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Abstract: Global optimization challenges are frequent in scientific and engineering areas where
loads of evolutionary computation methods i.e., differential evolution (DE) and particle-swarm
optimization (PSO) are employed to handle these problems. However, the performance of these
algorithms declines due to expansion in the problem dimension. The evolutionary algorithms are
obstructed to congregate with the Pareto front rapidly while using the large-scale optimization
algorithm. This work intends a large-scale multi-objective evolutionary optimization scheme aided
by the determinantal point process (LSMOEA-DPPs) to handle this problem. The proposed DPP
model introduces a mechanism consisting of a kernel matrix and a probability model to achieve
convergence and population variety in high dimensional relationship balance to keep the population
diverse. We have also employed elitist non-dominated sorting for environmental selection. Moreover,
the projected algorithm also demonstrates and distinguishes four cutting-edge algorithms, each with
two and three objectives, respectively, and up to 2500 decision variables. The experimental results
show that LSMOEA-DPPs outperform four cutting-edge multi-objective evolutionary algorithms by
a large margin.

Keywords: large-scale multi-objective problems; determinantal point processes (DPP); evolutionary
multiobjective optimization; cutting-edge algorithms

1. Introduction

In recent decades, large-scale evolutionary optimization algorithms have played a
significant role in engineering and science as they often surface in many real-world op-
timization problems (MOPs). These algorithms are categorized in four categories [1,2]
decomposition-based MOEAs [3–8], performance-based MOEAs [9–18], Pareto-based
MOEAs [19,20], and finally, the multi-objective algorithms which do not fall in any of
the prescribed categories [21–24]. The performance and scalability of multi-objective evo-
lutionary algorithms (MOEAs) have earned the attention of researchers; however, the
attention has restricted the performance and scalability in the decision space. Large-scale
optimization issues, which have an increased dimension and a large number of decision
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variables, have caused several multi-objective optimization issues to become increasingly
complex [25].

The efficiency of many existing traditional multi-objective algorithms consistently de-
graded due to increase in the depth of the decision space, also known as the “curse of dimen-
sionality” [26–32]. The investigation of large-scale multi-objective optimization problems
(LSMOP) is still immature [33–41], as only four approaches have been identified [26,33–41].
MOEAs are implemented using decision variable clustering that has been suggested in
Ma et al. [38]. The authors of [38] have proposed a multi-objective algorithm employed
using decision variable (MOEA/DVA) analysis and which further divides the decision
variables into three categories depending on their values for convergence and diversity. By
more clearly partitioning the decision variables, adding various selections, and proposing
various search strategies for various groups, Zhang et al. [26] extended the concept of
MOEA/DVA [38] and developed an evolutionary algorithm for large-scale many-objective
optimization (LMEA). Large-scale choice factors have been suggested to be divided into two
groups by Liu et al. [42], namely, variables associated with convergence and variables linked
to variety. Furthermore, using an interdependence analysis for optimization, principal
components analysis (PCA) has been used to lower the dimension of the convergence-
related variables that would be divided into various subproblems. Additionally, Chen
et al. divided the variables into clusters related to convergence and variety and suggested
optimizing the subproblems concurrently [37] and sequentially [43], respectively. However,
it should be emphasized that such algorithms frequently require many fitness assessments
to obtain sufficiently accurate clustering on decision variables. To speed up the search for
the global optimum, Tian et al. [34] introduced a modified competitive swarm optimizer
for large-scale multi-objective problems called LMOCSO. To create an offspring population,
Zhang et al. [18] created an information feedback model (IFM) using the data from the
population’s prior placements.

MOEAs are built on the cooperative co-evolution (CC) paradigm. To resolve enor-
mous many-objective problems, Antonio and Coello used the cooperative co-evolution
framework and a distinct evolution algorithm (GDE3). They further added that MOEA/D
and co-evolutionary techniques might be used for decomposition in both decisions and
objective spaces [41]. For large-scale multi-objective issues, Li et al. cooperative’s co-
evolutionary algorithm grouping technique is also put out by the authors of [39]. The
transformation-based MOEA faces numerous issues; thus, the authors of [36] have applied
a problem transformation method to condense the search space and act as a genetic al-
gorithm for any population-based multi-objective algorithms. The dimension reduction
approach was then put into practice by He et al. [44] by optimizing several weight fac-
tors and multiple decision space orientations. The most recent suggestion to enhance the
functionality of the WOF framework [45] was proposed by He et al. [44]. They recom-
mended using random dynamic grouping rather than ordered grouping. While the current
large-scale optimization algorithms exhibit promising results, each group of methods has
drawbacks, which are considered in this study. To identify interactive decision variables,
cooperative co-evolution and clustering approaches based on multi-objective evolutionary
algorithms require categorizing decision variables that cost a more significant number of
objective values to identify interactive decision variables. This further reduces how well
CC framework-based MOEAs perform on the wrong groups. It is not necessarily true that
groupings of choice variables may be distinguished. To solve large-scale interactive choice
variables, grouping procedures like linear grouping, ordered grouping, random grouping,
and others that do not require extra objective assessments to discover interactive decision
variables, are not appropriate.

The problem transformation-based MOEAs are quite competitive while improving
the capability of convergence in large-scale optimization susceptible to local optima [45,46].
Additionally, the grouping strategy greatly limits the versatility of the method described
in [45]. In light of the considerations mentioned earlier, it is clear how crucial it is to
apply a multi-objective evolutionary technique to focus its search in the right way to find



Electronics 2022, 11, 3317 3 of 18

several great and promising solutions for complex optimization issues. The large-scale
evolutionary multi-objective algorithm, or LMOEA-DPP for short, is proposed in this study
as a solution to this problem. On several large-scale multi-objective issues ranging from
500 to 2000 decision variables, large-scale multi-objective evolutionary algorithms with
determinantal point processes (LSMOEA-DPP) perform well. Using the kernel matrix in the
population and decision space, LMOEA-DPP quantitatively analyses and evaluates each
solution’s probable search direction and distribution. The kernel matrix is further divided
into similarity and quality components to reflect population diversity and convergence. We
have applied the DPP to choose solutions with convergence based on the decomposition of
the kernel matrix and larger diversity. Further, we have implemented corner selection [47]
to enhance kernel matrix’s functionality. The following are the major contributions of
this study.

1. The balance between convergence and variety has been achieved by the reproduction
process followed by the environmental selection process. A crossover with current
parent individuals is performed using guiding solutions in the first reproduction,
followed by a second reproduction with no guiding solutions involved in developing
offspring individuals.

2. We have used a kernel matrix to adapt to various LSMOEA-DPP. The kernel matrix
defines the similarity measure as the angle’s cosine value among two solutions that
measures solution quality using the L2 norm of an objective vector. By default, the
MOP is divided into a collection of reference vectors, and each subproblem is chosen
using both angle base and Euclidean distance.

3. This study also suggests using a kernel matrix that searches for non-dominated solu-
tions set to combine DPP selection with LSMOPs to choose a subset of the population.

The remainder of this paper has been structured as follows. The background infor-
mation is elaborated in Section 2. The essential structure and specifics of the suggested
LMOEA-DPP algorithm are described in Section 3. After discussing the experimental
conditions and comparing the outcomes, Section 4 presents the test problems utilized in
our studies and a performance indicator to measure the performance of resulting non-
dominated solutions. Finally, Section 5 lays out the findings and lists the subsequent works.

2. Background

Since they provide distributions of fermion systems at thermal equilibrium, determi-
nantal point processes are initially recognized as a class by the authors of [48], who named
it fermion processes. According to the Pauli exclusion principle, there is no antibunching
effect between two fermions. A DPP provides a detailed definition of this repulsion. The
standard combinatorial and probabilistic features of DPPs have been well-understood
thanks to the recent rush of interest they have received in the math and engineering com-
munities. The determinantal has been widely used as a standard since it was initially used
by Borodin and Olshanski [49].

2.1. The Determinantal Point Process (DPP)

DPP has been used to select subset tasks i.e., text summarization, graph sampling,
and product recommendation. The point process is taken as a probabilistic measurement
of Y instantiating of set Y, as illustrated in (1). We have assumed that the discrete-finite
point-processes, i.e., Y = {1 · · ·M} [50].

pL(Y = Y) =
det(LY)

det(L + 1)
(1)

where M×M semi definite represents L kernel matrix has been indexed with {1 · · ·M},
I shows the M × M identity matrix while det(.) signifies the determinant. Ly shows a
kernel matrix L with indices limited by entries indexed in a subset ‘Y’ [50]. If instantiation
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cardinality Y to K has been limited as k-DPPs, a conditional DPP that models only sets of
cardinality k and DPPs that can be further represented as (2):

pk
L(Y = Y) =

det(Ly)

∑|Y′ |−k det(Ly′)
(2)

To deduce expense of computing pk
L(Y), that needs 0(Mk) steps, the authors of [51]

have proposed the following method. Initially, the kernel matrix L has been eigen decom-
posed L = ∑M

i−1 λivivT
i with the group of an eigen-vectors V and eigen-values λ. If J forms

a set of k eigenvectors, then J is an instantiation of J, while the probability of J can be
modeled as (3)

Pr(J = J) =
∏i∈Jλi

∑|J|−k ∏m∈Jλm
(3)

The denominator allows all possible instantiations J of J where Pr represents the
probability while PL(Y = Y) represents the measure of probability. In [51], it is illustrated
that, while sampling is carried out from DPPs, the probability of an element n form Y is
given by

Pr(n) =
1
V ∑

v∈V

(
VTen

)2
(4)

with en the nth unit vector en = (0, · · · , 1 · · · , 0) with element 0 other than the index
element n one.

2.2. DPPs Geometry

Let B is a D×M matrix that L = B>B. (B is always equivalent to D < M) while L is a
positive semi-definite.) It illustrates B column by Bn for n = 1, 2, . . . , M

PL(Y) ∝ det(LY) = Vol2({Bn}n ∈ Y), (5)

where the right hand side shows the squared |Y|-dimensional volume of parallel piped
span through B’s column respective to the elements of Y.

In this study, the columns of B are seen as feature vectors that describe the compo-
nents of Y. The probability offered through DPP to set the Y has been related to volume
encompassed with associated feature vectors. Furthermore, kernel L computes similarity
by applying the dot products of feature vectors that can be seen in Figure 1. It also allows
for crucial DPP testing features. Larger volumes and orthogonal feature vectors make
diverse sets more likely. Degenerate parallel-piped is defined by items with parallel vectors.
Alternatively, large magnitude feature vectors emerge due to their multiplication in the
spanned volumes for sets including them.

2.3. Corner Solution

In LSMOPs, most of the solutions become non-dominated after few generations [52],
which often leads to the algorithm losing selection power. To rectify this problem, quality
modification of the definition solution is done with help from corner solutions [47]. The
solution has been considered a corner solution if one solution is found while decreasing N
and K objectives. However, [53] revealed that the corner solutions are always difficult to
find for k > 1. Hence, the proposition of approximation schemes to the corner solutions are
presented in Section 3.
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Figure 1. DPPs Geometric View: Each DPP vector corresponds with a Y’s element from a geometric
perspective. (a) The probability of Y has been equivalent to volume’s square that is cover of its
respective feature vectors. (b) Odds of sets containing an item rise together with the magnitude
of the item’s feature vector. (c) Likelihood of collections with two similar items decreases as their
similarity grows.

3. Proposed Innovative Global Optimization Algorithm

A multi objective minimization problem (without loss of generality) a can be structured
as (6),

Min f (x) = ( f1(x), f2(x), · · · , fm(x))

S.t.x ∈ RD (6)

where objectives are represented by m and the detection vector can be represented by
x = (x1, x2, · · · , xD), in which D is the decision space. We have considered 2- and
3-objective problems with many decision variables that range from hundreds to thou-
sands [50]. The decision factors grow exponentially as the search space expands, which
worsens search performance, especially the capacity of optimization algorithms to converge.
To overcome and resolve this issue, we provide a determinantal point process strategy
paired with a twofold reproduction strategy to boost convergence, as well as a new, en-
hanced environmental selection approach to boost variety. Two contrasting environmental
selection procedures are provided to increase variety while conserving the diversity of the
population, and this must be taken into account. In contrast to [50], where the promising
solutions are simply employed for population initialization, we can see from Figure 1 that
guiding solutions are included into each generation’s reproduction process. We shall go
into more depth about LSMOEA-DPPs below. First, the overall framework of LSMOEA-
DPP is given. Next, we go into further depth about how the kernel matrix was calculated.
The environmental selection process and other crucial elements of the LSMOEA-DPP are
then covered in detail one by one. The flowchart of the proposed LSMOEA-general DPPs
structure, which consists of three main parts—environmental choices, identification of
guiding solutions, and guided double production—is shown in Figure 2.
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Figure 2. Framework overview for LSMOEA-DPP consisting upon three major components: Forming
building solution, environmental selection, and double reproduction.

3.1. Framework of the LSMOEA-DPP

The Pseudo code of LSMOEA-DPP is shown in Algorithm 1. The M random solutions
are used to fill in initial population P followed by which extraction of corner solution
archive (CSA) P. In steps 3 qnd 4, the ideal point z∗ and nadir point znad are initialized
based on the value of P4 where Z∗n and Znad are computed by (7) and (8).

Z∗ = (Z∗1 , Z∗2 , · · · , Z∗m)
T

Z∗n = min({( fn(x))|x ∈ P})

Znad =
(

Znad
2 , Znad

2 , · · · , Znad
m

)T

Znad
n = max({( fn(x))|x ∈ P})

(7)

Z∗n and Znad
n normalize objective values fn(x), as illustrated in (7). This is a merit as different

scales are being followed as objective functions may have widely diverse scales.

fn(x) =
fn(x)− z∗n
znad

n − z∗n
(8)

The following steps are iterated until function evaluations pass a fixed limit (80,000
considered for this study). Moreover, 2M solutions are chosen as a mating pool during every
iteration. While, 2M solutions are chosen as mating pool P′ during each iteration. Moreover,
we have used polynomial mutation [54] and simulated binary crossover (SBX) [55] to gen-
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erate population C of candidates. The ideal point z∗ is updated by (7) after environmental
selection znad can updated as (8).

Algorithm 1: Proposed LSMOEA-DPP Framework.

Input: M (The Size of Population)
1 P← Initialization of population (M)
2 CSA← P
3 z∗ ← InitializeIdealPoint(P)
4 znad ← InitializeNadirPoint(P)
5 while total function evaluations >= 80,000 do
6 P

′ ← FilingthematingPool(P, M, CSA, znad, z∗)
7 C ← Variations(P

′
)

8 z∗ ← EnhanceIdealPoint(z∗, C)
9 TheCSA← EnhancedCSA(N, C, CSA)

10 P← EnvironmentalSelection(C, P, M, CSA, znad, z∗)
11 znad ← EnhanceNadirPoint(CSA, P)
12 end

Output: P

3.2. Mating Pool

To enable the production of high-quality results, the generation of the mating pooling
P′ is done by element selection from union of CSA and P. thus; the convergence (con(x)) is
of the x = p solution according to (9).

con(x) =
1

∑m
n=1( fn(x))2 (9)

As shown in Algorithm 2, a solution x has been randomly selected from the union
PUCSA. If con(y) of the solution y = arg miny∈P{cos(x, y)} is larger than con(x) and the
randomly generated number is lower than a certain threshold δ(x, y), y is added to P′.
Otherwise, x is added to P′. The threshold δ(x, y) is executed according to (10)

δ(x, y) =
cos(x, y)−min cos
max cos−min cos

max cos = max
p,q∈∪CSA,p 6=q

{cos(p, q)}

min cos = min
p,q∈P∪CSA,p 6=q

{cos(p, q)}

(10)

While children must be produced, two random parents are chosen from the mating
pool P′.

Algorithm 2: Mating Pool filling.
Input: P (The size of Population)

1 Normalization (P ∪ CSA, znad, z∗)
2 P

′ ← φ

3 for n = 1 do
4 Random selection of x fromP ∪ CSA
5 Solution finder y = arg miny∈P{cos(x, y)}
6 if rand < δ ∧ (y) > con(x, y) then
7 P

′ ← P
′ ∪ {x, y}

8 end
9 P

′ ← P
′ ∪ {x}

10 end
Output: P

′
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3.3. Complementary Environmental Selection

In the first scenario, non-dominated solutions are chosen from the C and P pair. If
there are more significant non-dominated solutions than N, then the kernel matrix L has
been performed, and P is further improved through DPPs selection. Further, the suggested
technique uses guiding solutions that replicate LMOEA-DPP to hasten convergence. The
MOEA is necessary to keep convergence and variety in a healthy balance. The determi-
nantal point process and complementary environmental selection technique are added in
LMOEA-DPP, which are discussed in the following paragraphs, to further overcome and
satisfy the criteria.

Each member of the parent population Pt is first picked to do the crossover along
with a randomly chosen solution, resulting in |Pt| solutions, which also signify population
size. Environment selection is first applied to the solution to produce an transitional parent
population, Pt, followed by use of a mutation operator to produce an transitional offspring
population, O

′
t · Pt, which has been joined with O

′
t, and SG representing guiding solution

set. After environmental selection, reproduction is done by carrying out crossover on the
mutation and intermediate parent population Pt to create Ot, which signifies the offspring,
and last but not least to parent population Pt+1. The next generation is attained by carrying
out similar environment selection on combined population modeled as C

′
t = P

′
t ∪Ot.

The environment selection technique used is displayed in Algorithm 3. As seen
in Algorithm 3, environmental selection makes use of decomposition-based techniques
(lines 10–12). For decomposition-based selection, the objective values of every member of
the combined population Ct are normalised and allocated to closest reference-vector. If
total number of reference vectors allocated to one solution is more than a predetermined
threshold, N∈, decomposition-based environmental selection is employed. Alternately,
the various predetermined and flexible reference directions used in the elitist nondomi-
nated sorting method provided in NSGA-II have been used to select environment. The
population variety can be preserved because the environmental selection employed in
this study prevents the number of chosen offspring from being too small. The strategy of
decomposition selection has been executed with respect to the consummation measure
given in (11):

Ψn =
cos θn,j

dn
(11)

where cos θn,j,=
F(xn)·Wj

‖F(Xn)‖·‖Wj‖
shows the cosine value of θn,j among individual n and it has

been associated reference-vector represented by wj,whereas di represents the Euclidean
distance amongst n individual and ideal point in objective space. This is followed by crowd-
ing distance for all solutions having the same number in the front. A truncation selection
has been performed to select M optimal solutions. In order to show the convergence and
variety of the population, the kernel matrix L is described, whereas (2) is used to compute
the elements Lxy.

Lxy = q(x)s(x, y)q(y) (12)

where x, y ∈ P, q(x) shows the solution x quality and S(x, y) is the similarity between x
and yS(x, y) defined in (13).

S(x, y) = exp(− cos (x, y)) (13)

where cos(x, y) has been mentioned as cosine of angles between x and y solutions. More-
over, the quality q(x) for solutions x has been computed on the basis of its convergence as
modeled in (14) and (15).

q(x) =
{

con1(x)x ∈ outsidespace
2 ∗maxp∈P(con1(p))x ∈ insidespace

(14)
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con1(x) =
con(x)

maxp∈P(con(p))
(15)

The outer and inner spaces show regions of the goal space, where con1 is the nor-

malised convergence. Here, x belongs to inner space if
√

∑M
I−1 fn(x)2 ≤ t and x to outer

space, contrarily. The threshold t has been set to t = max
{√

∑M
n−1 fn(x)2|x ∈ CSA

}
.

Algorithm 3: Environmental Selection.

Input: C
′
t in initial selection and Ct in 2nd selection

Selection;
W: Sets of the reference vectors V;
M: Initial population size for LSMOEA-DPPs;
M∈: Threshold to find respective method in Environmental selection.
Output: Pt+1: Population for following generation
1 Objective value Normalization in combined population;
2 Allocation of particular individuals in population to the nearest reference vectors
from W;
3 if # of reference vector allocated to each individual !< N∈
then

for reference vector wn do
Execute performance using (5) for each individual allocated to wn;
Chose individuals with outstanding performance among all individuals
allocated to wn as 1 in P parent population;

end
end
else

Nondominated sorting has been carried out for combined population;
Selection of individuals layer-by-layer until it reaches the L− th layer where
number <= N.
Execute the crowding distance of each individual at L− th layer while
choosing individuals (in descending order) on crowding distance until total #
of individuals get to N;

end

Corner Solution Archive (CSA) differentiates the outside space and inside space. The
approximation method has been used to initiate CSA. Moreover, we have explained a
corner solution in both situations k = 1: to compute objective solutions n = 1, 2, · · · , M
regarding the value of k, and the solution has been classified in ascending order of objective
value fi. Thus, we have received M sorted lists and added the first d N

3M e of each list
into CSA. 1 < k < M: with consideration of k = M − 1, an approximation method
has been implemented to attain CSA. With any objective i = 1, 2, · · · , M, solutions are

sorted in ascending criteria of
√

∑M
j−1,j 6=i( f j(x))2 and attain M sorted lists. The initial

solutions of each list are selected in the CSA. With the above two situations, we obtain
|CSA| = d N

3M e × M + d 2N
3M e × M ≈ N. That is to say each objective contributes d N

M e
solutions to the CSA.

Further, the Kernel matrix has been computed after computing cosine angle among
each solutions pair in the population. Additionally, the qualities of all solutions accom-
modate q(x) quality of all solutions x and row vector q. Following that, a quality matrix,
Q, is created by multiplying qT by q. In order to modify and produce L, L is multiplied
by Q decisively in an element-by-element order. ⊗ displays the element-wise product of
2 matrices of similar size, as is the case in the second final step of Algorithm 4.
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Algorithm 4: The Kernel Matrix Computation.
Input: P (the size of population), CSA

1 for the solution x ∈ P do
2 for the solution y = P do
3 Lx,y = cos(x, y)
4 end
5 end
6 for the Solution x ∈ P do
7 compute q(x) by (9) & (10)
8 end
9 Q = qT · q

10 L = Q⊗ L
Output: L

Moreover, the DPP Selection (DPPs-Selection) details are presented in Algorithm 5.
M×M Kernel Matrix (L) has been eigen decomposed to attain Eigenvector set V = {vr}M

r−1

and the Eigenvalue set λ = {λr}M
r−1. Hence, {vr}M

r−1 has been truncated by keeping k largest
eigenvectors and sorted in descending order of eigenvalues, while each loop iteration has
been an element index with ∑v∈V(vTen)2 that can be further added to the index set S. In
this phase, the dimension of en = (0, 0, · · · , 1, · · · , 0, 0) shows the nth standard unit vector
in RM. In the next stage, V has been replaced with orthonormal basis for the subspace of
V orthogonal to en. Towards the end, the S (index set) of the chosen elements has been
returned. Fundamentally, the selection of DPPs has been completed in two different phases:
firstly, the selection of eigenvectors k of L that have highest corresponding λ; second is the
selection of indices elements with ∑v∈V(v

Ten)
2

one by one.

Algorithm 5: The selection of DPPs.
Input: L (The Kerne_Matrix), size of Subset = k

1

(
{vr}M

r−1, {vMr−1
r }

)
whereas (L) = Eigen decomposition

2 V ← Choose eigenvectors (k ) from {vr}M
r−1 in reference to max k eigen-values

{λr}M
r−1

3 S← φ
4 while |V| > 0 do
5 choose n from M with max. ∑v∈V

(
vTen

)2

6 S← S ∪ n
7 V ← V⊥, orthonormal basis for subspace of (V) orthogonal to en

8 end
Output: S

4. Experiment Settings and Result Analysis

A series of empirical tests on nine benchmark problems, referred to as LSMOP1–9 [56],
with 500, 1000, 2000, and 2500 decision variables are done to examine the performance
of the proposed technique. Table 1 lists the characteristics of the nine exam issues. The
inverted generational distance (IGD), which can account for both accuracy and diversity
of a solution set in approximating the actual Pareto front [57,58], is a commonly used
performance indicator that is used to evaluate the quality of the solution sets obtained by
the algorithms. Given that solutions set P, the IGD has been modeled as (16).

IGD(P, P∗) =
∑x∗∈p∗ d(x∗, P)

|P∗| (16)
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where d(x∗, P) is the smallest Euclidean distance between a reference solution x∗ in P∗ and
all solutions P, where P∗ is a collection of uniformly distributed reference points. The size
of P. P∗ is P∗. It should be mentioned that the quality of the produced optimum solutions
improves with decreasing IGD values.

Table 1. LSMOP Characteristic Problems Test.

Problems Characteristics

Modelity Shape Separability
LSMOP-1 Unimodal Modelity Linear shape Full separability
LSMOP-2 Mixed Modelity Linear shape Partial separability
LSMOP-3 Multi-modal Modelity Linear shape Mixed separability
LSMOP-4 Mixed Modelity Linear shape Mixed separability
LSMOP-5 Unimodal Modelity Convex shape Full separability
LSMOP-6 Mixed Modelity Convex shape Partially separability
LSMOP-7 Multimodal Modelity Convex shape Mixed separability
LSMOP-8 Mixed Modelity Convex Mixed separability
LSMOP-9 Mixed Modelity Disconnected Full separability

Following an empirical study of the contributions made by various components of
LSMOEA-DPP, the remainder of the section covers the environment in which the exper-
iments were conducted. On nine two, the approach is compared to four state-of-the-art
methods, and 20 and 0.9 are used to create three-dimensional LSMOPs with up to 2500 de-
cision factors. Table 1 shows the characteristics test of LSMOP [56].

4.1. Experimental Setup

All compared algorithms in this study are run 20 times (on each test instance), inde-
pendently, in which the maximum number of objective evaluations (FEmax) is set at 80,000.
Moreover, each algorithm calculates the IGD value of solution set realized by all algorithms,
respectively. On the Pareto front of each test problem, 10,000 uniformly distributed refer-
ence points are sampled as in [21]. Furthermore, a Wilcoxon rank sum test [59] has been
applied by using Bonferroni correction at a 0.5 to evaluate if the attained solution set perfor-
mance by any of two algorithms has been statistically dissimilar from the other [60,61]. The
symbols ‘−’, ‘+’ and ‘=’ illustrate that the results attained by implementing the proposed
LSMOEA-DPP are optimal, worse than, and/or comparable to, respectively.

To solve the complex multi-objective issue, the proposed approach uses a genetic
algorithm (GA). Herein, the starting population size is chosen as N = 153 and the repro-
duction operators include polynomial mutation and simulated binary crossover (SBX).
Moreover, crossover probability (pc) and distribution index (ηc) are set at 0.9 and 20 for
SBX, respectively. The mutation probability pm and distribution index ηm for PM are set at
1/D and 20, respectively, while D has been considered as total number of decision variables.
Next, the total solutions generated (randomly) are 30 along the search direction. Lastly, the
threshold N∈ = 2N/3 to find the selection strategy applied during environmental selections.
We have used similar parameter settings for all algorithms compared in this study (as
used in their original literature). Therefore, to optimize the original problem and each
transformed problem, the maximum number of objective evaluations are set at 800 and
400, respectively.

4.2. Analysis of the Experimental Results

In this section, experiments are performed on nine different LSMOP test problems
given in Table 1 for 500, 1000, 2000, and 2500 dimensions to demonstrate the effectiveness
and efficiency of LSMOEA-DPP on LSMOP1–9 with two and three objectives, respectively.

Table 2 shows the literature review comparative analysis of the primary essential
references regarding the technique used, their accuracy, and their complexity level to solve
large-scale multi-objective problems. From Table 2, most of the references have a high
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accuracy rate for solving optimization problems, but this comes with an average complexity
level to very complex.

Table 2. Literature Review Comparative Analysis.

Reference No Optimization Techniques Used Accuracy Complexity Level

[2] Performance Metrics Ensemble Fair Very complex
[25] Global Optimization Low Average
[26] Decision Variable clustering & Non-dominated Sorting High Average
[28] Multiple-strategy learning particle swarm optimization & Two-stage searching mechanism High Less Complex
[29] Particle Swarm Optimization, Segment Predominant learning Optimization High Average
[62] Decision variable grouping, Decision space reduction, & Novel Search strategies. High Very Complex

As can be seen, Refs. [25,29] have high accuracy with an average complexity level.
Ref. [28] with multi-strategy learning particle swarm optimization search mechanism is the
only one that achieves high accuracy and sustains less complexity. Therefore, this helps
select the best method for solving large-scale optimization problems.

Tables 3 and 4 show the statistics to compare the algorithms on 2- and 3-objective
LSMOP1–9 (problems) with up to 2500 decision variables. It can be observed from
Tables 3 and 4 that LMOCSO employs the latest learning strategy that performs better
as compared to MOEA/DVA, which uses the decision variable clustering. Moreover, the
proposed LSMOEA-DPP improved results on 23 (from 36) 2-objective problems and 28
(from 36) 3-objective problems, respectively. It can be observed that, in Table 4, LSMOEA-
DPP can achieve competitive performance when decision variables are more significant
than 500.

Table 3. The Statistical result (Median and Median Absolute Deviation) obtained by LSMOEA-DPP
and four compared algorithms on 500, 1000, 2000, and 2500 on 2-Objective LSMOP1–9 problems.

Problem M D MOEADVA LMOCSO LSMOF MOEAD LSMOEADPP

LSMOP1 2

500 1.4062e-1 (5.42e-3) + 1.3372e+0 (1.00e-1) − 5.9889e-1 (5.47e-2) = 6.3180e-1 (1.18e-1) − 6.0395e-1 (4.18e-2)
1000 4.2611e-2 (3.28e-4) + 1.5183e+0 (5.45e-2) − 6.3999e-1 (2.14e-2) − 6.7100e+0 (6.04e-1) − 6.2794e-1 (4.75e-2)
2000 1.2933e-2 (3.66e-4) + 1.5644e+0 (2.75e-2) − 6.5257e-1 (2.21e-2) = 6.9393e+0 (8.28e-1) − 6.4003e-1 (2.67e-2)
2500 9.2551e-3 (2.88e-4) − 1.5796e+0 (3.45e-2) − 6.5101e-1 (1.85e-2) − 4.2072e+0 (3.79e-1) − 9.0791e-3 (3.07e-4)

LSMOP2 2

500 6.2621e-2 (3.30e-4) − 4.5700e-2 (5.84e-4) − 1.9279e-2 (4.86e-4) − 7.0899e-2 (1.14e-3) − 1.9264e-2 (4.00e-4)
1000 3.2863e-2 (1.66e-4) − 2.5307e-2 (3.95e-4) − 1.1443e-2 (1.84e-4) − 3.8924e-2 (2.10e-3) − 1.0443e-2 (4.51e-4)
2000 1.7924e-2 (2.31e-4) − 1.4030e-2 (2.81e-4) − 8.5405e-3 (3.47e-4) − 2.0717e-2 (1.51e-4) − 1.0332e-2 (2.69e-4)
2500 1.4934e-2 (3.85e-4) − 1.1676e-2 (2.46e-4) − 9.5457e-3 (3.15e-4) − 1.6455e-2 (8.94e-5) − 1.1486e-2 (4.12e-4)

LSMOP3 2

500 3.4226e+0 (4.93e-1) − 2.2194e+1 (3.83e+0) − 1.5714e+0 (3.77e-3) − 2.7099e+1 (7.66e+0) − 1.5654e+0 (8.68e-4)
1000 1.7959e+0 (5.07e-2) − 2.4727e+1 (6.10e+0) − 1.5785e+0 (4.92e-3) − 2.8951e+1 (6.71e+0) − 1.5738e+0 (3.68e-4)
2000 1.0804e+0 (1.40e-2) − 2.8148e+1 (1.43e+0) − 1.5773e+0 (1.44e-4) − 3.0802e+1 (7.20e+0) − 1.0723e+0 (1.00e-4)
2500 9.2935e-1 (9.71e-3) = 2.8682e+1 (4.76e+0) − 1.5779e+0 (1.17e-4) − 2.2149e+1 (7.33e+0) − 9.2916e-1 (1.14e-2)

LSMOP4 2

500 4.8246e-2 (7.39e-4) − 9.0366e-2 (1.35e-3) − 5.0425e-2 (1.75e-3) − 1.2402e-1 (3.68e-3) − 4.0538e-2 (2.59e-4)
1000 1.4908e-2 (2.93e-4) − 5.2411e-2 (4.75e-4) − 2.7831e-2 (6.40e-4) − 7.3170e-2 (2.05e-3) − 1.3411e-2 (9.96e-4)
2000 6.1755e-3 (3.56e-4) − 2.9962e-2 (2.16e-4) − 1.6726e-2 (3.52e-4) − 4.0805e-2 (5.30e-4) − 1.5175e-2 (3.65e-4)
2500 5.3751e-3 (3.54e-4) − 2.5071e-2 (2.15e-4) − 1.6530e-2 (7.54e-4) − 3.0987e-2 (9.21e-4) − 5.2445e-3 (4.85e-4)

LSMOP5 2

500 3.9520e-1 (1.36e-2) + 2.8686e+0 (1.16e-1) − 7.4195e-1 (2.71e-4) − 1.1375e+1 (1.38e+0) − 7.4209e-1 (0.00e+0)
1000 1.2228e-1 (2.89e-3) + 3.2203e+0 (1.68e-1) − 7.4192e-1 (1.58e-4) − 1.4864e+1 (1.59e+0) − 7.4209e-1 (0.00e+0)
2000 3.4879e-2 (6.22e-4) + 3.2752e+0 (1.38e-1) − 7.4209e-1 (0.00e+0) = 1.5428e+1 (1.41e+0) − 7.4209e-1 (0.00e+0)
2500 2.3334e-2 (3.04e-4) − 3.3334e+0 (1.23e-1) − 7.4209e-1 (0.00e+0) − 9.3920e+0 (1.11e+0) − 2.3166e-2 (4.56e-4)

LSMOP6 2

500 2.6772e+0 (3.50e+0) − 7.9260e-1 (8.17e-3) − 7.0468e-1 (1.89e-1) − 8.0800e-1 (8.71e-3) − 3.2039e-1 (5.23e-4)
1000 1.8657e+0 (2.76e+0) − 7.7045e-1 (2.64e-3) − 6.8490e-1 (7.28e-4) − 7.7428e-1 (1.60e+0) − 3.1252e-1 (2.94e-4)
2000 7.0940e-1 (7.15e-1) − 7.5721e-1 (6.56e-4) − 3.0883e-1 (1.25e-4) − 7.5703e-1 (9.28e-1) − 3.0879e-1 (1.18e-4)
2500 7.3782e-1 (2.08e+0) − 7.5399e-1 (7.38e-4) − 3.0768e-1 (1.30e-4) + 7.5374e-1 (5.09e-4) − 6.2937e-1 (8.57e-1)

LSMOP7 2

500 8.0192e+1 (6.66e+0) − 5.7964e+2 (1.06e+2) − 1.5078e+0 (9.78e-4) − 1.6902e+4 (4.51e+3) − 1.5021e+0 (1.50e-3)
1000 2.5410e+1 (1.09e+0) − 9.4475e+2 (1.57e+2) − 1.5137e+0 (7.44e-4) − 3.1051e+4 (6.39e+3) − 1.5103e+0 (3.34e-4)
2000 1.0549e+1 (2.39e-1) + 1.1627e+3 (9.92e+1) − 1.5146e+0 (7.26e-4) − 3.6112e+4 (4.40e+3) − 1.5139e+0 (5.03e-4)
2500 8.4641e+0 (2.36e-1) = 1.7786e+3 (2.25e+2) − 1.5170e+0 (9.95e-4) + 4.9477e+4 (9.55e+3) − 8.5032e+0 (1.25e-1)
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Table 3. Cont.

Problem M D MOEADVA LMOCSO LSMOF MOEAD LSMOEADPP

LSMOP8 2

500 2.5023e-1 (7.95e-3) + 1.8967e+0 (1.25e-1) − 7.4188e-1 (2.39e-4) − 7.5571e+0 (1.44e+0) − 7.4209e-1 (0.00e+0)
1000 7.3660e-2 (8.03e-4) − 2.2786e+0 (1.60e-1) − 7.4199e-1 (1.94e-4) − 9.8467e+0 (6.17e-1) − 7.2562e-1 (0.00e+0)
2000 2.0770e-2 (3.35e-4) + 2.5568e+0 (1.39e-1) − 7.4209e-1 (0.00e+0) = 1.0405e+1 (6.63e-1) − 7.4209e-1 (0.00e+0)
2500 1.4240e-2 (5.56e-4) + 2.5419e+0 (2.24e-1) − 7.4209e-1 (0.00e+0) − 7.2183e+0 (8.03e-1) − 1.4004e-2 (3.19e-4)

LSMOP9 2

500 4.5782e-1 (4.04e-2) + 8.7112e-1 (1.77e-1) − 8.0882e-1 (7.01e-4) − 2.7666e+1 (3.48e+0) − 8.1004e-1 (9.09e-4)
1000 1.1718e-1 (4.95e-3) + 2.8625e+0 (6.42e-1) − 8.0576e-1 (1.19e-3) − 3.9097e+1 (3.99e+0) − 8.0695e-1 (2.28e-3)
2000 3.4876e-2 (2.41e-3) + 5.1625e+0 (2.44e+0) − 8.0614e-1 (4.23e-3) = 4.4518e+1 (2.45e+0) − 8.0468e-1 (1.69e-3)
2500 2.4722e-2 (1.32e-3) = 5.8595e+0 (1.52e+0) − 8.0475e-1 (2.79e-3) − 2.9026e+1 (2.63e+0) − 2.4707e-2 (2.31e-3)

+/−/= 13/20/3 0/36/0 2/29/5 0/36/0 23/13/0

Table 4. The Statistical result (Median and Median Absolute Deviation) obtained by LSMOEA-DPP
and five compared algorithms on 500, 1000, 2000, and 2500 on 3-Objective LSMOP1–9 problems.

Problem M D MOEADVA LMOCSO LSMOF MOEAD LSMOEADPP

LSMOP1 3

500 l1.5310e-1 (2.65e-3) + 1.3713e+0 (8.01e-2) − 5.7538e-1 (7.57e-3) = 2.3318e+0 (3.84e-1) − 5.7851e-1 (9.26e-3)
1000 6.4418e-2 (1.89e-3) + 1.4725e+0 (1.04e-1) − 6.1096e-1 (1.99e-2) = 4.3365e+0 (6.68e-1) − 6.1067e-1 (1.38e-2)
2000 4.7363e-2 (3.23e-3) + 1.5188e+0 (1.15e-1) − 6.4203e-1 (8.19e-3) = 6.3107e+0 (5.36e-1) − 6.3813e-1 (1.67e-2)
2500 4.6129e-2 (3.72e-3) = 1.5771e+0 (1.55e-1) − 6.5703e-1 (1.77e-2) − 6.7976e+0 (6.07e-1) − 4.5164e-2 (2.41e-3)

LSMOP2 3

500 6.2848e-2 (3.37e-3) + 5.1848e-2 (6.53e-4) − 7.8036e-2 (3.42e-3) = 5.9839e-2 (2.48e-4) + 5.0355e-2 (2.94e-3)
1000 4.9740e-2 (3.08e-3) + 4.0786e-2 (3.87e-4) − 6.0797e-2 (4.56e-3) − 4.3205e-2 (7.26e-5) + 4.0133e-2 (3.82e-3)
2000 4.4343e-2 (2.79e-3) + 3.5473e-2 (1.85e-4) − 5.3458e-2 (2.66e-3) − 3.6078e-2 (5.36e-5) + 3.5363e-2 (4.04e-3)
2500 4.5370e-2 (2.70e-3) = 3.4513e-2 (1.02e-4) + 5.0689e-2 (4.09e-3) − 3.4834e-2 (5.53e-5) + 3.3790e-2 (1.93e-3)

LSMOP3 3

500 2.5037e+0 (2.09e-1) − 1.2837e+1 (2.72e+0) − 8.6058e-1 (5.02e-4) = 3.8781e+0 (2.96e+0) − 8.6051e-1 (3.10e-3)
1000 1.3333e+0 (5.76e-2) − 1.3629e+1 (2.15e+0) − 8.6070e-1 (1.10e-4) = 8.1081e+0 (3.39e+0) − 8.6066e-1 (1.41e-4)
2000 7.9497e-1 (2.16e-2) − 1.3567e+1 (1.77e+0) − 8.6068e-1 (6.40e-5) = 1.2424e+1 (5.81e+0) − 6.8190e-1 (1.00e-4)
2500 6.7546e-1 (1.11e-2) = 1.3329e+1 (1.87e+0) − 8.6072e-1 (1.02e-4) − 1.4873e+1 (3.28e+0) − 6.7537e-1 (1.54e-2)

LSMOP4 3

500 7.8148e-2 (2.64e-3) − 1.5152e-1 (2.02e-3) + 2.0536e-1 (6.26e-3) − 1.7483e-1 (3.78e-3) + 1.0144e-1 (6.63e-3)
1000 5.1546e-2 (4.07e-3) + 9.3167e-2 (8.04e-4) + 1.3274e-1 (3.59e-3) = 1.0617e-1 (1.89e-3) + 1.3313e-1 (4.43e-3)
2000 4.5686e-2 (3.88e-3) + 5.9310e-2 (3.22e-4) + 8.6618e-2 (2.88e-3) = 6.5718e-2 (4.79e-4) + 4.4963e-2 (2.94e-3)
2500 4.4946e-2 (4.04e-3) − 5.2303e-2 (3.45e-4) − 7.5992e-2 (4.24e-3) − 5.7264e-2 (3.02e-4) − 4.3519e-2 (2.66e-3)

LSMOP5 3

500 4.1845e-1 (9.47e-3) + 2.8865e+0 (2.51e-1) − 5.4082e-1 (7.45e-2) = 2.5322e+0 (8.39e-1) − 1.8371e-1 (7.20e-2)
1000 1.5005e-1 (3.61e-3) + 3.1521e+0 (1.92e-1) − 5.5421e-1 (9.51e-2) = 5.8966e+0 (1.26e+0) − 6.5262e-1 (1.37e-1)
2000 7.2052e-2 (1.90e-3) + 3.1823e+0 (2.35e-1) − 5.9659e-1 (1.28e-1) = 8.1210e+0 (1.33e+0) − 3.1643e-1 (1.34e-1)
2500 6.4266e-2 (3.43e-3) = 3.3278e+0 (1.92e-1) − 5.6857e-1 (1.02e-1) − 9.2162e+0 (7.11e-1) − 6.3560e-2 (3.13e-3)

LSMOP6 3

500 3.5414e+1 (5.39e+0) − 2.2022e+2 (1.16e+2) − 7.3389e-1 (1.50e-2) = 3.3559e+0 (1.01e+0) − 7.2039e-1 (2.58e-2)
1000 1.2411e+1 (1.99e+0) − 4.0659e+2 (1.55e+2) − 7.4758e-1 (2.00e-2) = 1.1591e+1 (1.11e+1) − 7.4498e-1 (1.95e-2)
2000 6.5737e+0 (6.95e-1) − 5.4063e+2 (1.04e+2) − 7.6323e-1 (2.73e-2) = 1.2397e+3 (6.24e+2) − 7.5841e-1 (1.88e-2)
2500 5.6462e+0 (1.61e-1) = 5.4280e+2 (1.25e+2) − 7.5989e-1 (2.93e-2) + 2.8405e+3 (1.45e+3) − 5.8823e+0 (6.06e-1)

LSMOP7 3

500 1.2543e+0 (1.19e+0) − 1.1624e+0 (6.81e-2) − 8.9177e-1 (1.25e-2) + 1.0184e+0 (8.44e-2) − 8.7629e-1 (1.25e-2)
1000 8.5598e-1 (2.24e-1) = 1.0611e+0 (3.14e-2) − 8.6669e-1 (3.76e-2) = 8.8881e-1 (1.39e-1) = 8.4505e-1 (5.03e-2)
2000 6.1633e-1 (3.66e-2) = 1.0035e+0 (9.59e-3) − 8.5274e-1 (4.79e-2) − 7.8850e-1 (2.45e-1) − 6.1519e-1 (4.57e-2)
2500 5.9231e-1 (2.84e-2) = 9.8762e-1 (1.01e-2) − 8.4802e-1 (4.90e-2) − 7.5047e-1 (1.76e-1) − 5.8876e-1 (2.44e-2)

LSMOP8 3

500 2.3658e-1 (5.80e-3) + 6.0305e-1 (3.04e-2) − 3.6026e-1 (8.19e-2) = 6.6628e-1 (3.01e-2) − 3.5960e-1 (1.11e-1)
1000 9.8081e-2 (5.67e-3) + 5.8513e-1 (2.81e-2) − 3.9857e-1 (1.13e-1) = 6.3332e-1 (1.20e-2) − 3.7484e-1 (9.38e-2)
2000 6.1872e-2 (4.50e-3) = 5.8700e-1 (3.84e-2) − 4.1896e-1 (9.96e-2) − 6.2516e-1 (9.28e-3) − 3.39805e-2 (2.57e-3)
2500 5.9496e-2 (5.05e-3) = 5.7760e-1 (2.55e-2) − 3.6153e-1 (1.13e-1) − 6.2011e-1 (2.33e-3) − 5.9082e-2 (2.53e-3)

LSMOP9 3

500 7.9373e-1 (5.20e-2) + 2.0633e+0 (2.11e+0) − 1.5379e+0 (0.00e+0) = 5.7809e-1 (8.90e-2) + 1.5379e+0 (0.00e+0)
1000 2.5031e-1 (1.76e-2) + 5.5351e+1 (3.46e+1) − 1.5379e+0 (3.93e-1) = 4.2654e+0 (1.92e+0) − 1.3415e+0 (3.93e-1)
2000 1.1166e-1 (1.16e-2) = 7.7855e+1 (2.88e+1) − 1.1770e+0 (3.93e-1) − 3.7867e+1 (3.32e+0) − 1.1013e-1 (7.73e-3)
2500 1.0570e-1 (1.06e-2) = 9.1425e+1 (4.19e+1) − 1.1537e+0 (2.21e-1) − 5.2886e+1 (3.70e+0) − 1.0438e-1 (1.42e-2)

+/−/= 0/1/8 1/8/0 1/8/0 1/8/0 28/9/0
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In comparison to MOEAD, LSMOEA-DPP under-performs on five (2-objective) LSMOP
test problems and nine (3-objective) LSMOP test problems, respectively, with around
2500 dimensions. LSMOEA-DPP outperformed MOEAD on 23 (from 36) 2-objective prob-
lems and 28 (from 36) 3-objective problems, respectively. The results of IGD values realized
by comparing algorithms on 2- and 3-objective LSMPO 1-9 problems with up to 2500 deci-
sion variables as shown in Tables 3 and 4. Regarding the results obtained, we can conclude
that the proposed LSMOEA-DPP attains improved results as compared to MOEA/DVA,
LMOCSO, LSMOF, and MOEAD.

On 3-objective LSMOP1–9 test problems with 2500 dimensions, the boxplots of the IGD
values derived by MOEA/DVA, LMOCSO, LSMOF, MOEAD, and the proposed LSMOEA-
DPP are shown in Figures 3–5. Table 3 summarizes the median values for each method.
Figures 3–5 show that the LSMOEA-DPP achieved the best median outcomes among
the five algorithms when applied to the LSMOP1–9 models with 2500 decision variables.
Additionally, we can observe from Figures 3–5 that the LSMOEA-DPPs performance are
robust on the nine 2400-dimensional LSMOPs since the interquartile ranges of the IGD
values it obtained are relatively modest.

From Figures 3–5, we can observe that the LSMOEA-DPP maintains the best satisfac-
tory median outcomes followed by MOEADVA, LSMOF, LMOCSO, and MOEAD across
all the nine LSMOP problems sets with 2500 decision variables.

(a) LSMOP1 (b) LSMOP2

(c) LSMOP3 (d) LSMOP4

Figure 3. The boxplots of LSMOEA-DPP on 3-objective LSMOP 1, 2, 3, and 4 with 2500 decision variables.
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(a) LSMOP5 (b) LSMOP6

Figure 4. The boxplots of LSMOEA-DPP on 3-objective LSMOP 5 and 6 with 2500 decision variables.

(a) LSMOP7 (b) LSMOP8

(c) LSMOP9

Figure 5. The boxplots of LSMOEA-DPP on 3-objective LSMOP 7, 8, and 9 with 2500 decision variables.

5. Conclusions

This study proposed the LSMOEA-DPP scheme to improve the convergence perfor-
mance of evolutionary algorithm while solving large-scale multi-objective issues. The
findings in this work validate that the proposed algorithm is appropriate to solve a variety
of LSMOPs. A DPPs-Selection method has been used to select the environment. Moreover,
the kernel matrix has been defined to adapt different LSMOPs. The findings demonstrate
that the suggested approach performs rather well on 2- and 3-objective LSMOPs with up to
2500 dimensions while compared with the existing state-of-the-art methods. The proposal
also works well to enhance the number of decision factors, as can be observed primarily.
Since the performance of the proposed approach depends on how well the distribution
of the reference vectors matches the Pareto front shape for the issue to be solved, it is not
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immune to the frequent weakness of decomposition while being extremely competitive.
To obtain a more reliable environmental selection throughout the optimization, as a fu-
ture research perspective, we can work to create methods to modify the reference vectors
by keeping a suitable degree. We can develop new DPP techniques to boost population
diversity and algorithm’s search performance on LSMOPs.
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