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Abstract: A cyber-physical system (CPS) integrates various interconnected physical processes, com-
puting resources, and networking units, as well as monitors the process and applications of the
computing systems. Interconnection of the physical and cyber world initiates threatening security
challenges, especially with the increasing complexity of communication networks. Despite efforts
to combat these challenges, it is difficult to detect and analyze cyber-physical attacks in a complex
CPS. Machine learning-based models have been adopted by researchers to analyze cyber-physical
security systems. This paper discusses the security threats, vulnerabilities, challenges, and attacks of
CPS. Initially, the CPS architecture is presented as a layered approach including the physical layer,
network layer, and application layer in terms of functionality. Then, different cyber-physical attacks
regarding each layer are elaborated, in addition to challenges and key issues associated with each
layer. Afterward, deep learning models are analyzed for malicious URLs and intrusion detection in
cyber-physical systems. A multilayer perceptron architecture is utilized for experiments using the
malicious URL detection dataset and KDD Cup99 dataset, and its performance is compared with
existing works. Lastly, we provide a roadmap of future research directions for cyber-physical security
to investigate attacks concerning their source, complexity, and impact.

Keywords: cyber-physical security; network security; deep learning; Internet of Things

1. Introduction

A cyber-physical system (CPS) is the interconnection of a cyber and physical system,
where the exchange of data and information takes place in real time [1]. CPS is playing a sig-
nificant role in the Internet of Things (IoT) based industry and offers substantial economic
potential [2]. CPS considers the interaction of physical, network, and computing systems
and is based on the Internet of Things (IoT). It has evolved as the Internet of cyber-physical
Things which offers a wide range of services such as smart homes, smart cities, e-health,
e-commerce, etc. A large number of industrial equipment can be controlled wirelessly
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by adopting CPS which helps in managing complex and mega industrial systems [3]. In-
terconnected components of CPS have the ability to sense the surroundings and process
the IoT-based objects remotely. It has the resilience to change the processes in runtime
with real-time computing [4]. Moreover, CPS is embedded in various systems and is being
utilized in diverse fields like communication, transport, health care, military, and various
autonomous systems, as shown in Figure 1.

Smart
Transportation

Smart Grid

Smart Health
Care

Smart Industry

Big Data

Cyber Space

Figure 1. Applications of CPS.

CPS-based train control systems exchange control signals between the ground stations
and trains wirelessly in real-time and provide more safety than traditional systems against
accidents [5]. An increase of connectivity in the complex networks also gives rise to
the invading paths of the attackers in CPS [6]. Controlling networks and software are
vulnerable to attackers that try to infiltrate and malfunction CPS-based systems [7]. When a
network is accessed by an attacker, it disturbs the execution of control software in the cyber
system and gets hold of the physical system to cause power failure or other manipulation
on the attacker’s detection system [8]. These attacks on cyber and physical systems can
cause substantial economic loss by launching havoc on industrial processes and equipment.
For example, in 2014, blast furnaces were damaged in a German steel mill by a cyber-
attack and in 2015 a huge outage of power was caused by malware in Ukraine due to the
malfunctioning of the plant [7]. Therefore, the security of the cyber-physical system against
adversarial attacks is an emerging research area. In CPS security, physical processes are
considered an addition and come up as an extended form of cybersecurity. For instance,
cracking a password due to personal information leakage is a main security issue of
cybersecurity. However, in CPS security, there is no adverse effect of such information
leakage on the system. However, if unauthorized access affects the system process, it may
damage the physical dynamics of the system. Therefore, researchers emphasize controlling
the physical dynamic of the CPS. Various factors that affect CPS are unpredicted events and
quick environmental changes. In addition, one of the major problems with CPS security is
the false alarms on the detection of cyber-physical attacks. Due to the exceedingly large
CPS and complexity among its components, accuracy degrades in real CPS [9].

From a theoretical point of view, complex and huge systems can be represented
with differential equations of a high order. In a high-order mathematical model, it is not
possible to obtain an exact complex model, so unconsidered variables become vulnerable to
attackers and lead to inaccurate detection. In CPS security modeling, data used in training
for anomaly detection are acquired in a controlled environment set up or experiment [10].
For obtaining a reliable and safe CPS security model, machine learning models are deployed
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that work by finding correlations between input and output on large amounts of data.
Machine learning algorithms help in generating a model that can explore the complex
relationship in CPS components, handle different network protocols and complex cyber
software, and enhance the security level. In this paper, the attacks that damage the CPS
and manipulate the processes are discussed. We mainly focus on different security designs
of CPSs. The main contributions of the article are:

• CPS architecture is presented into three layers, namely the physical layer, network
layer, and application layer. The layered architecture is used to provide more clarity
in terms of functionality. Then, CPS attacks on each layer are discussed, mainly from
the perspective of the physical system.

• Key features, challenges, and attack handling methods using machine learning-based
models are highlighted regarding different layers.

• Keeping in view the nature of different attacks, a simple deep learning model is
deployed for attack detection, especially the detection of malicious URLs and CPS
attacks. For this purpose, multilayer perceptron (MLP) is adopted as it is not used in
the existing literature. Despite existing hybrid and sophisticated models, the proposed
MLP provides better and more robust results.

• Finally, future research directions are outlined for CPS security research to handle CPS
attacks in real-time networks.

The rest of the paper is organized as follows: Section 2 provides the most recent related
work of CPS. Section 3 provides the CPS architecture as a layered approach. Section 4
introduces different types of CPS attacks at each layer. Section 5 discusses securing methods
for CPS. Section 6 presents the potential research directions for CPS security. Finally, we
conclude the article and provide future directions in Section 7.

2. Related Work

Recent research on intrusion detection frameworks in the literature demonstrates the
enhanced performance of machine learning models. The intrusion detection method uses
hardware and software to identify intrusions in networks [11]. The deployment of an
embedded system enables the network-level implementation of security regulations. An in-
trusion detection strategy is divided into network-based and host-based. The online data
are used to extract features for classification-based intrusion detection models. Machine
learning methods, including supervised and unsupervised models as well as deep learning
models, are frequently utilized in intrusion detection systems.

Unsupervised learning techniques automatically cluster a huge amount of data with-
out the use of labels. However, little amounts of tagged data can aid in enhancing network
security or cybersecurity performance. This method cannot produce high accuracy due to
the unique characteristics of unknown assaults. In order to locate clusters based on simi-
larity, an unsupervised learning approach for intrusion detection has been developed [12].
Models of supervised learning that produce positive outcomes require labels for training.
Machine learning models have been widely used in conventional intrusion detection tech-
niques. However, due to classifiers’ poor generalization capabilities, these models were
unable to effectively anticipate various invasion attacks. The hybrid technique developed
by the researchers enhanced the intrusion detection system while enhancing the capabilities
of machine learning models. A combination of SVM, particle swarm optimization (PSO),
and k nearest neighbor algorithms were used by Aburomman et al. [13]. The effectiveness
of the categorization was greatly increased by combining these methods. Marteau [14] dis-
covered symbolic sequences and independent attacks from standard system call sequences
have significant resemblance. He demonstrated the importance of covering similarity
as a measure of an anomaly in host-based detection by comparing and analyzing three
similarity metrics.

The intrusion detection frameworks face a significant challenge from high-dimensional
data in an increasing number of incursions and attacks. An essential data feature has to
be studied to reduce dimensions in order to decrease time complexity and resource use.
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Hussian et al. designed anomaly detection using SVM and artificial neural networks (ANN)
for fraud detection in the second stage [15]. Similar to this, the authors decreased the
dimensionality of the data by using the PCA-LDA ensemble method [16]. One of the
efficient techniques for detecting intrusions is clustering. The authors applied an improved
density peak algorithm for intrusion detection in [17].

Vehicles’ security concerns have been the subject of multiple publications over the past
few years. The public key infrastructure built on blockchain is a noteworthy trend in this
regard. In order to handle the distribution and maintenance of the Certificate Revocation
List (CRL) in vehicle public key infrastructure, the authors employed blockchain technology
in [18]. An accountable credential management framework for vehicular communication is
presented in another research as a potential solution to these issues [19]. This system takes
advantage of transparency log techniques while addressing issues unique to vehicular
communication. The authors proposed a framework that checks the authenticity of the IDs
and keys on the blockchain, which promises a simple authentication process and lessens
computational and communication load to access the network’s safety messages [20].
A reputation evaluation method was proposed in [21] that used both direct past encounters,
and indirect judgments about automobiles were provided in order to stop the dissemination
of fake messages.

To identify malicious attacks, deep learning models and hierarchical methods have
been developed. By removing dimensions from correlation and information gain [22],
ANN is applied to the KDD99 dataset for intrusion detection and produced better results
in terms of accuracy. The authors used PCA and multivariate CA to detect DDoS attacks
in real-time. Musafer et al. [23] designed an approach using an autoencoder for intrusion
detection on a current dataset CICIDS2017. The scientists developed a memetic algorithm
for aberrant traffic identification and tested it on the NSLKDD and KDD-CUP 99 datasets,
two well-known deep learning models [13]. In order to create an efficient framework for
intrusion detection, feature augmentation has been combined with SVM [24]. This has
produced reliable results in terms of false alarm rates. Researchers have utilized multilevel
intrusion detection for this purpose [25]. For intrusion detection, a unique deep learning
model has been designed to increase accuracy [26]. Increasing network connectivity and the
incorporation of terrestrial networks into satellite networks provide new security concerns
and difficulties. One of the most frequent assaults that affect satellite-terrestrial integrated
networks is DDoS, which slows down service. For identifying DDoS in satellite and
terrestrial networks, many research works have been carried out. An adaptive strategy
based on Q-learning and a jamming detection system were proposed by Mowla et al. [27].
It has been suggested to use machine learning models to monitor traffic linked to socket
programming [28]. It has been built to identify DDoS attacks dynamically using fuzzy
logic [29].

These research projects aim to develop appropriate methods for intrusion detection in
satellite and terrestrial networks. Table 1 presents a comparative analysis of the research
papers that have been addressed.
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Table 1. Comparative analysis of the existing approaches.

Ref. Methods Dataset Findings

[13] Memetic NSL-KDD & KDD99 PSO with higher accuracy

[14] SC4ID algorithm UNM & ADFA-LD A new, more accurate approach for handling abnor-
mal system calls.

[15] SVM-ANN NSL-KDD High performance by a hybrid model

[16] PCA-LDA-SVM KDD-CUP 99 Dimensionality reduction

[22] Deep learning KDD-CUP 99 & NSL-KDD Deep learning model with reliable outcomes.

[23] Sparse autoencoder CICIDS 2017 Uses trigonometric simplexes

[24] SVM NSL-KDD The logarithmic marginal density ratio

[25] MSML KDD-CUP 99 Multi-level intrusion detection

[27] Q learning CRAWDAD Federated jamming

[28] DT, KNN, NB & DNN KDD-CUP 99, open-stack cloud Socket programming and OpenStack firewall

[29] Fuzzy logic DDoS attack (T-shark) Dynamic DDoS attack detection

[30] SVM-KNN-PSO KDD 99 High precision ensemble model utilising a
weighted method.

[31] MDRA KDD-CUP 99 Real-time attack detection

[32] MINDFUL KDD-CUP 99, UNSW-NB 15, CICIDS
2017 Multi-channel for deep feature learning

[33] Deep hierarchical NSL-KDD & UNSW-NB15 Data balancing using SMOTE

[34] DT-RFE KDD-CUP 99 & NSL-KDD Stacked approach

3. CPS Architecture, Layers and Components

In this section, CPS architecture, along with its layers and components, is discussed.
A CPS consists of several components and can have a complex structure between the physi-
cal system and cyber software. It is difficult to analyze its entire architecture. Therefore,
the CPS architecture is classified into three main layers; the physical layer, the network
layer, and the application layer. Intuitive and simple layered architecture is presented in
Table 2.

3.1. Physical Layer

The physical layer includes the objects of the physical system that are utilized in
the real world. In this layer, the CPS system involves sensors and actuators in which
information is transferred through sensors to the cyber world, and the actuator operates
according to commands. Physical processes are performed by sensing and actuating in
a continuous-time domain. Sensor-based devices such as radio frequency identification
tags (RFID) and global positioning system (GPS) collect data in real-time to track objects of
the physical systems. Data examples include heat, location, electric consumption, sound,
and light signals [35]. Sensors collect data according to its type from the local or wide range
and transfer it to the network layer which is later sent to the application layer for further
analysis. Efficient security protocols are required according to the capability of devices for
reliable communication between these layers. In a complex system, the physical system
has constraints due to the power of an external battery. To solve this problem, the physical
layer connects to the computation system using a network layer.
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Table 2. Layered architecture with complete functionality and attack details.

Layer Function Attack Target Area Safety Measure

Analysis of Data & Information

Code Injection
Botnets
Malware
Trojans
Worms
Buffer Overflow

Security
Privacy
Authentication
Safety

Firewall
Strong Authentication
Strong Authorization
Trust Management

Transmission of

Data & Information

DoS/DDoS
Repudiation
Man in the middle
Meet in the middle

Confidentiality
Integrity
Availability
Authentication

Strong Password Policy
Encryption
Secure Tunneling

Collection of Data

& Information

Passive Replay
Port Scan
Eavesdropping

Privacy
Authentication
Confidentiality

Secure System
Data Protection
Source Authentication
Trust Management
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In order to build a re-configurable radio-based environment of the propagation channel
and increase the received signal power, re-configurable intelligent surfaces (RIS) have
been studied as a possible approach. A study focused on joint beamforming design and
optimization for hybrid satellite-terrestrial relay networks with RIS support, when links
from the satellite and base station (BS) to numerous users are blocked [36]. A satellite system
should be secure and energy efficient in designing a communication system. A design is
proposed by the researcher to improve security and decrease power consumption in [37].

3.2. Network Layer

The second layer of CPS architecture is the network layer. This layer is used for the
communication of the physical layer (real world) and the application layer (cyber world).
Due to the network in the CPS, it is possible to control physical systems remotely. A local
area network is used for local data transmission and communication protocols involving
4G, 5G, ZigBee, Wi-Fi, and Bluetooth. This layer assures data transmission and routing
using cloud computing, firewalls, gateways, and an intrusion detection method. These
features make CPS cost-effective and better than the previously point-to-point controlling
system. Before transferring data to the next layer, it is important to secure the transmission
by avoiding malicious attacks including malware, denial of service, distributed denial of
the surface, and unauthorized access. For example, wireless networks such as WirelessHart
and ZigBee remotely enable the controlling of industrial processes in real time. Moreover,
in the smart grid, the distributed network protocol (DNP) provides a system of centralized
monitoring and control. There is a great challenge for power-restricted devices due to the
overhead of power and processing.

3.3. Application Layer

The interactive and third layer of the CPS architecture is the application layer where
intelligent tasks are performed in the cyber world. It performs processing on the received
information from the network layer which obtains that from the physical devices such
as sensors or actuators. After executing applications, the system predicts the next time
step and provides intelligent functionality to the CPS user. Decision-making complex
algorithms are applied to the aggregated data [38]. Information based on the automated
rightly invoked actions at the physical layer is processed by this layer. Protecting and
preserving private data are required against leakage. In CPS, the application layer has no
power or computational constraints, and it can operate efficiently. For example, the smart
grid planning system predicts the electric power consumption of the region based on the
readings observed by sensors at the physical layer from the previous data. It helps in electric
power generation in plants. Likewise, in smart factories, digital twin technology can predict
the throughput of the production line and can improve production. The most commonly
used approach is data masking, secret sharing, and privacy maintenance. Furthermore,
this layer needs a strong authentication process to avoid unauthorized access. In this layer,
a huge amount of generated data handling and its protection in an efficient manner is a
challenging task.

4. Security Threats and Attacks

Security measures and services are not integrated into CPSs by design like other
networking systems. This makes the CPS system more vulnerable to security threats and
opens doors for attackers in launching security attacks. The reason behind this is the
heterogeneous nature of the physical devices concerning their operations and the different
protocols and technologies used for communication in CPS. In recent years, cyber-attacks
targeting CPS are increasing, and some of the CPS attacks are presented in Figure 2.
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2003
• Type: Malware-DoS

• Nature: Slammer 
Worm

• Target: Ohio Nuke 
Plant Network

• Country: United 
States of America

2005
• Type: Accident

• Nature: Sensor 
Failure

• Target: Taum Sauk 
Hydroelectric power 
station Failure

• Country: United 
States of America

2007
Type: Worm

Nature: Stuxnet

Target: Iranian nuclear 
facilities

Country: Iran

2008
• Type: Software  

• Nature: Installed 
Software Update: 

• Target: Georgia 
Nuclear Power Plant 
Shutdown

• Country: United 
States of America

2011
• Type: Unauthorized 

Access

• Nature: Backdoor

• Target: Springfield 
Pumping Station

• Country: United 
State of America

2012
• Type: Disruptive

• Nature: DDoS

• Target: Iranian 
Infrastructure 
(Nuclear and oil)

• Country: Iran

2015
• Type:DDoS 

• Nature: Blacknergy 
Malware

• Target: Ukrainian 
Power Grid

• Country: Ukraine

2016
• Type: Malware

• Nature: Shamoon-2

• Target: Saudi 
government 
computers and 
targets

• Country: Saudi 
Arabia

2017
• Type: Rasomware

• Nature:Petya

• Target: Ukrain 
Electricity Firm

• Country: Ukraine

Figure 2. Real CPS attacks in recent years.

A security attack on the CPS system causes malfunctioning of the physical device
or processes of the system. A CPS system is a combination of the physical, networking,
and computing system, if any of these systems are attacked by an attacker, the CPS system
become unstable. The CPS system is more vulnerable because of the connectivity of the
different networks. CPS systems lack protection and security measures in their design and
operation. Different CPS attacks are discussed regarding each layer.

4.1. Attacks on Physical Layer

Physical systems transmit a control signal and sensor data through the network. When
an attacker accesses the network, it can modify the control-related data on the network
which results in divergence from the physical state. Attackers can manipulate it in three
ways: the physical layer, firstly it manipulates sensor data, secondly, it manipulates control
signals, and thirdly the attacker manipulates both sensor data and control signals.

During a sensor attack, sensor movement is manipulated to deceive the computing
system in performing state estimation which causes computational faults in input data
of the actuating process. Then, this faulty input creates malfunctioning of the physical
system. In the physical layer, sensor attacks require more attention such as pole dynamic
attack (PDA) is a famous sensor attack where attackers use matrices of the physical system
and then swiftly change its state which creates difficulty in detecting PDA by traditional
detecting methods. The controller attack is another type of physical layer attack which is
the modification of the input signal. Attackers or malicious users destabilize the physical
system by unpredicted control signals. Controller attacks affect the dynamics and operation
of the physical system. In the cyber study, controller attacks on input signals are called zero
dynamics attacks (ZDA). During ZDA, the internal state of the physical system diverges
toward infinity which is not detected by sensor data due to the property of zero dynamics.
A combined attack is a combination of a sensor attack and a controller attack; it launches
on both channels. Therefore, it is difficult to launch a combined attack by using sensor and
control signals both. However, the detection of combined attacks requires more resources
in handling both types of attacks. Attackers have complete knowledge of the physical
dynamics of the system in launching a covert attack that is a combined attack. Hackers
or malicious users use complete information in generating control input signals from
the sensors.

4.2. Attacks on Network Layer

The network layer takes information from the physical layer and transmits it to
the application layer in real time. This layer is responsible for the reliable exchange of
information in layers. In this layer, attackers destabilize the system by disturbing data
transmission in real time. There are three types of CPS attacks at the network layer. The
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first is the denial of service (DoS) attack that drops data packets and specifically prevents
the transmission of control data. These attacks interrupt the data transmission and cause
a communication jam. In a wireless network, it is easy to interrupt the transmission,
but, in wireless networks, jamming signals are generated by the specialized antenna for
signal interference. Man-in-the-middle is a DoS attack that creates vulnerabilities in the
network and stops packet forwarding and destabilizes the system by diverting the state.
In a communication-based train control system, communication failure occurs if an attacker
launches a jamming attack.

The second is the flooding attack that causes a delay in data transmission by exhausting
resources, such as network bandwidth or device memory, intentionally. In this attack,
a massive amount of data traffic is generated to block a network, and the memory of
devices is also filled. A flooding attack can be launched without having enough information
about the network and make CPS unstable. During a flooding attack, the physical system
switches to fail-safe mode and reduces the operation for safety purposes.

The third is the packet manipulation attack which consists of two phases; the first
is packet stealing and the second is packet manipulation. In the first phase, the attacker
accesses the network nodes and devices using vulnerabilities of the network; then, the
network packet is forwarded to the attacker. However, in the second phase, the attacker
modifies that packet and sends it back to the destination. If the hacker manipulates by
adhering to network protocols then the destination node deceives by packet manipulation.
If the control information is modified, then it has an equal effect on the network as attacks
on the physical layer. For example, in a communication-based train control system, packet
manipulation can cause train accidents by manipulating the route direction. However,
a Sybil attack deceives different nodes on the traffic road in a vehicular ad-hoc network
and causes traffic congestion. Sending incorrect messages results in inconvenience for
vehicle traffic.

4.3. Attacks on Application Layer

The application layer performs complex and intelligent functions in the CPS system.
Attackers can access important information from the computing systems via network
interface cards or serial ports. The attacker can distract the computation of important
components including the process scheduler and file systems. As the size of CPS increases,
it becomes more complex and vulnerable to attackers. Two types of attacks occur at the
application layer. The first is the hardware attack at the application layer by disturbing the
working of computational components like the power supply, CPU, and DRAM of CPS.
Hardware attacks create intentional faults to the hardware such as system crashes by cutting
off the power supply. When the computational system stops working, it lost control over
the physical system. These types of attacks are executed by intriguing malicious malware.
Hardware attacks include power viruses, thermal attacks, and row hammer attacks.

The second is the software attack that disturbs the flow and execution of applications
by generating system errors. These attacks generate wrong and faulty responses to re-
quests of the physical layer. These faulty commands lead to defective control over the
system. Software attacks at the application layer include black door attacks, false-code
execution, Stuxnet attack, BlackEnergy malware, and Triton. These application layer attacks
cause malfunctioning of software by changing parameter settings causing degradation of
performance and emergency stop of autonomous service. A cyberattack known as a "man-
in-the-middle" (MitM) involves the interception of communications between two parties,
frequently in order to acquire login credentials or personal data. Numerous cryptographic
techniques, including multi-party computation, proxy re-encryption, and homomorphic
encryption, are used to protect the privacy of devices and data integrity [39].

5. Securing CPS

Over the last few years, an alarming increase has been witnessed in the rate of cyber-
attacks on CPS with disastrous results. Due to the heterogeneity and complex nature of
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CPS, it is highly prone to malicious attacks. These attacks can collapse the whole system
as presented in Figure 2. A detailed description of these attacks can be found in [35].
Different types of attacks on CPS include eavesdropping (obtaining sensitive information
from network traffic), password cracking, phishing emails, DoS/DDoS, and different types
of malware. However, securing a CPS is not an easy task due to the increase of challenges
and limitations in existing solutions. IoT and CPSs rely on privacy, security, reliability,
and consistency, and these characteristics are combined to develop a trustworthy system.
A secure environment for CPS can be maintained by fulfilling security goals. Security goals
for CPS are presented in Figure 3.

Confidentiality

Integrity

AvaililabilityAuthentication

Privacy

Security
Goals

Figure 3. Security goals of CPS.

To maintain the confidentiality of CPS, cryptographic techniques have been adopted,
while the integrity of CPS can be maintained by avoiding any modification (physical
or logical) in data. Availability of different devices is the main goal of CPS that can be
achieved by encryption techniques to avoid DoS/DDoS attacks. Authentication is the first
step of defense, and it should be well designed and maintained. User authentication can
be ensured by using biometric parameters. However, preserving the privacy of CPS while
dealing with big data are not easy. Different techniques are designed to avoid any possible
malicious event or cyber-attack.

For securing CPS, non-cryptographic solutions have also been designed. Any solution
against malicious events in a network is designed by considering different factors such as
cost, configuration, and placement in a network.

5.1. Intrusion Detection Technique

An intrusion detection system can be employed at the borderline of any router in an
IoT-based network or in any physical system of CPS to avoid malicious attacks. Previ-
ously, machine learning-based solutions have been provided by many researchers for the
detection of malicious behavior in CPS. Therefore, we present a deep learning-based model
for intrusion detection on CPS. We use a simple and customized deep learning model,
multilayer perceptron (MLP) to illustrate the process of intrusion detection and malicious
URLs detection in CPS. The purpose of the experiment is not to propose a sophisticated
deep learning model; instead, we aim to show the running performance and usage of the
deep learning model. This effort can provide deep insight to readers that can assist them in
further research along similar lines. The materials and methods used in the experiments
are presented below.
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5.2. Approach

We used two datasets for experiment purposes; one is the malicious user dataset
while the other is the KDD cup 1999 dataset [40]. URL reputation is treated as a binary
classification problem where positive examples present malicious URLs and negative
examples present benign URLs. It consists of 2.4 million examples of URLs while the
number of features is 3.2 million. The second dataset is KDD Cup 1999 Data [41] that
was used in the competition of Knowledge discovery and data mining tool for intrusion
detection in a network. In the case of attack or intrusion, the connection is considered
as ‘bad’ otherwise ‘good’; data simulation is performed in a military environment. NSL-
KDD [42] is also widely used for evaluating intrusion detection models. Each record of
intrusion has symbol features (three-dimensional) and digital features (42-dimensional).
The labels are mainly divided into normal, DoS, Prob, U2R, and R2L types of attacks. It
contains a total of 125,973 samples in the train set and 22,544 samples in the test set.

MLP is used to perform classification tasks, which is a feed-forward neural network
consisting of the input layer, hidden layer, and output layer. Each neuron of the input layer
represents the feature; hidden layer neurons process the data and store weights during the
training phase and neurons of the output layer represent the output variable. The number
of nodes or neurons in the input layer is the same as the number of features feeds to the
neural network layer and the number of nods or neurons in the output layer represents
the number of target classes. The number of nodes in the hidden layer is an architectural
issue, and the main focus is to generalize it and optimize it with the appropriate number of
parameters for the classification task. MLP works on backpropagation that is based on the
gradient descent method. Figure 4 presents the architecture of MLP.

Figure 4. Architecture of MLP used for experiments.

It has been used in various classification tasks. Hyperparameters of the deep learning
model include epochs, number of layers, and batch size. Considering limited computing
power and the training time, the model is kept simple, having only three layers with a batch
size of 32, and Relu is used as an activation function. We utilized 80% data for training and
20% for testing the model.

Figure 5 presents the experimental results of MLP in terms of accuracy, precision,
recall, and F1 score. Results reveal that a simple deep learning-based model is very effective
in predicting malicious URLs and intrusion detection. Having low computational power in
a wireless network, a simple deep learning model is showing robust results with 99.62%
for the malicious URL detection dataset and 99.87% for intrusion detection on the KDD
Cup 99 dataset.

Table 3 shows the classification results of the proposed approach and other methods
in the literature [34,40,41]. The proposed MLP outperforms other methods in terms of all
evaluation measures for both datasets. In the detection of malicious URLs, the proposed
approach exceeds the results proposed in [40] using SVM. Lian et al. [34] proposed feature
reduction based on correlation by combining recursive feature elimination with a decision
tree, but the results are still lower than the proposed approach on the KDD Cup 99 dataset.
Overall, the proposed method has shown better performance in KDD Cup 99 and malicious
URL detection datasets.
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Figure 5. Performance of the deep learning model.

Table 3. Classification result of all learning models.

Method Dataset Accuracy Precision Recall F1-Score

Proposed Malicious
URL
Detection

99.62 98.89 99.24 99.08

SVM [40] 90.70 93.43 88.45 -

RF [40] 96.28 91.44 94.42 -

Proposed

KDD Cup 99

99.87 99.14 99.02 99.08

Deep Learning [41] 92.00 - - -

Rule Based Model [41] 89.00 - - -

DT-RFE [34] 99.21 - - -

Table 4 shows 10-fold results to show the generalizability and consistency of the
proposed model. Table 5 shows the performance comparison of the proposed approach
with existing techniques using KDD-CUP and NSL-KDD datasets. It can be observed that
the proposed can provide higher accuracy regarding different kinds of attacks like DoS,
R2L, etc.

Table 4. 10-fold cross-validation results using MLP.

Sr# Accuracy Precision Recall F-Score

1st-Fold 99.5% 98.6% 99.1% 99.1%
2nd-Fold 99.2% 98.7% 99.2% 98.6%
3rd-Fold 99.1% 98.3% 99.3% 98.4%
4th-Fold 99.8% 98.7% 99.9% 99.5%
5th-Fold 100.0% 99.1% 99.8% 99.3%
6th-Fold 99.6% 98.6% 99.7% 99.2%
7th-Fold 99.4% 98.7% 99.6% 99.1%
8th-Fold 100.0% 99.4% 99.5% 99.7%
9th-Fold 99.2% 98.4% 99.4% 99.8%
10th-Fold 99.7% 98.5% 99.7% 99.9%

Average 99.60% 98.81% 99.16% 99.01%
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Table 5. Accuracy comparison of classifiers on KDD-CUP and NSL-KDD datasets.

Ref. Model Dataset DoS Prob R2L U2R Avg. Accuracy

Proposed MLP

KDD-CUP 99

1.00 0.99 0.99 0.99 0.99
[43] PCA+MCA 0.99 0.98 0.97 0.81 0.94
[32] DNN - - - - 0.92
[34] DT-RFE 0.99 0.99 0.97 0.99 0.99

Proposed MLP

NSL-KDD

1.00 0.99 0.99 1.00 0.99
[15] SVM-ANN 1.00 0.99 0.77 0.88 0.91
[33] Deep hierarchical 0.96 0.68 0.60 0.61 0.83
[34] DT-RFE 0.99 0.99 0.98 0.99 0.99

6. Open Issues and Research Directions

Although researchers have shown decent efforts in improving the security of CPS,
they are still in their infancy and several open issues are remaining for further exploration.
Challenges faced by CPS and corresponding research opportunities are highlighted here:

• Delay in encryption and decryption process cause network latency;
• Weak scheme for user authentication and lack of multi-factor verification in devices;
• Lack of firewall protection;
• Insufficient Intrusion detection techniques;
• Need of cipher algorithms for CPS security;
• Strong user authentication;
• Data availability and verified backups.

Some potential research opportunities are discussed as under:

• Many studies have been conducted for attack detection, but there is a need to consider
real-time monitoring of CPS security. To employ real-time CPS security, the complexity
of predictive models should be reduced to avoid data transmission delay.

• A resilient design of a CPS system for recovery after sensor attacks and software faults
needs to be devised.

• Artificial intelligent-based models require sufficient data for training, so there is a
need to generate a dataset for training and learning of malicious behaviors.

7. Conclusions

CPS combines physical and computing systems and becomes more vulnerable to
security threats and cyber-physical attacks. These attacks disturb the functionality of CPS
and systems crash in the real world. An increase in the connectivity of different components
of CPS makes it complex and large and reduces the security of the system. To ensure the
reliability and safety of the CPS model, it is inevitable to adopt novel techniques to increase
the security level of CPS. This paper discusses CPS architecture as a layered model that
provides a clear abstraction of complex components of CPS into three layers: the physical
layer, network layer, and application layer. After that, different attacks on each layer are
discussed, and some real-world attacks are also highlighted briefly. In addition, we provide
a simple deep learning model for intrusion detection in a CPS. Finally, open issues and
future directions for CPS are briefly discussed.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronyms Definition
ANN Artificial neural network
BS Base station
CRL Certificate revocation list
CPS Cyber-physical system
CPU Central processing unit
DDoS Distributed denial-of-service
DNP Distributed network protocol
DoS Denial of service
DRAM Distributed random access memory
DT Decision tree
GPS Global positions system
IoT Internet of things
MCA Multiple correspondence analysis
MitM Man-in-the-middle
MLP Multilayer perceptron
PCA Principal component analysis
PDA Pole dynamic attack
PSO Particle swarm optimization
R2L Remote to user
RF Random forest
RFID Radio frequency identification
RIS Reconfigurable intelligent surfaces
SMOTE Synthetic minority oversampling technique
SVM Support vector machine
U2R User to root
URL Uniform resource locator
ZDA Zero dynamics attack
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