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Abstract: The stability and dynamic performance of the grid-connected converter is greatly affected
by the coupling between the phase-locked loop (PLL) and the current loop control under weak grid
conditions. The traditional control strategies use PLL to obtain the frequency and phase of the grid,
which ignore the influence of the PLL and cannot adapt to weak grid conditions. To address this
problem, the control and stability of the LCL-Type grid connected converter without PLL under weak
grid conditions are studied in-depth in this paper. Firstly, the digital controlled model of the LCL-Type
grid-connected converter with capacitor-current feedback active damping is established, and the
stability of the system is analyzed. Then, a control strategy without PLL is proposed. The proposed
strategy decomposes the grid voltage signal into instantaneous active and instantaneous reactive
components through the αβ frame, which can realize the independent control of active and reactive
current by simple calculation. The obtained results show that the strategy avoids the influence of the
PLL on the inner loop current, and has the advantages of strong stability and anti-interference ability
under weak grid conditions. Finally, simulation and experiment results are provided to verify the
validity of theoretical analysis.

Keywords: grid-connected converter; weak grid conditions; phase-locked loop; αβ frame; system
stability

1. Introduction

Renewable energy has gradually become a global deployment direction in energy
strategy because of its clean and renewable characteristics [1]. Due to the influences of
resource distribution and climatic environment, renewable energy generation systems are
often located in areas with weak grid structure, which can easily form a weak grid at the
end of the connection [2]. When the conventional grid is integrated with a large number of
renewable energy devices, the impedance of the grid will rise and the voltage at the point
of common coupling (PCC) will be disturbed [3]. The control strategy under ideal grid
conditions may cause a reduction in system stability and even trigger system oscillations
when applied directly under weak grid conditions.

Real-time synchronization of the grid phase is required to ensure the power quality
of grid-connected power generation systems. The phase-locked loop (PLL) is commonly
used to implement phase-locked function to obtain frequency and phase information about
the grid [4]. The influence of the PLL on the stability of the grid-connected converter can
be ignored when the grid impedance is negligible in strong grid conditions. However,
the grid impedance can greatly affect the voltage at the coupling point under weak grid
conditions. In weak grid conditions, PLL will produce a perturbed output signal due
to its own nonlinear impedance [5]. The PLL not only affects the voltage at PCC, but
also couples with the current control loop. Therefore, it significantly decreases the power
quality of grid-connected converters. In order to solve the instability problems caused
by PLL, control methods involving adding feedforward or feedback terms at the current
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control loop have been proposed, such as output impedance reshaping methods [6] and
small signal disturbance compensation control [7]. Based on these strategies, the current
harmonics are reduced, but the complexity of the control system is still increased, and the
accuracy depends on the operating point of the system. In [8], the PLL is modified by
introducing a complex phase angle vector, which eliminates the frequency coupling term
caused by the PLL. An improved parameter tuning method was proposed in [9] to mitigate
the negative effects of PLL in weak grids. Although these strategies improved the power
quality, it is still difficult to guarantee the inverter stability under weak grid conditions [10].
Furthermore, the complex trigonometric operation and coordinate transformation in the
PLL increase the computational burden and reduce transient response time [11].

In recent years, some control strategies without PLL have been proposed to solve the
instability problem caused by PLL [12–15]. In [12], a model predictive direct power control
strategy was proposed to optimize the switching frequency of the grid-connected inverter.
Nevertheless, the switching frequency in this strategy varies with the power output of
the grid-connected converter and injects broadband harmonics into the grid. Thus, a new
filter design is required to eliminate these harmonics. The power-synchronization control
method proposed in [13] greatly improves the system control performance. However, its
control structure does not match the industry standard vector control strategy, i.e., the
over-current protection inherent in the standard vector control scheme is lost. A direct
power control method is proposed in [14], but its calculation of the command current
requires an additional set of coordinate transformations. In [15], a current compensation
control strategy without PLL is proposed. The control strategies mentioned above are all
applied under strong power grid conditions, ignoring the effect of grid impedance.

The objective of this paper is to analyze the control and stability of the LCL-Type
grid-connected converter without PLL under weak grid conditions. The strategy without
PLL decomposes the voltage signal into instantaneous active and instantaneous reactive
components through the αβ frame, which can realize the independent control of active and
reactive current. This paper is organized as follows. The development of the model of a
single-phase LCL-Type grid-connected converter is established in Section 2. In Section 3, a
control strategy without PLL is proposed based on αβ frames. Then, the stability criterion of
the system under weak grid conditions is derived in Section 4. In Section 5, the simulations
in Matlab are conducted, an experimental platform is established, and the results obtained
from simulation and experiment are given. Finally, conclusions are drawn in Section 6.

2. Model of a Single-Phase LCL-Type Grid-Connected Converter

Figure 1 shows a block diagram of a single-phase LCL-type grid-connected converter
without PLL in weak grid conditions. The LCL filter consists of a converter-side inductor
L1, a filter capacitor C, and a grid side inductor L2. C1 is the capacitor and load resistance
of the DC-side. Power switches T1~T4 and their antiparallel diodes form the converter
bridge. Zg is the grid impedance at the point of common coupling (PCC). Ug and Uinv
represent the grid voltage and input of the converter bridge. H1 and H2 are the feedback
coefficients of the capacitor and grid currents, respectively. Gi(s) is the grid current regulator
transfer function.

The digital control methods have a one-beat hysteresis delay. A zero-order holder
(ZOH) and a one-beat hysteresis link are added to the grid-connected converter model.

The transfer function of the ZOH is:

Gh(s) = 1 − e−sTs /s ≈ Tse−0.5sTs (1)

The double closed-loop control structure on the voltage and current is used. The
external DC voltage loop uses a PI controller to regulate the DC side voltage, which provides
stable output for the d-axis reference current amplitude i∗d , and the q-axis reference current
i∗q is given directly. The given reference current i∗s is obtained by i∗d and i∗q . According to the
requirements of the electrical energy conversion, the inner loop current S-domain model of
the grid-connected current is established as shown in Figure 2.
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Figure 2. S-domain model of grid-connected current.

In Figure 2, 1/Ts is the transfer function of the sampling switch [16], and KPWM =
U∗

dc/Utri, Utri represents the amplitude of the triangular carrier wave. The Simplified
S-domain model is shown in Figure 3 [17].
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In Figure 3,

Gx1 =
GiZCGZKPWM

ZL1 + H1KPWMGZ + ZC
(2)

Gx2 =
ZL1 + H1KPWMGZ + ZC

ZL2(ZL1 + H1KPWMGZ + ZC) + ZL1ZC
(3)
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GZ =
1
Ts

e−sTs Gh ≈ e−1.5sTs (4)

where ZL1 = sL1; ZL2 = sL2; ZC = 1/sC.
The loop gain of the grid-connected current can be obtained as the following:

Tig = Gx1Gx2H2 (5)

Thus, the grid connection current can be deduced as:

is =
Gx2

1 + Tig
UPCC − 1

H2

Tig

1 + Tig
i∗s (6)

3. Control Strategies for Grid Currents

One of the most popular phase-locked methods is synchronous reference frame PLL
(SRF-PLL) [18,19]. The control block diagram of the SRF-PLL is shown in Figure 4. In
Figure 4, the AC voltage component with phase lag of 90◦ at the UPCC is generated by
the OSG (Orthogonal Signal Generators) module. The orthogonal signals Uα and Uβ are
transformed into the voltages Ud and Uq in the rotating frame system [20].
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The characteristic transfer functions of SOGI are given by: D(s) = Uα
UPCC

= kω0s
s2+kω0s+ω2

0

Q(s) =
Uβ

UPCC
=

kω2
0

s2+kω0s+ω2
0

(7)

where ω0 and k are set as the resonance frequency and damping factor of the SOGI. It can
be seen from Figure 4 that the reference current i∗s is not an independent variable, and its
expression is:

i∗s = i∗dqTPLLD(s)UPCC (8)

where TPLL is the transfer function of the PLL, i∗dq is the active and reactive reference current.
From the above discussion, one conclusion that can be drawn is that the stability of

the current loop is affected by the PLL. This means that the traditional control strategy will
become more complicated. Thus, it is difficult to guarantee its stability.

To address this problem, a control strategy without PLL is proposed. Considering that
single-phase systems lack a degree of freedom, the control strategy based on the αβ frame is
more compact than the method based on the dq frame. The αβ frame control strategy with
voltage sampling signals can achieve independent control of active and reactive current
by decomposing the voltage signal into instantaneous active and instantaneous reactive
components. The orthogonal signal is generated by delaying the original single-phase
signal by T/4, where T is the grid fundamental period [21]. The control model is shown in
Figure 5.
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Assuming that the grid voltage is clean and undistorted, the command current in αβ
frames based on the grid voltage without PLL is calculated as:[

i∗sα

i∗sβ

]
=

[
vα wα

vβ wβ

][
i∗d
i∗q

]
(9)

where v = (vα ,vβ)T is the active voltage unit vector in αβ frames, w = (wα ,wβ)T is the
reactive voltage unit vector in αβ frames. According to instantaneous power theory, the
mathematical relationship between v and w is:[

vα

vβ

]
=

1∣∣up
∣∣
[

upα

upβ

]
(10)

[
wα

wβ

]
=

[
0 1
−1 0

][
vα

vβ

]
(11)

Define up = (upα ,upβ)T as the voltage vector in the αβ frame system, in which upα is the
same as UPCC. |up| represents its amplitude, which can be calculated from the amplitudes
of uα and uβ: ∣∣up

∣∣ = √u2
pα + u2

pβ (12)

Thus, the grid reference current can be quickly obtained from (9)~(12) as follows:

i∗s = i∗sα = i∗dvα + i∗q wα (13)

As seen in Equation (13), the reference current i∗s can be controlled independently by
changing the active currents reference i∗d and reactive currents reference i∗q . When i∗q = 0, the
reference current i∗s and the voltage UPCC are in the same frequency and phase, the phase
lock can be realized without PLL. When id

∗ = 0, the phase difference between reference
current and the voltage UPCC is 90◦.

4. Stability Analysis

The grid-connected converter and the grid can be seen as a cascaded system with the
grid existing impedance. Thus, Equation (6) can be rewritten as follows:

is =
UPCC

Zo
− i1 (14)

where i1 and Zo are the equivalent ideal current source and output impedance of the
grid-connected converter, respectively:

Zo =
1 + Tig

Gx2
(15)
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i1 =
1

H2

Tig

1 + Tig
i∗s (16)

The equivalent circuit of a single-phase LCL-type grid-connected converter connected
to a weak grid can be obtained according to Equation (14), as shown in Figure 6. is(s)
represents the grid connection current and Zg(s) is the grid impedance.
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The expression for the grid connection current can be obtained as:

is(s) = 1
Zo(s)+Zg(s)

Ug(s)− Zo(s)
Zo(s)+Zg(s)

i1(s)

= N(s)
(

Ug(s)
Zo(s)

− i1(s)
) (17)

where:
N(s) =

1
1 + Zg(s)/Zo(s)

(18)

It can be seen that the stability of the system depends on [Ug(s)/Zo(s) − i1(s)] and
N(s). When Zg = 0, the grid-connected converter is a stable system, [Ug(s)/Zo(s) − i1(s)]
does not contain a right-plane pole. For N(s), it is required that [Zg(s)/Zo(s)] satisfies the
Nyquist stability criterion. Based on the above derivation, the stability of the grid-connected
converter under weak grid conditions needs to satisfy the following two conditions:

(1) The grid-connected converter is stable when Zg = 0;
(2) The impedance ratio Zg(s)/Zo(s) satisfies the Nyquist stability criterion.

Condition (1) can be satisfied only by correcting the loop gain Tig. Condition (2)
requires Zg(s)/Zo(s) to have a certain phase margin (PM) at 0 dB, which can be calculated
as:

PM =
∣∣∣−180

◦
+ arg

[
Zg(j2π fi)

]
− arg[Zo(j2π fi)]

∣∣∣ (19)

where fi is the crossover frequency, and the grid impedance Zg is generally resistive induc-
tive [22]. Considering the worst case, the grid impedance is set as pure inductance. Thus,
Equation (19) can be simplified to:

PM = 90
◦
+ arg[Zo(j2π fi)] (20)

It must be ensured that PM is greater than 0◦, so that the system is stable. It is necessary
to make sure that the corresponding phase of Zo at each intercept frequency is greater than
−90◦ when the amplitudes of Zg and Zo intersect multiple times. When the grid impedance
changes, using this criterion to analyze the stability of the grid-connected converter, there
is no need to re-model the grid-connected converter.
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5. Simulation and Experimental Verification
5.1. Simulation

Simulation was carried out in the MATLAB/Simulink software. The parameters are
shown in Table 1. The variation range of the grid impedance can be calculated from the
short circuit ratio (SCR) at the PCC [23]. According to the definition of SCR, the maximal
grid impedance is 1.8 mH.

Table 1. Parameters of system.

Parameters Values

Ug 80 V
U∗

dc 150 V
fo 50 Hz
f s 20 kHz
fsw 10 kHz
L1 300 µH
C 10 µF
L2 180 µH

Utri 3 V
H2 0.14
C1 10,000 µF
RL 40 Ω

A PR regulator with the following transfer function is used for the current regulator:

Gi(s) = Kp +
2Krωis

s + 2ωis + ω2
0

(21)

The system current loop gain Tig can be rewritten as:

Tig(s) = Gx1(s)Gx2(s)H2

= H2KPWMGi(s)GZ(s)
s3L1L2C+s2L2CH1KPWMGZ(s)+s(L1+L1)

(22)

The amplitude margins GM1 and GM2 of the system at fr and fs/6 are:

GM1 = −20lg
∣∣Tig(j2π fr)

∣∣ (23)

GM2 = −20lg
∣∣Tig(j2π fs/6)

∣∣ (24)

According to the method proposed in [24], Kp = 0.54, Kr = 115 and the capacitor current
feedback coefficient H1 = 0.02.

The Bode diagram of the corrected grid-connected current loop gain is shown as the
red solid line in Figure 7. It can be seen from Figure 7 that the phase margin PM = 51.5◦, and
the magnitude margins at fr and fs/6 are GM1 = −8.21 dB and GM2 = 3.46 dB, respectively.
Therefore, the system is stable.

The Bode diagrams of Zg and Zo are shown in Figure 8, where the blue solid line
represents Zo and the red dotted line represents Zg. From the Figure 8, it can be seen that the
impedance crossover frequency is fi = 1030 Hz, the phase margin of the system is PM = 55.3◦.
Thus, the grid-connected converter system is still stable and has good robustness. Assuming
that the system parameters are Kp = 0.14, Kr = 50, H1 = 0.01. The current loop gain is shown
as the blue dotted line in Figure 7. We can see that the resonant peak is less than 0 dB, and
GM1 = 0.16 dB and GM2 = −1.35 dB. The results violate Condition (1) in Section 4; thus, the
current loop is unstable. The black dotted line in Figure 8 indicates that the PM of Zg and
Zo at the intersection frequency is less than 0, which violates Condition (2) in Section 4, so
the system will experience instability.
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The waveforms of UPCC and is in different conditions with Zg =1.8 mH (corresponding
to the short-circuit ratio SCR = 10) are shown in Figure 9. Figure 9a,b shows that the grid
current and voltage are in the same frequency and phase without using the PLL control
strategy. The grid current can track the active current reference rapidly and accurately. In
addition, THD is only 0.75%. The system is stable and the power quality is good. Figure 9c,
d illustrates that the grid current is able to track the inductive reactive current reference
(i∗q = 20 A) and capacitive reactive current reference (i∗q = −20 A) in steady state. The
phase difference between grid current and the voltage UPCC is 90◦. Therefore, the proposed
strategy satisfies steady-state performance. Figure 9e,f shows that when the reactive current
reference i∗q suddenly changes from 10 A to 20 A and −10 A to −20 A, the system responds
quickly, and the tracking is rapid and smooth. Figure 9g,h show that when the amplitude
and phase of the voltage are suddenly changed, the tracking is rapid too. It can be seen
that the system has good dynamic performance.
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Figure 9. Waveforms of UPCC and is. (a) Steady-state; (b) THD of grid current; (c) Inductive reactive 
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Figure 9. Waveforms of UPCC and is. (a) Steady-state; (b) THD of grid current; (c) Inductive reactive
current; (d) Capacitive reactive current; (e) Reactive current changes from 10 A to 20 A; (f) Reactive
current changes from −10 A to −20 A; (g) UPCC suddenly dropping; (h) The phase of UPCC suddenly
jumping (30◦).

5.2. Experimental Verification

To further verify the effectiveness of the methods, a 1.1 kW LCL-type single-phase
grid-connected converter was built, as shown in Figure 10. The parameters were the same
as those in Table 1.

The electronic switches were Infineon IGBT module F4100R12KS4, and the DSP model
was a 32-bit floating point digital signal processor TMS320F28377D. A programmable
AC power supply (Chroma 6530) was used to generate sinusoidal grid voltage, and the
impedance of the power grid was simulated by connecting inductor. There were four
DSP built-in 16-bit ADC sampling modules, and Hall sensors were used to detect the grid
voltage, grid current, and DC-side voltage signals.
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Figure 11 shows the waveform of UPCC, is and the THD of the grid current with
different grid impedances Zg.
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From Figure 11a–c, we can see that the system worked stably when the grid impedance
varied in the full range from 0 to 1.8 mH, and the THDs of the grid current were less than
1.8%. Table 2 shows that the third and fifth harmonic contents of the grid current were less
than 1.1%. The proposed strategy was very stable under weak grid conditions.

Table 2. 3rd and 5th harmonics in all cases.

3rd 5th

Zg = 0 mH 0.78% 0.49%
Zg = 0.9 mH 0.95% 0.58%
Zg = 1.8 mH 1.06% 0.69%

Figure 12 shows the waveform of UPCC, is and the THD of the grid current under PLL
control with Zg = 1.8 mH. It can be seen that the waveforms of the voltage and current are
distorted, which indicate a poor harmonic suppression capability in the system, resulting
in a large harmonic content of the grid current. The THD of the grid current is 7.3%, which
is higher than the 5% defined by the electrical energy quality standard.
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Comparing Figure 11c with Figure 12, it is obvious that the proposed method could
effectively adapt to weak grid conditions, and the current is and voltage UPCC remained in
the same frequency and phase. Furthermore, the proposed control method reduced the
THD of the output current, increased the stability as well as the robustness of the system,
and improves the power quality.

The waveforms of UPCC, is under different control methods with Zg = 1.8 mH are
shown in Figures 13 and 14. Figure 13a,b shows that the grid current tracked the reactive
current reference with smooth waveform and lower harmonic content at steady state. In
Figure 14a,b, the grid current has a certain degree of distortion and poor steady-state
performance. A number of burrs in the waveforms suggest that PLL affected the out-
put impedance of the system, which had a serious impact on the stability of the inner
loop current. The comparison verified that the proposed method had stronger harmonic
suppression ability, so as to better realize the function of reactive power compensation.

Figures 15 and 16 show the waveforms of UPCC and is under different controls, with
the reactive current reference i∗q changing suddenly.

Figure 15 shows that the actual current rose rapidly without any time delay or over-
shoot during the dynamic process under weak grid conditions. The steady-state current
before and after the transient state was stable in amplitude and 90◦ ahead or behind the
voltage in phase. Thus, the proposed control method without PLL had good steady-state
and dynamic performance. In contrast, Figure 16 shows a slow transient response of the
system. When the reactive current i∗q changed suddenly, the grid current needed a delay of
at least 5 ms before it was completely tracked. Obviously, the control strategy without PLL
was more suitable than the PLL control strategy in weak grid conditions.
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20 A; (b) i∗q changes from −10 A to −20 A.

The waveforms of UPCC and is with UPCC suddenly dropping from 113 V to 85 V
are shown in Figure 17. It can be seen that when the grid voltage changed suddenly, the
amplitude and phase of the grid current did not change. The grid current remained stable.

Figure 18 shows that when the phase of the voltage was suddenly changed at a certain
moment, the tracking was rapid. The current and voltage was able to maintain the same
frequency and phase after the change of phase. When θ = ±30◦, the current could track
the phase in a very short time, and when a = ±60◦ or ±90◦, the tracking process would
not exceed T/4 (5 ms). It is shown that the proposed method is feasible under weak
grid conditions.
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6. Conclusions

The stability of a single-phase LCL-Type grid-connected converter under weak grid
conditions was analyzed. Two conditions for the stability of the grid-connected converter
under weak grid needs to satisfy were derived. A control strategy without PLL was
proposed. The strategy decomposed the voltage signal into instantaneous active and
instantaneous reactive components through the αβ frame, which realized the independent
control of active and reactive current. Simulations and experiments were carried out. Based
on the obtained results, the following conclusions can be drawn:

(1) The proposed control strategy can effectively avoid the harmonic and instability prob-
lems caused by PLL under weak grid conditions. The THD of the grid current is less
than 1.8% and the third and fifth harmonic contents are less than 1.1%. Compared with
the traditional control strategy, it has better steady-state performance and stronger
robustness.

(2) This method does not need Park transforms and PLL, which reduces the computation
and complexity and is beneficial to digital realization.

(3) When the reactive current or the grid voltage changes suddenly, the system can
respond quickly, and the tracking is fast. The system has better dynamic performance.
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