.13% 65.5% 63.33%
Non 56.61% 58.33% 57.83% 60.54% 68.17% 74.60% 92.00% 98.51%

As shown in Table 1, the proposed RES generator performs better than the FC generator,
CNN generator, and non-generative training mode. All the models perform better with
Baluja-Net than with S-UNIWARD. This is because a full-sized image is embedded in a
cover image with Baluja-Net, which increases its payload to up to 8 bit/pixel (bpp) whereas
the payload of S-UNIWARD was below or equal to 0.4 bpp in the experiment. Compared
with the non-generative training mode, the proposed generative learning architecture
achieves a significant performance level when the number of cover-stego image pairs is
small. This result is consistent with the theoretical viewpoints. If fewer real cover and
stego image pairs are used to train the steganalysis network, the generalization ability and
detection accuracy of the steganalysis network will be greatly restricted. In contrast, the
generated image dataset may have abundant texture expressions, which has the potential
to increase the generalization ability of the steganalysis network and its detection accuracy;
our experiments have confirmed this.

In addition, we also examined the impact of quality and noise of the original cover im-
ages on the detection performance in preliminary experiments. We used filtering operations
to reduce the quality of the cover, or add noise to reduce the signal-to-noise ratio (SNR) of

Electronics 2022, 11, 3331 8 of 9

the cover. These low quality, or low SNR, cover images were then used to generate stego
images in the same way as their originals. These generated cover-stego image pairs were
then used to train the proposed GLSNet in the same configuration depicted in Section 2.
Experimental results show that the quality and SNR of original cover images do not affect
the performance of GLSNet. This is because the generator extracts the residual information
between the cover and the stego, and this information does not relate to the quality and
SNR of the cover.

However, if the image quality or SNR is changed on cover or stego only, the generator
will recognize the change as residual, which will have a great impact. Strictly speaking,
such image pairs are incomplete, which could be the object of future research.

4. Discussion

It is difficult to obtain enough signals about deep-learning-based steganography from
the point of view of game theory. Thus, the problem of the Training-Images-Shortage is
prevalent for the deep learning steganalysis in deep learning steganography. We proposed
a network we call GLSNet to solve the problem of TIS for the steganalysis and the results
show that it performs well in solving such a problem. shown in the Table 1, even with
just one pair of cover and stego images, GLSNet achieves a 77.75% detection accuracy
compared with the detection accuracy of 62.83% of the nongenerative training paradigm.

The generative learning architecture helps solve the problem of TIS and improves the
detection accuracy of the steganalysis when it just has a small number of training images.
The concept of generative learning could also be applied to other situations where it is not
easy to obtain training data in a confrontational environment, such as anomaly detection in
network security, the recognition of an enemy target in the radar, etc.

Although this paper demonstrates the feasibility of generative learning for image
hidden steganalysis, there is still much work to complete. Future research directions include
the development of new generative learning network structures and the improvement of
their capability to mimic more steganographic methods to generate training stego images.

Author Contributions: Conceptualization, H.Z. and Z.S.; methodology, H.Z.; software, Z.S.; vali-
dation, Q.X.; formal analysis, H.Z. and Z.S.; investigation, B.F.; resources, X.L.; data curation, Z.S.;
writing—original draft preparation, H.Z.; writing—review and editing, Z.S.; visualization, Z.S.;
supervision, Q.X.; project administration, Q.X.; funding acquisition, Q.X. and X.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 71571190, 62002381.

Acknowledgments: The authors are grateful to Feng Chen, Fuxian Liu and Yongmei Zhao for their
useful advice during the preparation and writing of the paper. We thank the associate editor and the
reviewers for their valuable comments that improved this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baluja, S. Hiding Images in Plain Sight: Deep Steganography. In Advances in Neural Information Processing Systems; Curran

Associates Inc.: Red Hook, NY, USA, 2017; Volume 30. Available online: https://proceedings.neurips.cc/paper/2017/file/838e8
afb1ca34354ac209f53d90c3a43-Paper.pdf (accessed on 8 August 2022).

2. Holub, V.; Fridrich, J.J.; Denemark, T. Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf.
Secur. 2014, 2014, 1–13. [CrossRef]

3. Holub, V.; Fridrich, J. Designing steganographic distortion using directional filters. In Proceedings of the 2012 IEEE International
Workshop on Information Forensics and Security (WIFS), Costa Adeje-Tenerife, Spain, 2–5 December 2012; pp. 234–239.

4. Filler, T.; Fridrich, J. Gibbs Construction in Steganography. IEEE Trans. Inf. Forensics Secur. 2010, 5, 705–720. [CrossRef]
5. Sedighi, V.; Fridrich, J.; Cogranne, R. Content-adaptive pentary steganography using the multivariate generalized Gaussian cover

model. In Media Watermarking, Security, and Forensics; SPIE: San Francisco, CA, USA, 2015; Volume 9409, pp. 144–156. [CrossRef]
6. Hu, D.; Wang, L.; Jiang, W.; Zheng, S.; Li, B. A Novel Image Steganography Method via Deep Convolutional Generative

Adversarial Networks. IEEE Access 2018, 6, 38303–38314. [CrossRef]

https://proceedings.neurips.cc/paper/2017/file/838e8afb1ca34354ac209f53d90c3a43-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/838e8afb1ca34354ac209f53d90c3a43-Paper.pdf
http://doi.org/10.1186/1687-417X-2014-1
http://doi.org/10.1109/TIFS.2010.2077629
http://doi.org/10.1117/12.2080272
http://doi.org/10.1109/ACCESS.2018.2852771

Electronics 2022, 11, 3331 9 of 9

7. Shi, H.; Dong, J.; Wang, W.; Qian, Y.; Zhang, X. SSGAN: Secure Steganography Based on Generative Adversarial Networks.
In Advances in Multimedia Information Processing—PCM 2017; Springer International Publishing: Cham, Switzerland, 2018; pp.
534–544.

8. Tang, W.; Tan, S.; Li, B.; Huang, J. Automatic Steganographic Distortion Learning Using a Generative Adversarial Network. IEEE
Signal Process. Lett. 2017, 24, 1547–1551. [CrossRef]

9. Avcibas, I.; Memon, N.D.; Sankur, B. Steganalysis using image quality metrics. IEEE Trans. Image Process. 2003, 12 2, 221–229.
[CrossRef]

10. Avcıbaş, İ.; Kharrazi, M.; Memon, N.; Sankur, B. Image Steganalysis with Binary Similarity Measures. EURASIP J. Adv. Signal
Process. 2005, 2005, 679350. [CrossRef]

11. Kodovský, J.; Fridrich, J.J.; Holub, V. Ensemble Classifiers for Steganalysis of Digital Media. IEEE Trans. Inf. Forensics Secur. 2012,
7, 432–444. [CrossRef]

12. Denemark, T.; Sedighi, V.; Holub, V.; Cogranne, R.; Fridrich, J. Selection-channel-aware rich model for Steganalysis of digital
images. In Proceedings of the 2014 IEEE International Workshop on Information Forensics and Security (WIFS), Atlanta, GA,
USA, 3–5 December 2014; pp. 48–53. [CrossRef]

13. Tang, W.; Li, H.; Luo, W.; Huang, J. Adaptive Steganalysis against WOW Embedding Algorithm. In Proceedings of the 2nd ACM
Workshop on Information Hiding and Multimedia Security, Salzburg, Austria, 11–13 June 2014; pp. 91–96. [CrossRef]

14. Dengpan, Y.; Shunzhi, J.; Shiyu, L.; ChangRui, L. Faster and transferable deep learning steganalysis on GPU. J. Real-Time Image
Process. 2019, 16, 623–633. [CrossRef]

15. Padmasiri, A.T.; Hettiarachchi, S. Impact on JPEG Image Steganalysis using Transfer Learning. In Proceedings of the 2021 10th
International Conference on Information and Automation for Sustainability (ICIAfS), Negombo, Sri Lanka, 3–5 May 2021; pp.
234–239. [CrossRef]

16. Boroumand, M.; Chen, M.; Fridrich, J.J. Deep Residual Network for Steganalysis of Digital Images. IEEE Trans. Inf. Forensics Secur.
2019, 14, 1181–1193. [CrossRef]

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

18. Xu, G.; Wu, H.; Shi, Y.Q. Structural Design of Convolutional Neural Networks for Steganalysis. IEEE Signal Process. Lett. 2016, 23,
708–712. [CrossRef]

19. Yang, J.; Liu, K.; Kang, X.; Wong, E.; Shi, Y. Steganalysis based on awareness of selection-channel and deep learning. In Digital
Forensics and Watermarking—16th International Workshop, IWDW 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 263–272.
[CrossRef]

20. Li, B.; Wei, W.; Ferreira, A.; Tan, S. ReST-Net: Diverse Activation Modules and Parallel Subnets-Based CNN for Spatial Image
Steganalysis. IEEE Signal Process. Lett. 2018, 25, 650–654. [CrossRef]

21. Huang, S.; Zhang, M.; Ke, Y.; Bi, X.; Kong, Y. Image steganalysis based on attention augmented convolution. Multimed. Tools Appl.
2022, 81, 19471–19490. [CrossRef]

22. Zhang, L.; Abdullahi, S.M.; He, P.; Wang, H. Dataset mismatched steganalysis using subdomain adaptation with guiding feature.
Telecommun. Syst. 2022, 80, 263–276. [CrossRef]

23. Itzhaki, T.; Yousfi, Y.; Fridrich, J. Data Augmentation for JPEG Steganalysis. In Proceedings of the 2021 IEEE International
Workshop on Information Forensics and Security (WIFS), Montpellier, France, 7–10 December 2021; pp. 1–6. [CrossRef]

24. Yu, I.-J.; Ahn, W.; Nam, S.-H.; Lee, H.-K. {BitMix}: Data augmentation for image steganalysis. Electron. Lett. 2020, 56, 1311–1314.
[CrossRef]

25. Yedroudj, M.; Chaumont, M.; Comby, F.; Amara, A.O.; Bas, P. Pixels-off: Data-augmentation Complementary Solution for
Deep-learning Steganalysis. In Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security, Denver,
CO, USA, 22–24 June 2020; pp. 39–48.

26. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456.
Available online: https://proceedings.mlr.press/v37/ioffe15.html (accessed on 8 August 2022).

27. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. 2016. Available online: http://arxiv.org/abs/1607.06450 (accessed on 8
August 2022).

28. Ulyanov, D.; Vedaldi, A.; Lempitsky, V.S. Instance Normalization: The Missing Ingredient for Fast Stylization. CoRR 2016,
abs/1607.0. Available online: http://arxiv.org/abs/1607.08022 (accessed on 8 August 2022).

29. Wu, Y.; He, K. Group Normalization. In Computer Vision—ECCV 2018; Springer International Publishing: Cham, Switzerland,
2018; pp. 3–19.

http://doi.org/10.1109/LSP.2017.2745572
http://doi.org/10.1109/TIP.2002.807363
http://doi.org/10.1155/ASP.2005.2749
http://doi.org/10.1109/TIFS.2011.2175919
http://doi.org/10.1109/WIFS.2014.7084302
http://doi.org/10.1145/2600918.2600935
http://doi.org/10.1007/s11554-019-00870-1
http://doi.org/10.1109/ICIAfS52090.2021.9605924
http://doi.org/10.1109/TIFS.2018.2871749
http://doi.org/10.1109/LSP.2016.2548421
http://doi.org/10.1007/978-3-319-64185-0_20
http://doi.org/10.1109/LSP.2018.2816569
http://doi.org/10.1007/s11042-021-11862-4
http://doi.org/10.1007/s11235-022-00901-6
http://doi.org/10.1109/WIFS53200.2021.9648390
http://doi.org/10.1049/el.2020.1951
https://proceedings.mlr.press/v37/ioffe15.html
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.08022

	Introduction
	Materials and Methods
	Architecture
	Details of the Generator
	Dataset and Steganographic Method
	Parameters and Evaluation Metric

	Results
	Discussion
	References

