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Abstract: This paper introduces an approach for 3D organ segmentation that generalizes in multiple
ways the Chan-Vese level set method. Chan-Vese is a segmentation method that simultaneously
evolves a level set while fitting locally constant intensity models for the interior and exterior regions.
First, its simple length-based regularization is replaced with a learned shape model based on a Fully
Convolutional Network (FCN). We show how to train the FCN and introduce data augmentation
methods to avoid overfitting. Second, two 3D variants of the method are introduced, one based on
a 3D U-Net that makes global shape modifications and one based on a 3D FCN that makes local
refinements. These two variants are integrated in a full 3D organ segmentation approach that is
capable and efficient in dealing with the large size of the 3D volumes with minimal overfitting.
Experiments on liver segmentation on a standard benchmark dataset show that the method obtains
3D segmentation results competitive with the state of the art while being very fast and having a small
number of trainable parameters.

Keywords: organ segmentation; 3D segmentation; liver segmentation

1. Introduction

Image segmentation and related tasks, such as object and scene segmentation, have a
wide range of applications, including (but not limited to) content-based image retrieval,
medical diagnosis, autonomous driving, object detection, face recognition, etc.

While image segmentation is a generic problem, object segmentation is the problem
of delineating the boundary of a specific type of object, such as a dog in an image or a
liver in a CT scan. This problem is very important for medical imaging where it is used
for delineating tumors or other pathologies, estimating the volume of a heart, a liver or a
swollen lymph node, etc. Even though radiologists have been handling the aforementioned
medical imaging tasks, an increasing amount of research indicates that computer vision
techniques have the potential to outperform radiologists in terms of speed and accuracy.

Generic image segmentation is usually a low-level task that finds the boundary of
a region purely based on the intensity difference with the neighboring regions. Object
segmentation is a high-level task that aims at finding the boundary of a specific object and
uses the shape of the object to eliminate distractors and to project where the boundary
should be in places where it is not visible.

The Chan-Vese method is a popular low level segmentation method that uses constant
intensity models for the inside and outside regions and boundary length regularization
to evolve a level set and find the minimum cost segmentation [1]. Its boundary length
regularization is too simple and not capable of imposing specific object shape regularization
for real applications such as object or organ segmentation.

For this reason, our recent work has generalized it as a Chan-Vese Neural Network
(CVNN) to contain a more elaborate shape model based on a convolutional neural network
(CNN), which is trained in a supervised way as a recurrent neural network (RNN) [2].
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However, while the CVNN method showed promise outperforming the original Chan-Vese
method, it did not show its full potential through real 2D object segmentation applications
and comparisons with the state of the art methods in the field.

This paper takes the CVNN approach even further, bringing it to the level of the state
of the art in 3D liver segmentation, with the following contributions:

- It presents a generalization of the CVNN method [2] for 3D organ segmentation that
employs a U-Net [3] for a better 3D shape model.

- It shows how to improve the segmentation accuracy by employing liver probability
maps as 3D CVNN-UNet data terms instead of the CT intensity. The probability maps
and the initializations are obtained from the output of a pixel-wise organ detection
algorithm.

- It introduces novel types of perturbations based on connected components that induce
variability in the initialization and help avoid overfitting, a problem that severely
impacts the 3D CVNN-UNet accuracy even when using perturbations that are 3D
extensions of [2].

- It presents a full multi-resolution 3D liver segmentation application, where a computa-
tionally intensive 3D CVNN algorithm based on U-Net is used at low resolution, and
a computationally efficient 3D CVNN algorithm is used to refine the low resolution
result at the higher resolutions. The proposed method obtains results competitive
with the state of the art liver segmentation methods.

Related Work

The U-Net has been extended to 3D segmentation tasks: 3D U-Net, which essentially
replaces 2D convolutions with 3D convolutions; thus segments out 3D objects [4]. In
principle, any variation of the 2D U-Net architectures [5,6] can be adapted for 3D tasks by
using 3D convolutions instead. ComboNet combines 2D and 3D U-Net architectures in an
end-to-end fashion where the 2D portion takes a full-resolution input and the 3D portion
takes a resized input to reduce computation [7]. The outputs of the two sub-networks are
combined with a series of convolution layers.

Because of state of the art results, researchers found different ways to enhance the
U-Net, by introducing alterations to the architecture while maintaining the residual connec-
tions and its symmetric nature. For instance, the Attention U-Net added attention gating
layers prior to each convolution block on the decoding part [5]. The authors claim that
Attention-U-Net outperforms U-Net by around 2%; however, the ComboNet exemplified
in their ablation study that the performance improvement achieved by the Attention U-Net
might be case-specific, obtaining decreased performance compared to the U-Net [7] .

Another state of the art U-Net variation is U-Net++ [6]. It replaces the residual con-
nections with a series of nested residual connections and provides a 2% improvement in
accuracy while increasing the number of parameters by around 20%. In principle, the
encoding part of the U-Net can be replaced by classification architectures without the fully
connected layer(s) of the classification models. For instance UResNet [8] combines the state
of the art ResNet [9] architecture with the U-Net architecture. Another recent U-Net-based
method is ObeliskNet [10]. It learns spatial filters and filter offsets in an end-to-end manner,
obtaining a sparse model with few parameters.

One of the many recent examples of U-Net-based methods is nnU-Net [11]. It uses
a 3D U-Net architecture with slight modifications and tailored training, as well as data
augmentation and post-processing methods to obtain state of the art results. The authors of
the nnU-Net also proposed modifications to the U-Net architecture itself but the ablation
study showed no significant improvement from the architectural changes.

The latest organ segmentation works use transformers as part of the U-Net to obtain
state of the art segmentation performance. Transformers are attention-based models that
have obtained state of the art results in many applications, from natural language processing
to image classification and object detection [12–14]. For organ segmentation, SETR and
UNETR replace the encoder part of the U-Net with a vision transformer [15,16]. CoTr places
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the vision transformer between the encoder and decoder parts of the U-Net [17]. Any of
these developments could be used to replace the 3D UNet from our model to further boost
the segmentation of the method.

One of the issues with the deep learning methods is that they need a large number of
manually labeled images, which are almost always scarce in the medical imaging domain.
Furthermore, annotations, especially segmentations, are not 100% accurate, and the data
are noisy. Although deep learning is known to handle noise well, it is not immune to
overfitting. Once the lack of annotated data is taken into consideration, overfitting becomes
a more significant issue. Often, researchers exercise different techniques to avoid overfitting,
such as data augmentation and early stopping. Thus, in order to maintain a state of the
art accuracy with a small data set, and with a relatively small number of parameters and
computations, researchers are combining neural networks with level sets.

An approach that combined NN with level sets to segment out the left ventricle of the
heart from cardiac cine magnetic resonance (MR) images was proposed in [18]. They used
Deep Belief Networks (DBN) [19] as a region of interest (ROI) detector, which mainly yields
a rectangle bounding box that encloses the object of interest. Then, within the ROI, Otsu’s
gray-scale histogram-based thresholding [20] is used to obtain an initial segmentation. The
segmentation derived at this stage is used as a shape prior and/or initialization for the next
stage. Then, Otsu’s segmentation is fed into a distance regularized level set formulation,
which eventually yields the final segmentation [21].

Some recent works merge level sets with deep learning [22,23]. Level sets are combined
with VGG16 [24] to segment out salient objects in [22]. The level set formulation of active
contours is used along with the optical flow for the task of moving object segmentation
in [23]. Also, to segment out lung nodules, machine learning regression models are used
in conjunction with level sets to obtain a better curve evolution velocity model at a given
point in [25].

LevelSet R-CNN modified the Mask R-CNN [26] architecture such that it has 3 addi-
tional mask heads, of which one predicts a truncated signed distance transform, the other
predicts Chan-Vese features and the last predicts the Chan-Vese hyper parameters [27].

The Deep Implicit Statistical Shape Model (DISSM) method uses implicit shape models
based on deep learning with an iterative refinement also based on deep learning, to segment
out certain organs in 3D CT scans [28]. The method does not necessarily reduce the
computation cost, yet it definitely improves the segmentation quality.

A hybrid active contour and UNet architecture was designed to segment out breast
tumors in [29]. The method takes in radiologist annotation as initialization, while in our
case we use a detection algorithm to provide the initialization.

Our method differs from all these level set formulations. First, unlike [18], we are
using a U-Net CNN instead of a DBN, and the U-Net is used as the shape model instead of
distance or length-based regularization, and we are not using Otsu’s thresholding. One
study [25] uses a least-squares-based regression method to model velocity; we are using
the CNN to replace the curvature term in an Euler-Lagrange equation. The researchers
in [22] use VGG16 as a backbone to compute the initialization along with upsampling and
refining the upsampled level sets. Moreover, they use a level set function as a loss function
that is minimized. In contrast, our formulation uses the level set produced by the CNN as
a shape model instead of length-based regularization and combines it with the Chan-Vese
intensity-based update to obtain a model with very few parameters. In their next paper, [23]
minimize a Euler-Lagrange equation based on level sets produced by ResNet101 [9], and
unlike us, their formulation does not use the output of the CNN to replace the curvature.
They only use it to estimate the Heaviside and subsequent average intensity. The LevelSet
R-CNN [27,29] use the CNN model to learn almost every single parameter in the Chan-Vese
and active contour formulation respectively, whereas we estimate those hyper-parameters
algebraically. The VGG16, ResNet101, Mask R-CNN are all very computationally intensive;
in comparison, our CNN is very efficient in terms of computation complexity and small
in terms of number of parameters. Last but not least, our model is an RNN (Recurrent
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Neural network); we iterate over the same input to improve the result, whereas none of
the aforementioned algorithms use an RNN. However, we must mention that [23] works
iteratively from one frame to the next, i.e., the segmentation of frame at time t is used as
initialization for time t + 1.

In this paper we show how to use the U-Net model as part of the Chan-Vese NN
framework (see Section 2.3.1), to obtain state of the art 3D segmentation results with 140+
times fewer parameters than the original U-Net. In principle most of the above methods
could be used as part of our method to further improve results.

Chan-Vese Overview

The Chan-Vese Active contour [1] is aimed at minimizing the Mumford-Shah energy [30]:

E(C)=
∫

Ci

(I(u)−µi)
2du +

∫
Co
(I(u)−µo)

2du+ν|C| (1)

where I denotes the image intensity, C is the curve to be fitted, Ci, Co are the regions inside
and outside the curve C, respectively, and µi and µo are the intensity averages of image I
inside and outside the curve C, respectively.

The Chan-Vese method takes a level set approach where the curve C is represented as
the 0—level set of a surface ϕ, i.e., C = {(x, y)|ϕ(x, y) = 0}. Usually ϕ(x, y) is initialized
as the signed Euclidean distance transform of C, i.e., ϕ > 0 inside the curve C and ϕ < 0
outside, and the magnitude of ϕ(x, y) is the distance of the point (x, y) to the closest point
on curve C. Then the energy (1) is extended to an energy of the level set function ϕ:

E(ϕ)=
∫
(I(u)−µo)

2(1−Hε(ϕ(u))) du +
∫
(I(u)−µi)

2Hε(ϕ(u))du+ν
∫

δε(ϕ(u))|∇ϕ(u)|du (2)

where Hε is the smoothed Heaviside function

Hε(z) =


0 if z < −ε

1 if z > ε
1
2 [1 +

z
ε +

1
π sin(πz

ε )] if |z| < ε

(3)

and δε is its derivative. The parameter ν controls the curve length regularization
∫
|∇ϕ| .

When ν is small, the curve (segmentation) C will have many small regions while when ν is
large, the curve C will be smooth and the segmented regions will be large.

The energy is minimized alternatively by updating µi, µo

µt
i =

∫
I(u)Hε(ϕt(u))du∫

Hε(ϕt(u))du

µt
o =

∫
I(u)[1− Hε(ϕt(u))]du∫
[1− Hε(ϕt(u))]du

(4)

then updating ϕ:
ϕt+1 = ϕt + η[κ(ϕt) + (I − µt

o)
2 − (I − µt

i)
2] (5)

where κ(ϕ) = ν div ∇ϕ
|∇ϕ| .

2. Proposed Method

The Chan-Vese neural network (CVNN) [2] generalizes the update Equation (5) by
replacing the divergence term κ(ϕ) = ν div ∇ϕ

|∇ϕ| responsible for length regularization with
a Convolutional Neural Network (CNN) g(ϕ, β):

ϕt+1 = ϕt + η[g(ϕt, β) + (I − µt
o)

2 − (I − µt
i)

2] (6)
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The iterative update (6), makes the algorithm behave as a Recurrent Neural Network
that takes a preset number of steps T. It is illustrated in Figure 1.

Figure 1. Our 3D CVNN-UNet combines a 3D U-Net with the Chan-Vese Neural Network [2].

We can see that at each iteration the model takes ϕt as input and passes it through
the CNN portion of the model g(ϕt, β), which imposes the shape information. The CNN
output is then passed to the Chan-Vese update (6), along with average image intensity
values µt

i , µt
o (from Equation (4)) inside and outside of the implicit 3D surface ϕt(x) = 0.

This way ϕt+1 is obtained and is fed back into the next iteration of the RNN. After T
iterations, ϕT is thresholded to obtain the segmentation result.
Training. Training is conducted using backpropagation through time,

∂L
∂β

=
∂L

∂ϕT · η ·
T

∑
k=1
{∂g(ϕk−1, β)

∂β
·

T−1

∏
t=k

∂ϕt+1

∂ϕt }, (7)

where

∂ϕt+1

∂ϕt = 1 + η

(
∂g(ϕt, β)

∂ϕt − 2(I − µo) ·
∂µo(ϕt)

∂ϕt + 2(I − µi) ·
∂µi(ϕt)

∂ϕt

)
, (8)

and

∂µi(ϕt)

∂ϕt =
δε(ϕt)·(I−µi)∫

Hε(ϕt(x))dx
,

∂µo(ϕt)

∂ϕt =
δε(ϕt) · (µo − I)∫
(1−Hε(ϕt(x)))dx

,
(9)

and where Hε has been defined in Equation (3) and δε is its derivative.
The CVNN update Equation (6) depends on the input image I and the initialization ϕ0.

In order for the CVNN model to work well, the image I should satisfy the assumption that
the intensity inside and outside the object of interest are relatively constant. A standard CT
image does not meet the constant intensity assumption outside the object, because the CT
intensities outside an organ have a large range of values from very low (e.g., air) to very
high (e.g., bone).

For these reasons we will introduce methods to construct voxelwise probability maps
for the organ of interest, with high values inside the organ and low values outside, thus
better satisfying the intensity assumptions and hence better suited as input for CVNN.

The other CVNN input is the initialization ϕ0, which will be obtained using a pix-
elwise detection algorithm, and this initial detection will also be used to construct the
probability map.

The whole organ segmentation algorithm is summarized in Algorithm 1 and illustrated
in Figure 2.

Here δ(s) is 1 if statement s is true, otherwise 0, and DT is the 3D distance transform.
A number of T = 4 iterations have been used for the 3D CVNN-UNet experiments.
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Algorithm 1 Deep Chan-Vese 3D Organ Segmentation

Input: CT scan C.
Output: Segmentation map S.

1: Resize raw input C to isotropic low and medium resolution maps CL, CM.
2: Compute pixelwise detection map D (Section 2.1)
3: Compute probability map I from CL and δ(D > 0) (Section 2.1)
4: Run 3D CVNN-UNet with input I and ϕ0 = DT(D > 0), obtaining ϕT (Section 2.3.1)
5: Resize ϕT to medium resolution using trilinear or tricubic interpolation, denote it as ϕ
6: Compute probability map I from CM and δ(ϕ > 0.5)
7: Run 3D CVNN with input I and ϕ0 = DT(ϕ > 0.5), obtaining ϕ1 (Section 2.3.2)
8: Obtain segmentation map S = δ(ϕ1 > 0)

Figure 2. Diagram of the entire Deep Chan-Vese 3D organ segmentation approach.

2.1. Pre-Processing

The Chan-Vese algorithm is a local algorithm, and so is CVNN, meaning that one
should start with a proper initialization for these models to perform well. The following
CNN detection algorithm described below has been used for initialization.

2.1.1. Pixelwise Organ Detection

A 2D CNN was trained for the purpose of classifying each CT voxel whether it
is inside an organ or not, working on the axial CT slices at 128× 128 resolution. This
detection algorithm obtains coarse organ segmentations D, which will be used to generate



Electronics 2022, 11, 3323 7 of 18

organ probability maps. These coarse organ segmentations are also used to obtain the
initializations ϕ0 for Equation (6) using the 3D distance transform.

The CNN consists of 4 convolution layers with 3× 3 kernels, as illustrated in Figure 3.

Figure 3. Pixelwise organ detection CNN architecture.

All the convolution layers have 64 filters except the first layer, which has 32 filters, and
the last layer has n filters, where n represents the number of classes or more specifically in
our case, the number of organs, n− 1, and background to be detected. In our experiments
we used n = 15 classes because using a larger number of classes reduced false positives.

The first 3 convolution layers are followed by ReLU and max-pooling with stride
1. All the convolution layers have stride 1 and no padding, so that during training, the
network takes input patches of size of 11× 11 and yields an output of 1× 1× n, which is
then passed through a softmax layer.
Training. Organs do vary in size, which creates a severe class imbalance. In order to
handle this issue, the outputs of the last activation are then fed into a weighted Binary
Cross-Entropy (BCE) (10) [3] loss function, where careful consideration is needed while
choosing the weights,

L = − 1
n

n

∑
i=1

αiYi ln R̂i − (1− αi)(1−Yi) ln(1− R̂i) (10)

where αi is the weight for the i-th class, Yi ∈ {0, 1} is the ground truth of that class, and R̂i
is the corresponding prediction for that class, i.e., R̂i ∈ [0, 1].

An initial approach for choosing the class weights would be αi = 1
Ni

where Ni is
the number of samples from the i-th class. This approach is mostly fine when training
is conducted with all the samples or sub-sampled at the same rate across all classes. It
becomes, however, less effective when samples of different classes are subsampled at
different rates. For instance, in our case, the background samples were subsampled at a
lower rate than any positive samples for organs, as most of a CT scan is background. To
account for subsampling, the weights are changed as αi =

1
N̂i

where N̂i = si · Ni is number
of expected samples from the i-th class. Here si is the subsampling ratio for the i-th class.
Inference. During inference, the detection algorithm can take in any input of size k×m,
with k, m ≥ 11. In that case the output of the detection algorithm would be (k − 10)×
(m − 10) × n, where n is again number of detected classes, including the background.
For convenience, one can pad the output of each detection map with zeros to reach size
k×m× n, so that the axial dimension of the output is the same as the input.

2.1.2. Constructing Probability Maps

The probability map gives a measure of how likely each pixel, based on its intensity, is
inside the object of interest. As opposed to the detection map which obtains only a rough
segmentation, the probability map follows the organ boundaries very closely, at the cost of
a noisy appearance inside the organ. An example of a detection map and probability map is
shown in Figure 4. The probability map computation is described in detail in Algorithm 2.
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detection map probability map segmentation & ground truth

Figure 4. Example of a detection map (D), probability map (I), 3D CVNN-UNet segmentation result
(green) and ground truth (red) of a CT slice from the BTCV dataset.

Algorithm 2 Probability Map Computation

Input: CT scan C, initial binary mask D, number of bins Nbins.
Output: Probability map I.

1: Extract pixels inside the mask u = C(D > 0)
2: Construct Nbins equally spaced bins in the range [min(u), max(u)]
3: Compute counts n = histogram(u, bins)
4: Obtain I(x) = n(C(x))/ max(n)

Here C is the actual CT scan and I ∈ [0, 1] is the obtained probability map that will
be used in Equation (6). Optionally the probability map range can be scaled by 255 for
convenience. In our application we used Nbins = 16.

2.2. 2D Approach

To evaluate the benefit of using a 3D approach, we have also experimented with 2D
approaches that use two main ways to replace g(ϕt, β) in (6) with: (i) a shallow CNN
called 2D CVNN described in Section 2.2.1 (ii) a U-Net variant called 2D CVNN-UNet
described in Section 2.2.2. Before we dive into architecture details we would like to lay out
the preprocessing steps that are specific to 2D inputs at this stage.
Multiple Initializations. In order to improve model generalization, various initializations
were used for each input image I during training. In fact, rarely the same initialization was
used twice during training. The initialization was selected at random from the following:
10% of the time the initialization was obtained the same way as it is obtained at test time
through the detection map, which is a rough initial CNN segmentation. A total of 30% and
the remaining 60% of the time the initializations were obtained from the same detection
map and the ground truth Y, respectively, by the following distortions: first, semicircles
with a random radius were added, or holes were punched at random locations on the
boundary of the detection map or Y, then Gaussian noise was added to the distorted map
around the edge. This process is illustrated in Figure 5.

Figure 5. Ground truth-based initializations. Left: ground truth. Middle: distorted by added or
punched semicircles at random border locations. Right: The middle image is corrupted by adding
Gaussian noise and used as initialization for training.

By varying the number of different initializations of the same image, we observed that
more initializations resulted in better generalization.
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The architectures of the two 2D approaches, 2D CVNN and 2D CVNN-UNet, are
described next.

2.2.1. 2D CVNN Architecture

The CNN part has a convolution layer with one convolutional filter of size 3× 3, two
convolutional layers with 3 filters of size 3× 3 with padding, followed by a convolutional
layer with 3 filters of size 1× 1 followed by exponential linear unit (ELU), instead of ReLU
activation, and finally another convolutional layer with one filter of size 1× 1. The 3× 3
filters used padding such that the size of the output was kept the same as the size of the
input. This network has 214 trainable parameters.

2.2.2. 2D CVNN-UNet

A 2D U-Net was used with 2 convolution blocks in both the encoding and decoding
paths of the U-Net, and each convolution block has 2 convolution layers. Each convolution
layer is followed by an exponential linear unit (ELU) activation. As illustrated in Figure 6,
each layer of the first block has 16 filters which double after each maxpooling, and halve
after each upsampling, in a similar way to the regular U-Net. Each filter is of size 3× 3. With
these aforementioned configurations this network architecture has only 147,473 trainable
parameters in contrast to a standard U-Net with about 50 million parameters.

Figure 6. Illustration of the CNN portion of the CVNN. For a 2D CVNN-UNet it is a 2D U-Net with 2
blocks, while for a 3D CVNN-UNet it is a 3D U-Net with 2 blocks.

2.3. 3D Approach

As pointed out in Section 2.2.2, the CVNN is not capable of reaching the desired
solution when the initialization is far away from the ground truth. For the 3D approach,
we address this problem using a 3D CVNN-UNet that is capable of obtaining a high-level
representation and is therefore more likely to find the solution independent of initialization.
However, because the 3D U-Net uses large amounts of data, we are constrained to use a
low resolution input in this case. A 3D CVNN on higher resolution data is then used to
refine the output of the 3D CVNN-UNet and obtain the final result.

These two architectures will be described next. The 3D approach that uses both the
low resolution 3D CVNN-UNet and the higher resolution 3D CVNN is the Deep Chan-Vese
3D method described in Algorithm 1.

2.3.1. 3D CVNN-UNet with Low-Resolution Input

Due to GPU memory limitations, the 3D CVNN-UNet is applied to low-resolution
inputs. More exactly, if the original data size is 512× 512× 4k for the largest possible
integer k, the 3D CVNN-UNet input is resized to 128× 128× k, and so are the detection and
probability maps. This way, the input is small enough to be able to fit multiple volumes in
the GPU memory with the 3D CVNN-UNet architecture.

Overall, to go from CVNN to 3D CVNN-UNet, the CNN portion of the original CVNN
algorithm is replaced by a 3D U-Net, and the Chan-Vese update (6) takes place in 3D, not
in 2D.

The same architecture configuration for the UNet portion of the 3D CVNN-UNet is
used as in Section 2.2.2. The only difference is the convolution layers are 3D, i.e., the kernels



Electronics 2022, 11, 3323 10 of 18

are 3× 3× 3. An example of the detection map, thresholded probability map, segmentation
result by the 3D CVNN-UNet and ground truth is shown in Figure 7.

detection ϕ > 0 2D cross-section of ϕ > 0

probability map I > 144 2D cross-section of I > 144

segmentation result 2D cross-section of the segmentation

ground truth 2D cross-section of the GT

Figure 7. Detection, probability map, segmentation result of the 3D CVNN-UNet and ground truth
of the liver of a CT scan from the BTCV dataset. The left column is the 3D view, the right column is
the axial view of the 40-th layer.
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2.3.2. 3D CVNN with Medium-Resolution Input

The 3D CVNN-UNet obtains segmentations that are relatively close to the ground
truth, however they have a low resolution. The segmentation maps obtained by the 4-
iteration 3D CVNN-UNet are upsampled from 128× 128× k to 256× 256× 2k. These
upsampled segmentations are used as new detection maps, and probability maps are
computed using Algorithm 2.

There are three main purposes for this step:

1. To further improve the accuracy given the new detection and probability maps.
2. To obtain finer medium resolution segmentations, since the low-resolution segmenta-

tion would look coarse when upsampled.
3. To show that by combining the 3D CVNN-UNet and the 3D CVNN, one can achieve

high accuracy for medium resolution input with a reduced computation complexity.

The 3D CVNN has three convolution layers with 3 filters of size 3× 3× 3 with padding,
followed by a convolutional layer with 3 filters of size 1× 1× 1, followed by exponential
linear unit (ELU) activation, and finally another convolutional layer with 1 filter of size
1× 1× 1. The 3× 3× 3 filters use padding to have the output size equal to the input size,
so that the Chan-Vese update (6) can be computed for the entire volume at once.

2.4. Implementation Details

All models have been implemented in PyTorch [31] with CUDA, where new layers
have been constructed for the computation of µi, µo and for the Chan-Vese update (6).
Training details. Training is conducted using triplets (Ii, Yi, Di) containing the full input
3D images Ii (at the desired resolution) with their corresponding desired segmentation
maps Yi and initialization binary maps Di. The initial level set volume ϕ0 was obtained
from each binary map Di as the signed 3D distance transform.

Recurrent Neural Networks (RNN) are more affected by vanishing and exploding
gradients than feed-forward CNNs. Such is the case for the CVNN, which is an RNN, and
therefore gradient clipping and regularization need to be used. However, a better and more
stable solution was obtained using the Combo loss [32], which is a weighted combination of
the weighted Binary Cross-Entropy (BCE) loss [3] and Dice loss [33]. By using this loss, not
only does one not need to worry about exploding gradients, but the Combo loss authors
also point out it promises better generalization. The Combo loss can be formulated as

L(β) = (α1 − 1)
∑N

i=1 YiR̂i + s

∑N
i=1Yi + ∑N

i=1 R̂i +s
− α1

N

N

∑
i=1

α2Yi ln R̂i−(1−α2)(1−Yi) ln(1−R̂i), (11)

where s is a small positive smoothing factor, β are the U-Net weights, R̂i ∈ [0, 1] is the
prediction for voxel i after sigmoid normalization, and α1, α2 ∈ [0, 1] are tuning parameters,
fixed as α1 = 0.7 and α2 = 0.5 in this paper.

When the number of iterations T is large, the loss (11) could have many local optima.
To avoid getting stuck in a shallow optimum, we used the result of a trained RNN with
fewer iterations as initialization, similar to [34]. We therefore started with training a
1-iteration 3D CVNN, then used it as initialization for the 2-iteration one, and so on.

To be able to better handle local minima, we dynamically changed the learning rate
using an enlarged cosine wave, which is a modification of the [35] cosine annealing wave,

αi =
α1

2
βb

i·r
n c
(

cos
(π mod (i− 1, n/r)

n−
⌊

i·r
n

⌋ )
+ 1
)

, (12)

where αi is the learning rate for the ith epoch, α1 is the largest possible learning rate for
which the gradient does not explode, β is an augmentation factor for which we took β = 1,
and n and r are the number of epochs to be run and number of waves, respectively.
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Multiple Initializations. For better generalization, the CVNN is trained with various
initializations for each input image I. In fact, we rarely fed the same initialization twice
during the training. There are two main types of initializations:

1. Thresholding the probability map I > t with a random threshold t. For the 3D
CVNN-UNet, t is randomly chosen from {64, 80, 96}. These values could range a
larger span but for this work these values were enough to sustain generality. Then
25% of the smallest connected components of the thresholded probability map are
deleted at random. Those values are picked so that the Dice coefficient of I > t for
each t and the Dice of the detection map D > 0 have roughly the same value, yet each
initialization would have different false positives and false negatives. This would help
train the CVNN to recover the correct shape from many scenarios and thus improve
generalization. It is similar to having a golf player practice hitting the hole in 4 shots
from a large number of locations roughly at the same distance from the hole.

2. When we do not use the above connected component-based initialization, for 50% of
the time, the initialization was obtained the same way as at test time, namely through
the detection map D > 0. Another 20% and the remaining 30% of the time, the
initializations were obtained from the detection map and ground truth Y, respectively,
by the following distortions: first, semi-spheres with a random radius were added, or
holes were punched at random locations on the boundary of the detection map or Y,
then Gaussian noise was added to the distorted map around the boundary.

We trained with various numbers of different initializations of the same image and
observed that more initializations resulted in better generalization.

3. Experiments

Experiments are performed for liver segmentation with four fold cross-validation on a
standard multi-organ segmentation dataset [36].

3.1. Data

The multi-organ segmentation dataset [36] contains 90 CT scans, of which 43 are from
the TCIA Pancreas-CT dataset [37–39] and 47 from the BTCV dataset [40,41]. Gibson et al. [36]
reviewed and improved the existing organ segmentations from the corresponding datasets
and provided segmentations for those that did not exist.

The pixel values of the original CT are preprocessed by Algorithm 3 so that the input
C is in the range [0, 255].

Algorithm 3 Input preprocessing

Input and Output: CT scan C.
1: Lower bound C[C < −350] = −350
2: Upper bound C[C > 350] = 350
3: Shift and scale C = (C + 350) · 255/700

The CT scans have been interpolated to make them isotropic (have the same resolution
in all three directions), with axial dimensions of 512× 512. Then the isotropic CT scans
were resized to low and medium resolution: if the isotropic input is 512× 4k then the
medium resolution is 256× 256× 2k and the low resolution is 128× 128× k.

3.2. Metrics

Given a segmentation S and the annotation Y of a volume, we will evaluate the Dice co-
efficient 2|S∩Y|/(|S|+ |Y|), the symmetric mean boundary distance defined as (D(S, Y) +
D(Y, S))/2 and the symmetric 95% Hausdorff distance (P95(D(S, Y)) + P95(D(Y, S)))/2.
Here D(S, Y) is the set of distances from the boundary pixels of S to the nearest boundary
pixels of Y, and P95(X) is the 95 percentile of X. These metrics have also been used in [36].
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We have observed that the detection algorithms from Section 2.1.1 did not seem to
generalize as well on the BTCV dataset as the Pancreas-CT dataset [39]. There are two
factors that might affect detection and segmentation performance for the BTCV dataset: the
CT scans are not contrast-enhanced, and some of the patients have metastatic liver cancer,
unlike in the TCIA Pancreas-CT dataset.

3.3. Results

Examples of segmentation results and the corresponding ground truth annotations are
shown in Figure 8. Recall that the dataset that we are using, with the reference segmenta-
tions, are provided by [36]. They have set up their experiments with 9-fold cross-validation,
and have manually cropped the images to their region of interest. We performed our exper-
iments with 4-fold cross-validation and report results on two types of data: the cropped
data, using coordinates provided by [36], and the whole slice subvolume containing all
annotations. Like [36], our results are upsampled and the metrics are computed at the
original CT resolution unless otherwise specified. Also similar to [36], we did not include
this upsampling time in the segmentation time.

Figure 8. Examples of segmentation results from our method and ground truth of CT slices from
the BTCV dataset and TCIA Pancreas-CT datasets. Each row is from the same patient, red is ground
truth and green is the segmentation result obtained by our method.
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Table 1 shows the evaluation of the low resolution 3D CVNN U-Net and the medium
resolution Deep Chan-Vese 3D on the cropped data (ROI) and the whole slice subvolumes.
With only 353k parameters, the 3D CVNN-UNet achieved a median Dice coefficient of
95.58 at 128× 128, 95.56 within the ROI of [36], and 95.10 when upsampled to 256× 256
without any other processing. Furthermore, the proposed Deep Chan-Vese 3D method
with the extra 3D CVNN medium resolution refinement module, with only 593 additional
parameters obtains a median Dice score of 95.59 at 256× 256 resolution. We see that the
Dice coefficient and 95% Haussdorf distance are about the same for the two methods, but
the mean boundary error is slightly smaller for the Deep Chan-Vese 3D, especially after
upsampling to the original resolution.

Table 1. 3D CVNN-UNet and Deep Chan-Vese 3D evaluation. Deep Chan-Vese 3D is estimated both
at the inference resolution and full resolution. Metrics are calculated in two regions; “whole”: on all
the slices that are annotated and with the whole axial plane, “ROI”: based on the cropping regions
used by DEEDS [42] + JLF [43] and DenseVNet [36]. The 3D CVNN-UNet was fed in ϕ0 with an
average Dice score of 87.58.

Architecture Inference Upsampled Metric Dice Boundary 95% Hausdorff Segment.
Size to Region Err (mm) Distance (mm) Time (s)

3D CVNN-UNet 128× 128 - whole 95.58 1.77 4.45 1.25
128× 128 - ROI 95.56 1.67 4.42 0.53

Deep Chan-Vese 3D 256× 256 - whole 95.59 1.71 4.45 0.26
256× 256 512× 512 whole 95.07 1.59 4.53 0.26
256× 256 - ROI 95.39 1.58 4.42 0.11
256× 256 512× 512 ROI 95.24 1.49 4.40 0.11

We compare our results with DEEDS [42]+JLF [43], a multi-atlas-based method,
and nine Deep Learning-based methods: VoxResNet [44], VNet [45], DenseVNet [36],
ObeliskNet [10], using the results reported in [36] and [10], SETR [15], CoTr [17], UN-
ETR [16] as reported by UNETR, nnU-Net [11] and DISSM [28] as reported by DISSM. One
must observe however that the ObeliskNet results [10] were reported only on the 43 (easier)
TCIA volumes, not on all 90 volumes. The SETR, CoTr and UNETR results are evaluated
on 30 BTCV volumes, while the nnU-Net and DISSM are tested on 13 volumes.

The comparison with the state of the art is shown in Table 2. Our results are evaluated
on the same cropped data from [36]. Besides the Dice coefficients, symmetric boundary
error and 95% Haussdorf distance, Table 2 also shows the number of cross-validation folds
and the number of volumes each method was evaluated on, as well as the computation
time.

Table 2. Comparison with the state of the art methods for liver segmentation on the 90-volume
multi-organ dataset [36] and other datasets. The 9-fold cross-validation results are taken from [36] ,
the 5-fold results are from [16] and the 1-fold from [28].

x-val Volumes Boundary 95% Haussdorf Segmentation
Arhitecture res Folds Tested Dice Err (mm) Distance (mm) Time (s)

DEEDS [42]+JLF [43] 144 9 90 94 2.1 6.2 4740
VoxResNet [44] 144 9 90 95 2.0 5.2 < 1
VNet [45] 144 9 90 94 2.2 6.4 < 1
DenseVNet [36] 144 9 90 96 1.6 4.9 12
ObeliskNet [10] 144 4 43 95.4 - - < 1
SETR [15] 96 5 30 95.4 - - 25
CoTr [17] 96 5 30 96.3 - - 19
UNETR [16] 96 5 30 97.1 - - 12

nnU-Net [11] 128 1 13 96.4 1.7 - 10
DISSM [28] - 1 13 96.5 1.1 - 12
3D CVNN-UNet (ours) 128 4 90 95.6 1.67 4.42 0.53
Deep Chan-Vese 3D (ours) 256 4 90 95.2 1.49 4.40 0.64
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In terms of Dice coefficients, our method is better than DEEDS+JLF and VNet, and
comparable to VoxResNet, ObeliskNet [10] (Evaluated only on the 43 TCIA volumes),
SETR [15], and DenseVNet [36] (since they only reported 2 decimals, their results could
be anywhere in the interval [95.5, 96.49]). It is outperformed by nnU-Net (Evaluated on
13 MSD [46] volumes, as reported by [28].The nnU-Net authors did not report metrics on
Liver), DISSM (Used 118 volumes from the MSD [46] liver dataset to train and validate
their method, and the remaining 13 MSD volumes for testing their method as well as nnU-
Net [11]) and the transformer-based methods CoTr and UNETR. However, the nnU-Net
and DISSM results are tested on only 13 volumes of a larger dataset, and should be taken
with a grain of salt. Also, the SETR, CoTr and UNETR results are evaluated on only 30
volumes as opposed to our method, which is evaluated on 90 volumes. Moreover, half of
the volumes that we have evaluated our method on come from pathological cases with
cancerous lesions, which makes the segmentation task more challenging.

However, in terms of boundary error and 95% Hausdorf distance our Deep Chan-Vese
3D outperforms all the competing methods that have the respective measure evaluated,
except DISSM for the boundary error.

In terms of computing time, our method is on par with the deep learning methods
VoxResNet and VNet, is faster than the transformer-based methods SETR, CoTr and UNETR
as well as DenseVNet and DISSM, and is much faster than the atlas-based DEEDS+JLF.

3.4. Ablation Study

In this ablation study, we investigate the contribution of the 3D approach vs. an
equivalent 2D approach and also of the 3D CVNN-UNet vs. a simple 3D CVNN. The data
used in this study are same as in the rest of the paper. For 2D inputs we used medium
resolution input, i.e., 256× 256, same as in Section 2.2, and for the 3D experiments the small
resolution data are used, i.e., 128× 128× k, same as in Section 2.3.1. The results are shown
in Table 3.

Table 3. Ablation results comparing 2D vs. 3D approaches and CNN vs UNet. The results are shown
as average Dice scores obtained with 4-fold cross-validation.

3D U-Net ϕ0 1-it 2-it 3-it 4-it

2D CVNN - - 87.58 92.75 93.66 93.63 93.68
2D CVNN-UNet - + 87.58 92.61 93.72 93.63 93.75
3D CVNN + - 87.58 88.29 90.23 91.43 91.74
3D CVNN-UNet + + 87.58 92.83 94.41 95.09 95.52

The results from Table 3 show that the contributions of this paper (using a U-Net
architecture instead of a CNN and working on 3D volumes instead of 2D slices) are essential
for improving the quality of the results and bringing the Deep Chan-Vese formulation to
state of the art performance. More 2D experiments are available in [47].

4. Conclusions

This paper presented a method for 3D liver segmentation that uses a Chan-Vese Neural
Network combined with a 3D U-Net to achieve state of the art liver segmentation results.
We showed how to provide a more appropriate input for the 3D CVNN-UNet in the form
of a probability map and how to use a pixelwise detection map for initialization. We
also showed multiple types of data augmentation as initialization when training the 3D
CVNN-UNet to avoid overfitting.

In contrast to standard neural networks and recurrent neural networks, the Chan-Vese
NN uses the U-Net as a shape model and has intensity models with latent parameters
for the foreground and background regions, which are updated at each iteration of the
segmentation procedure. This allows the whole U-Net to have fewer parameters than the
standard models used for organ segmentation. In the future we plan to extend our method
to multi-organ segmentation with separate shape models for each organ.
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