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Abstract: Semantic segmentation of mobile LiDAR point clouds is an essential task in many fields
such as road network management, mapping, urban planning, and 3D High Definition (HD) city
maps for autonomous vehicles. This study presents an approach to improve the evaluation metrics of
deep-learning-based point cloud semantic segmentation using 3D geometric features and filter-based
feature selection. Information gain (IG), Chi-square (Chi2), and ReliefF algorithms are used to select
relevant features. RandLA-Net and Superpoint Grapgh (SPG), the current and effective deep learning
networks, were preferred for applying semantic segmentation. RandLA-Net and SPG were fed by
adding geometric features in addition to 3D coordinates (x, y, z) directly without any change in the
structure of the point clouds. Experiments were carried out on three challenging mobile LiDAR
datasets: Toronto3D, SZTAKI-CityMLS, and Paris. As a result of the study, it was demonstrated
that the selection of relevant features improved accuracy in all datasets. For RandLA-Net, mean
Intersection-over-Union (mIoU) was 70.1% with the features selected with Chi2 in the Toronto3D
dataset, 84.1% mIoU was obtained with the features selected with the IG in the SZTAKI-CityMLS
dataset, and 55.2% mIoU with the features selected with the IG and ReliefF in the Paris dataset. For
SPG, 69.8% mIoU was obtained with Chi2 in the Toronto3D dataset, 77.5% mIoU was obtained with
IG in SZTAKI-CityMLS, and 59.0% mIoU was obtained with IG and ReliefF in Paris.

Keywords: semantic segmentation; deep learning; geometric features; feature selection; point cloud;
mapping

1. Introduction

Three-dimensional (3D) point clouds are one of the most significant data sources,
providing an accurate 3D representation of the world, and have been deployed in various
applications, such as urban geometry mapping, autonomous driving, virtual reality, cul-
tural heritage, augmented reality, and more [1–4]. Point clouds are a useful data type for
representing and processing objects in the environment because they contain 3D informa-
tion, such as geometry, color, intensity, normality, and more. Additionally, 3D point clouds
provide more information about the geometric structure of objects than 2D images and
allow sensor systems to perceive the environment better [5].

The development of automated artificial intelligence technologies has recently enabled
the widespread usage of autonomous systems [6]. Robust and real-time sensing of the
environment with high spatial accuracy is an important requirement for autonomous
driving [7]. Additionally, precise positioning is a vital issue for autonomous driving.
To fulfill these tasks, many sensors such as RGB camera for detection, light detection
and ranging (LiDAR), depth camera or Radar sensors are added to autonomous vehicles.
Because they provide direct space measurements, precise and quick 3D representations
of the world, LiDARs have become a critical component in perception systems. LiDAR
sensors are widely used to reconstruct the shape and surface of objects [8]. Mobile LiDAR
point clouds are data obtained using laser scanners mounted on a moving vehicle. Mobile
LiDAR point clouds provide useful data for many applications such as road network
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management, architecture and urban planning, and 3D high definition (HD) city maps for
autonomous vehicles [9]. In particular, mobile LiDAR point clouds are expected to be the
main data source used for autonomous driving and decision makers to produce detailed
3D High Definition (HD) maps. Successful execution of all these tasks is made possible by
assigning each point in the point cloud to the correct semantic tag and performing the 3D
scene analysis correctly [10]. Evaluating the singular features of the points together and
collecting them under a meaningful cluster is called semantic segmentation [11].

Point cloud semantic segmentation has become an important research topic in the
last decade. Traditionally, point cloud semantic segmentation relies on machine learning
algorithms and rule-based methods that define a set of discriminatory rules to distinguish
points for each class. However, these methods are insufficient for accurate semantic
segmentation of complex, irregular, and large point cloud data generated in dynamic
environments [12]. Deep learning methods, which had successful results in classification,
detection, and segmentation in 2D images [13–17], have also been used in point cloud
semantic segmentation. Initially, projection and voxelization methods were developed to
regularize the point cloud with preprocessing steps for point cloud semantic segmentation
based on 2D images. Voxelization requires a significant computational cost for large-scale
dense 3D data because memory and compute requirements rise cubically, when the data
are scaled up. In projection-based methods, 3D information loss may occur while the point
cloud is projected to a two-dimensional plane. Point-based deep learning models have
been developed in recent years to overcome these difficulties [9]. Although point cloud
structure makes it potentially challenging for the DL approach to process the point cloud
directly, point-based methods have advantages, as they prevent information loss and have
no preprocessing step.

This study aims to examine the effects of 3D geometric features and appropriate fea-
ture selection in the accuracy of deep-learning-based point cloud semantic segmentation.
RandLA-Net [18] and SPG [19] methods, which are up-to-date approaches, are used for
semantic segmentation. Each point in the point cloud is defined by a 3D feature vector.
Thus, helpful features are provided to the deep learning network. Furthermore, the most
effective features were determined by filter-based feature selection algorithms, and the
semantic segmentation results were improved. A study is presented to investigate the
comparative performances of filter-based information gain (IG), Chi-squared (Chi2) [20],
and ReliefF [21] for point cloud semantic segmentation. Experiments were carried out on
mobile LiDAR point clouds, which are an important data source for autonomous driv-
ing. Large-scale outdoor benchmark MLS datasets Toronto3D [22], SZTAKI-CityMLS [23],
and Paris-CARLA-3D [24] were chosen as the datasets.

2. Related Works

Deep learning approaches are used for point cloud semantic segmentation because
of the inability of machine learning approaches to provide sufficient performance from
large and complex data. The approaches in the first deep learning studies are usually
based on 2D projection [25] and voxelization [26]. After projection-based and voxelization
approaches, DL approaches fed directly with point cloud have been developed. Therefore,
it is possible to collect semantic segmentation approaches under three main headings:
point-based, voxel-based, and projection-based.

2.1. Point Cloud Semantic Segmentation with Point-Based Methods

The first point-based methods are point-wise multi-layer perceptrons (MLPs). Point-
wise MLPs learn the properties of each point through shared MLPs. However, the relation-
ship between the points is ignored, since the points are evaluated individually. PointNet [27]
was developed for the first time as a unique method that directly uses the point cloud. Point-
Net++ [28] is provided as an enhanced version of PointNet. PointNet++ uses a hierarchical
neural network that employs PointNet recursively on the input point set. PointSIFT [29]
is a PointNet-like algorithm developed based on the Scale Invariance Feature Transform
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(SIFT) algorithm [30] used in 2D images. Engelmann et al. [31] proposed a combination
of K-clustering and KNN to define two neighborhoods in world space and feature space
separately. PointWeb [32] defines the relationship between points using the Adaptive
Feature Adjustment (APA) module. RandLA-Net [18] proposed a local feature aggregation
module used to capture complex local features and spatial relationships. ShellNet [33] is a
permutation-invariant convolution that works directly on the point cloud.

To develop fixed MLPs of point-wise approaches, point convolution methods at-
tempt to recognize weights based on learned features with convolutions with more inputs.
Thomas et al. [34] present Kernel Point Convolution (KPConv) that is inspired by image-
based convolution, but it uses kernel points to define the area where the kernel weight is
applied instead of the kernel pixel used by image-based convolution. PointCNN [35] that
applies κ transformation to the input points prevents the loss of shape information and
variance in the point order resulting from applying direct convolution. SpiderCNN [36]
calculates the distance order of neighboring points and generates a family of polynomial
functions with different weights for each neighbor. ConvPoint [37] includes a continuous
convolution operation that learns the weighted sum from the feature convolution operation
and simple MLP operations of spatial features.

Graph-based methods construct point clouds as super graphs and feed a graph
convolution network by extracting local shape information from neighbors. The graph-
based methods assume points as nodes of a graph, and point relationships are defined as
edges [38]. DGCNN [39] obtains local features using the nearest points. Then, EdgeConv
operators, which are edge convolutions, are used to extract global shape features using local
features. 3D-GCN [40] proposes deformable kernels for shift and scale-invariant features.
The SPG method [19], similar to DGCNN, considers the point cloud as a super point graph,
and establishes point relations as edges. PointNet is used for embedding before the final
prediction. DPAM [41] offers a deep learning architecture designed to dynamically sample
and group points.

2.2. Point Cloud Semantic Segmentation with Voxel-Based Methods

Voxel-based approaches do not process points individually, but by grouping them
into regular geometric shapes. Point clouds are transformed into structured data. These
transformations cause a loss of information and resolution in point clouds. The first
developed algorithms performed semantic segmentation by applying 3D convolutions
to the generated voxels [23]. VoxNet [42], one of the most popular methods, defines the
point cloud as an occupancy grid as input to CNNs. CNN models are widely preferred for
voxel-based semantic segmentation. In addition, there are methods that apply semantic
segmentation with hand-crafted features calculated within voxels [43]. The disadvantage
of voxel-based approaches is the unnecessary memory usage caused by empty voxels.
To overcome this problem, some approaches are proposed in the literature [44].

2.3. Point Cloud Semantic Segmentation with Projection-Based Methods

Projection-based methods project the point cloud to a two-dimensional plane. Similar
to voxel-based approaches, the point cloud is transformed from an irregular structure
to a regular one. Inspired by the SqueezeNet [45] architecture, SqueezeSeg [46] gener-
ates a range image by applying spherical projection to the point cloud for semantic point
cloud segmentation. SqueezeSegv2 [7] has been presented in the literature with some im-
provements on SqueezeSeg. Another approach that has emerged recently is the RangeNet
architecture [47], which was inspired by the Darknet53 architecture. SalsaNext [48], the en-
hanced version of SalsaNet [49], which adds a dilated convolution stack with 1 × 1 and
3 × 3 cores to the head of the network to improve context information. Additionally, there
are studies that apply classical image segmentation algorithms after reducing the point
cloud to the image plane [50,51]. Multi-view PointNet [52] purposes aggregation of 2D
multi-view image features into 3D point clouds. There are also algorithms that perform
object detection and labeling with the bird’s-eye-view method [53].
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3. Materials and Methods
3.1. Datasets
3.1.1. Toronto-3D

Toronto-3D dataset [22] is a large-scale urban outdoor mobile LiDAR dataset for
semantic segmentation. The point cloud was captured by a vehicle-mounted Teledyne
Optech Maverick MLS system. The dataset has approximately 78.3 million points in 1 km
of the road segment. The point cloud density is approximately 1000 points/m2. Each point
is defined with 10 attributes; 3D coordinates of the point (x, y, z), color (red, green, blue),
intensity, GPS time, scan angle rank and label. Object classes were defined as road, road
marking, natural, building, utility line, pole, car, fence, and unclassified. The dataset is
divided into four parts (L001, L002, L003, and L004), each covering a distance of 250 m.
L001, L003, and L004 are used for the training set, and L002 is used for the testing set,
following the guidelines from the original paper on the Toronto-3D dataset.

3.1.2. SZTAKI-CityMLS

The SZTAKI-CityMLS Point Cloud dataset (SZTAKI-CityMLS) [23] has been used to
evaluate 3D semantic point cloud segmentation algorithms in urban environments based
on mobile laser scanning (MLS) measurements of a Riegl VMX-450 mobile mapping system.
SZTAKI-CityMLS dataset contains around 327 Million annotated points from various
urban scenes, including main roads with both heavy and solid traffic, public squares, parks,
sidewalk regions, various types of cars, trams and buses, several pedestrians, and diverse
vegetation. Since there is no official division in the SZTAKI-CityMLS dataset, four parts of
the dataset consisting of six parts were used for training, one part for validation, and one
part for testing.

3.1.3. Paris-CARLA-3D

The Paris-CARLA-3D (PC3D) [24] dataset was created with a mobile mapping system
including a LiDAR (Velodyne HDL32) inclined at 45° to the horizon and a 360° poly-
dioptric Ladybug5. Paris-Carla-3D consists of two datasets: real (Paris) and synthetic
(Carla). The dataset consists of data collected on a route 550 m in Paris and 5.8 km in
CARLA. Only the real part, Paris, was used in this study. The Paris dataset consists of
six point clouds containing 10 million points (S0 to S5), with a total of 60 million points.
The points are labeled under 23 classes. In addition, since the mobile LiDAR system
also includes a camera, the point cloud is colored (RGB) due to the necessary orientation
processes. Although the real part does not cover a large area (it includes three streets in
the center of Paris), it is captured in areas where the number and variety of urban objects,
pedestrian movements and vehicles are dense, allowing for various analyses.

3.2. Filter-Based Feature Selection

Although more features are used to address the lack of information and increase the
distinctiveness of algorithms, not all of these features have the same effect. Some features
may be more suitable for semantic segmentation, while others may be irrelevant. Feature
selection is defined as the task of determining the minimum number of features that will
accurately represent the data [54]. Feature selection algorithms are used to find compact
and robust subsets of relevant and informative features to enhance accuracy, improve
computational efficiency with respect to both time and memory consumption, and retain
relevant features. Feature selection methods can be grouped as filter-based, wrapper-based,
and embedded methods. Since both wrapper-based and embedded methods contain
classifier algorithms, they can have better selection performance than filter-based methods.
However, this performance is still dependent on the applied classifier, and the optimum
properties may change when the classifier changes. Filter-based methods are independent
of the classifier. Feature selection methods are simple and efficient, as they calculate the
feature importance score based on only training data [10].
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3.2.1. Information Gain

Information Gain (IG), an entropy-based feature selection algorithm widely used
in machine learning, can be defined as the amount of information provided by features.
With the inflammation gain, the importance of the features for classification is measured,
and it is decided which features are appropriate to use [55]. It is widely used in the
literature, especially for text classification.

G(D, t) = −
m

∑
i=1

P(Ci)logP(Ci) + P(t)
m

∑
i

P(Ci|t)logP(Ci|t) + P(t̄)
m

∑
i

P(Ci|t̄)logP(Ci|t̄) (1)

where C is set of feature, Ci|t is feature set without feature t. The G(D, t) value shows the
importance of the feature. The t features with the highest G(D, t) should be selected. m is
the number of class.

3.2.2. Chi2 Algorithm

The Chi2 feature selection algorithm [20], which is a filter-based feature selection
technique, is based on the Chi-squared (χ2) statistic. The basic working principle of this
method is to calculate how much the (χ2) statistic differs from the actual value and the
expected value. The Chi2 algorithm calculates the correlation between two variables and the
degree of independence from each other. When Chi2 is used for feature selection, it predicts
the independence of the observation class with a particular feature in the dataset [56]. The
null hypothesis establishes that two variables are unrelated or independent. The χ2 value
is calculated for every feature value i and class j using Equation (2).

χ2 =
r

∑
i=1

k

∑
j=1

(Aij − Eij)
2

Eij
(2)

where r defines the number of distinct values in a feature vector. k is the number of classes.
The number of samples with a value of i in class j is represented as Aij, and the expected
number of samples with a value of i in class j is represented as Eij.

3.2.3. ReliefF

The ReliefF algorithm [21] was developed based on the Relief method used by [57]
for solving two-class features. ReliefF algorithm is a feature selection algorithm that
assigns higher weights to features related to classes, quickly eliminates irrelevant features,
and provides high efficiency in solving multiple classification problems. ReliefF aims to
measure the quality of the features based on the distinction it makes between randomly
selected samples which were close to each other. These were selected from the training
set [56]. The k nearest neighbors with the same label and k neighbors with different classes
are selected for the selected random points. If samples with the same label have different
values for a certain feature, the weight of the feature is decreased. If samples with different
labels have different values for a certain feature, the weight of the feature is increased. The
R f score is computed using Equation (3).

R f (xi) =
1
N

N

∑
t=1

{
−1

k ∑
xi∈NH(y)

di f f (xt,i, xj,i) + ∑
1
k

P(y)
1− P(yi)

∑
xj∈NM(xi ,y)

di f f (xt,i, xj,i)

}
(3)

where R f (xi) is the score of xi. yi is the class label of the sample xt. P(y) defines the
probability of a sample being from class y. xt,i presents the values of xt on feature xi and
di f f (·) is the function used to calculate the difference between xt,i and xj,i. NH(xi, y)
represents neighbors having the same class label. NM(xi, y) represents neighbors that have
different class labels [54]. N is the number of samples in input data.
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3.3. 3D Geometric Features

Eigen-based features describe the local geometry around the point and are commonly
used in LiDAR processing. Neighboring points around a point can be determined using
a sphere or other geometric shape, with that point as the center. This neighborhood area
is called the support area [58]. In this study, the support area was determined with a
sphere. The critical parameter when creating the support area is the radius of the sphere.
The sphere radius that best describes the local geometry should be determined.

Eigen-based features are calculated by the eigenvalues (λ1, λ2, λ3) of the eigenvectors
(v1, v2, v3) derived from the covariance matrix of any point p of the point cloud [10]:

cov(N) =
1
N ∑

p∈N
(p− p̄)(p− p̄)T (4)

where p̄ is the centroid of the neighborhood N. The calculated eigen-based features using
eigenvalues: linearity (5), planarity (6), sphericity (7), omnivariance (8), anisotropy (9), eigenen-
tropy (10), surface variation (11), and verticality (12). In addition to eigen-based features height
differences (13) in the support area of a point have been added.

Linearity = (λ1 − λ2)/λ1 (5)

Planarity = (λ2 − λ3)/λ1 (6)

Sphericity = λ3/λ1 (7)

Omnivariance = 3
√

λ1λ2λ3 (8)

Anisotropy = (λ1 − λ3)/λ1 (9)

Eigenentropy =
3

∑
i=1

λi ln λi (10)

Sur f ace variation = λ3/(λ1 + λ2 + λ3) (11)

Verticality = 1− λ3/(λ1 + λ2 + λ3) (12)

Height di f f erence = Zmax − Zmin (13)

3.4. RandLA-Net

Random sampling and an effective local feature aggregator (RANDLA-Net) [18] was
used as the segmentation algorithm. A large-scale point cloud with millions of points
inevitably requires these points to be down-sampled efficiently without losing their bene-
ficial point properties in order to process it with a deep neural network. In RandLA-Net,
a simple and fast random sampling approach has been used to drastically reduce point
density while applying a carefully designed local feature aggregator to preserve remarkable
features. The computational complexity is independent of the total number of entry points,
i.e., it is fixed time and thus inherently scalable. The local feature aggregator module is
designed to effectively preserve complex local structures by explicitly considering neigh-
boring geometries and significantly increasing receptive fields. This module consists of
feed-forward MLPs, so it is computationally efficient.

A local feature aggregation module is applied to each 3D point in parallel, and it
consists of three neural units: (1) local spatial encoding (LocSE), (2) attentive pooling,
and (3) a dilated residual block. Given a point cloud where each point has certain features
(RGB and 3D geometric features for this study), the local spatial coding unit determines the
properties of each point within the neighborhood area of that point. Thus, the LocSE unit
clearly observes the local geometric patterns, and it can learn the complex local structures
of the whole network effectively. The K-nearest neighbors (KNN) algorithm based on the
Euclidean distance is used to determine the neighborhood area. For each of the nearest
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K points
{

p1
i . . . pk

i . . . pK
i

}
of the center point pi, the relative point position is encoded as

follows:
rk

i = MLP(pi ⊕ pk
i ⊕ (pi − pk

i )⊕ ‖pi − pk
i ‖) (14)

where pi and pk
i are the 3D coordinates of points. ‖ • ‖ calculates the Euclidean distance.

Neighboring point pk
i , the encoded relative point positions pk

i and point features f k
i are

combined to create augmented feature vector f̂ k
i . The LocSE unit produces a new set of

local features F̂i =
{

f̂
1
i . . . f̂

k
i . . . f̂

K
i

}
.

In the attentive pooling unit, a unique attention score is calculated using a shared

function g() for each local feature F̂i =
{

f̂
1
i . . . f̂

k
i . . . f̂

K
i

}
.

sk
i = g(f̂

k
i , W) (15)

where W is the learnable weights of a shared MLP. Features are weighted summed by using
attention scores, and informative feature vector f̃i is produced.

f̃i =
K

∑
k=1

(f̂
k
i × sk

i ) (16)

Two sets of LocSE and attention pooling are stacked to increase the receptive field size
within a dilated residual block. After the first LocSE/Attention Pooling process, information
was obtained from K neighbor points and then again from K2 points by observing the K
neighbors of the receptive field in the first process. Thus, the efficiency of the algorithm has
been increased by expanding the receptive field [18].

3.5. Superpoint Graph (SPG)

The Superpoint Graph (SPG) [19] is a deep-learning-based approach developed for the
semantic segmentation of large-scale point clouds based on partition into simple shapes.
The point cloud is defined by superpoint graphs derived from geometrically homogeneous
elements. The advantages of SPG are that it can classify a part of the object rather than a
point or voxel, it can provide long-range modeling by defining the SPG size according to
the object parts in the scene, and it can describe the relationship between adjacent objects
in detail. A deep learning architecture consisting of PointNets and graph convolutions is
implemented in detail without significant loss of information.

SPG consists of three main steps. In the first step, the point cloud is divided into
small and meaningful superpoints. The geometrically homogeneous partition is defined as
the constant connected components of the solution of the generalized minimal partition
problem. Secondly, point clouds are downsampled to a smaller number of points. The SPG
can be computed from this partition. The SPG is a representation of the point cloud, defined
as a directed graph (G = S, E, F) consisting of the set of superpoints S, superedges E, and
features F characterizing the adjacency relationship between superpoints. Gvor = (C, Evor)
is defined as symmetric Voronoi adjacency graph of the input point cloud C. If one edge of
the Evor considers a connection between S and T, Superpoints S and T are adjacent.

ε = {(S, T) ∈ S2|∃(i, j) ∈ Evor ∩ (S× T)} (17)

Secondly, large point clouds are subsampled to a smaller number of point clouds, thus
implementing PointNet. Finally, contextual segmentation is performed. SPG is smaller than
graphs from the entire point cloud. Deep learning algorithms based on graph convolutions
classify SPG’s nodes using edge features that increase long-range interaction.

3.6. Experimental Details

As a preprocessing step, local geometric properties were calculated for each dataset.
The neighborhood area was determined for each point in order to calculate the local geo-
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metric properties. The neighborhood area was determined by the nearest point approach.
In addition, a distance threshold has been applied to prevent the detection of unrelated
neighbors to the point. The optimum parameters determined experimentally are 100 near-
est neighbor points and 0.5 m distance threshold. Then, feature selection algorithms were
applied to the geometric features. Thus, the aim was to determine the most suitable features
for training and testing. The importance of the features were determined with Information
Gain, Chi2 and ReliefF algorithms, respectively. Subsets were created with the selected
features. Feature selection algorithms were implemented by using Scikit-learn library in
Python [59] and WEKA workbench [60].

The Toronto3D and Paris datasets contain 3D coordinates (x, y, z) and RGB information.
In the SZTAKI-CityMLS dataset, there are only 3D coordinates. In Toronto3D and Paris,
the RGB values of the points are also used as features in the training. All of the deep learning
experiments were implemented in a Python programming language and performed with
a single GPU. RandLA-Net is applied by using Open3D-ML library [61]. As RandLA-
Net training parameters, 200 epochs and 50 iterations in each epoch, learning rate 0.001,
and batch size 2 were determined. We used 500 epoch and 1 iteration, learning rate 0.01,
and a batch size of 2 for SPG. For the experiments, i7-11800H, 2.30 GHz processor, GTX
3070 graphics card, and 32 GB RAM hardware was used. The workflow of the study is
shown in Figure 1. The results are evaluated by the mean Intersection over-Union (mIoU)
and mean accuracy (MA).

Figure 1. Workflow of the study.
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mIoU =
1
N

N

∑
c=1

Pc ∩ Gc

Pc ∪ Gc
(18)

MA =
1
N

N

∑
c=1

Pcc

Gc
(19)

where Pc and Gc, respectively, refer to predicted and ground-truth points that belong to
class c. c ∈ (1, 2, . . . , N) is the index of the class. Pcc refers to number of true predictions for
each class.

4. Results
4.1. Feature Selection and Creating Subsets

The most suitable feature subsets were determined through filter-based feature se-
lection algorithms. In addition, training using all features and only 3D coordinates was
conducted to emphasize the effect of feature selection. Feature importance values are
calculated and ordered from largest to smallest. Specific breakpoints were determined as
the threshold value, and features with importance less than that threshold value were elim-
inated. A different number of features were selected for each algorithm. In the Toronto3D
dataset, four features with the highest importance value were selected with IG. We also
selected three features with Chi2 and three features with ReliefF (Figure 2). While the
height difference has the highest importance value in all three methods, the linearity is out
of the dataset. In the SZTAKI-CityMLS dataset, seven features were selected with IG, three
features with Chi2, and five features with ReliefF (Figure 3). In the Paris dataset, the same
five features had highest importance, which was calculated with IG and ReliefF. Three
features were selected with Chi2 (Figure 4).

(a) (b) (c)

Figure 2. Importance of each feature by filter-based feature selection algorithms for Toronto3D.
Selected features are marked as orange. (a) Feature importance calculated with IG (b) Feature
importance calculated with Chi2. (c) Feature importance calculated with ReliefF.

(a) (b) (c)

Figure 3. Importance of each feature calculated using filter-based feature selection algorithms for
SZTAKI-CityMLS. Selected features are marked as orange. (a) Feature importance calculated with IG
(b) Feature importance calculated with Chi2. (c) Feature importance calculated with ReliefF.
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(a) (b) (c)

Figure 4. Importance of each feature by filter-based feature selection algorithms for Paris. Selected
features are marked as orange. (a) Feature importance calculated with IG (b) Feature importance
calculated with Chi2. (c) Feature importance calculated with ReliefF.

After feature selection, subsets were created for training and testing. In order to
examine the effect of geometric features, training and testing were carried out with different
datasets. Since the Toronto 3D and Paris also contain RGB information, more feature
combinations were created than the SZTAKI-CityMLS dataset. The ten subsets obtained
from Toronto3D are named T1 to T10. Five subsets from S1 to S5 were produced from the
SZTAKI-CityMLS data set. Ten subsets P1 to P10 were obtained from Paris. The descriptions
of the subsets are given below.

For Toronto3D dataset:

• T1: only 3D coordinates (x, y, z).
• T2: 3D coordinates and RGB.
• T3: 3D coordinates and all geometric features.
• T4: 3D coordinates and 4 selected features with IG.
• T5: 3D coordinates and 3 selected features with Chi2.
• T6: 3D coordinates and 4 selected features with ReliefF.
• T7: 3D coordinates, RGB and all geometric features.
• T8: 3D coordinates, RGB, and 4 selected features with IG.
• T9: 3D coordinates, RGB, and 3 selected features with Chi2.
• T10: 3D coordinates, RGB, and 4 selected features with ReliefF.

For SZTAKI-CityMLS dataset:

• S1: only 3D coordinates (x, y, z).
• S2: 3D coordinates and all geometric features.
• S3: 3D coordinates and 7 selected features with IG.
• S4: 3D coordinates and 3 selected features with Chi2.
• S5: 3D coordinates and 5 selected features with ReliefF.

For Paris dataset:

• P1: only 3D coordinates (x, y, z).
• P2: 3D coordinates and RGB.
• P3: 3D coordinates and all geometric features.
• P4: 3D coordinates and 5 selected features with IG.
• P5: 3D coordinates and 3 selected features with Chi2.
• P6: 3D coordinates and 5 selected features with ReliefF.
• P7: 3D coordinates, RGB and all geometric features.
• P8: 3D coordinates, RGB, and 5 selected features with IG.
• P9: 3D coordinates, RGB, and 3 selected features with Chi2.
• P10: 3D coordinates, RGB, and 5 selected features with ReliefF.

4.2. Results of Semantic Segmentation on Toronto3D

RandLA-Net and SPG algorithms were trained separately using each subset. The aim
was to determine the most suitable feature subset for point cloud semantic segmentation.
The process was repeated in the same way for each case.
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For RandLA-Net, although the IoU value of the road marking class, where only 3D
coordinates and geometric features are used, remained below 10%, when RGB information
was included, close to 50% IoU was obtained. The highest IoU values were achieved in
the natural class. It has over 90% IoU value in all subsets. Buildings are also classified
with an IoU value of 92.2%. The highest IoU value in the Fence class was obtained with
the T5 subset as 31.9%. The highest value in mean accuracy was obtained as 87.4% using
the T9 subset. The second best result was obtained by using T8 and T10, where the mean
accuracies are 87.2% for both subsets. The lowest mIoU and MA have the experiment with
the T1 subset containing only 3D coordinates. The mIoU and MA metrics for T1 are 60.8%
and 74.2%, respectively. The features selected with Chi2 have a greater increase in accuracy.
Although this advantage was slight when used with RGB, the mean accuracy was 2.6%
higher than T4 and 4.2% higher than T6 when using the T5 subset. Class-based results are
presented in the Table 1. The qualitative assessment is illustrated in Figure 5.

Table 1. Class-based results of RandLA-Net on subsets of Toronto3D. Highest values are marked
in bold.

Subset Road Road
Mrk. Natural Building Util.

Line Pole Car Fence mIoU MA

T1 69.4 7.7 92.3 85.7 76.3 70.0 76.9 7.95 60.8 74.2
T2 94.0 49.6 93.3 84.4 78.5 69.9 79.5 14.1 70.4 86.0
T3 77.1 6.1 94.7 91.2 85.9 72.6 50.6 23.4 62.7 79.8
T4 91.0 7.2 95.8 92.1 84.9 78.3 83.7 23.2 69.5 76.6
T5 79.4 6.7 95.2 92.2 84.6 73.9 80.4 31.9 68.0 79.2
T6 90.5 8.2 94.8 91.6 85.1 74.9 69.2 20.1 66.8 75.0
T7 77.8 17.5 95.3 90.4 85.6 76.9 51.6 25.7 65.1 83.1
T8 87.5 37.8 95.5 89.6 82.1 79.3 49.5 23.4 68.2 87.2
T9 87.2 29.2 95.2 90.7 83.1 76.1 79.1 20.5 70.1 87.4
T10 87.6 31.9 95.2 88.5 83.7 78.0 71.9 20.7 69.5 87.2

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 5. Qualitative results of the methods for Toronto3D with RandLA-Net. (a) Ground Truth;
(b) T1; (c) T2; (d) T3; (e) T4; (f) T5; (g) T6; (h) T7; (i) T8; (j) T9; (k) T10.
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The road class has over 94% IoU on all subsets when using SPG. The entire road
marking class could not be determined. Similar to RandLA-Net, SPG also does not have
successful results from the fence class. The highest IoU value for the Fence class was
reached in the T9 subset. The SPG method was successful in building, natural, and car
classes. Chi2 is superior to other methods in semantic segmentation of Toronto3D with
SPG. The highest values in both mean accuracy and mIoU are achieved using three features
selected with Chi2. In the T9 subset, 75.9% MA and 69.8% mIoU was obtained. Subset T8
has the second highest mIoU at 67.5%. T1 has the lowest MA and mIoU values of 68.8%
and 63.4%, respectively. The subsets T6 and T10 containing the geometric features selected
by the ReliefF method have lower accuracy than the other subsets. P8 and P10 containing
selected features from IG and ReliefF have 5.7% higher mIoU than P7. Subset P9, which
includes features selected with Chi2, also has 3.1% higher mIoU than P7. Although adding
the RGB value improves accuracy metrics, adding geometric features further increases
accuracy. Class-based results are presented in the Table 2. The qualitative assessment is
illustrated in Figure 6.

Table 2. Class-based results of SPG on subsets of Toronto3D. Highest values are marked in bold.

Subset Road Road
Mrk. Natural Building Util.

Line Pole Car Fence mIoU MA

T1 94.1 0.0 90.4 84.6 81.9 72.0 82.7 1.4 63.4 68.8
T2 94.2 0.0 94.2 87.4 83.2 77.7 83.9 2.4 65.4 69.3
T3 94.5 0.0 94.6 90.0 79.2 72.4 85.4 11.9 66.0 71.7
T4 94.5 0.0 94.6 88.6 79.2 75.2 84.5 11.4 66.0 73.4
T5 94.3 0.0 94.3 91.4 78.0 74.9 86.9 17.8 67.2 72.5
T6 94.5 0.0 93.3 88.1 79.3 74.7 77.1 6.8 64.2 69.3
T7 94.4 0.0 95.6 90.6 80.8 70.0 89.1 15.4 67.0 72.3
T8 94.1 0.0 94.3 91.7 79.4 68.7 89.5 22.5 67.5 73.8
T9 94.4 0.0 95.6 90.5 79.7 69.7 91.2 37.3 69.8 75.9
T10 94.1 0.0 94.3 89.1 81.8 71.4 89.5 4.7 65.6 70.0

4.3. Results of Semantic Segmentation on SZTAKI-CityMLS

In the SZTAKI-CityMLS dataset, the IoU values of vegetation, ground, and facade
classes are over 97% in all generated subsets with RandLA-Net. Although there were
similar results in the Tram/Bus class, an IoU value of 89.8% was obtained in the S4 subset.
Phantom objects have the lowest IoU values. The classes with the second lowest IoU are
Pedestrian and Car classes. Significant residuals are achieved by adding geometric features
in the car class. The feature subsets generated with IG have almost the highest IoU, at 73.0%.
Compared with the S1 subset, both mIoU and mean accuracy values increased in all subsets
to which geometric features were added. IG algorithm significantly outperforms other
algorithms for SZTAKI-CityMLS dataset in all measurements. The S3 subset generated
with IG achieves the highest mIoU and mean accuracy, with 84.1% and 93.7%, respectively.
The second highest evaluation metrics are obtained with S2, which includes 3D coordinates
and all geometric features. In S5 created with the ReliefF algorithm, the mean accuracy
is lower than other methods. The results obtained in the SZTAKI-CityMLS dataset are
presented in Table 3. The qualitative assessment of SZTAKI-CityMLS is illustrated in
Figure 7.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 6. Qualitative results of the methods for Toronto3D with SPG. (a) Ground Truth; (b) T1; (c) T2;
(d) T3; (e) T4; (f) T5; (g) T6; (h) T7; (i) T8; (j) T9; (k) T10.

(a) (b) (c)

(d) (e) (f)

Figure 7. Qualitative results of the methods for SZTAKI-CityMLS with RandLA-Net. (a) Ground
Truth; (b) S1; (c) S2; (d) S3; (e) S4; (f) S5.
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Table 3. Class-based results of RandLA-Net on subsets of SZTAKI-CityMLS. Highest values are
marked as bold.

Subset Phantom Tram/Bus Pedestrian Car Vegetation Column Street
Furn. Ground Facade mIoU MA

S1 45.4 91.8 53.3 45.7 99.2 83.9 69.1 97.6 98.2 76.0 89.4
S2 42.9 99.7 51.4 55.7 99.8 89.1 89.8 98.9 98.9 80.7 92.1
S3 65.3 98.2 53.3 73.0 99.7 87.7 81.9 99.0 99.1 84.1 93.7
S4 50.0 89.8 57.0 60.0 99.6 84.8 81.8 98.1 98.4 79.9 92.2
S5 40.2 98.2 47.9 53.2 99.3 90.1 79.5 98.6 98.9 78.4 89.8

The SPG algorithm has extracted vegetation, ground and facade classes above 98% mIoU.
The highest IoU in the Phantom class was obtained in the S3 subset with 68.0%. Tram/Bus
class is extracted with 99% IoU with the features selected with ReliefF. In the S4 subset,
the IoU of the car class has decreased dramatically. The highest mIoU value, 84.1%, belongs
to the S3 subset, which contains features selected with IG. The lowest mIoU was obtained
with the S1 subset containing only the 3D coordinates. SPG with 50.1% IoU for street
furniture performed worse than RandLA-Net. Subset S4 created with Chi2 has lower mIoU
than S3 and S5. The evaluation metrics of SPG in SZTAKI-CityMLS dataset are presented
in Table 4. Predicted clouds are shown in Figure 8.

Table 4. Class-based results of SPG on subsets of SZTAKI-CityMLS. Highest values are marked
as bold.

Subset Phantom Tram/Bus Pedestrian Car Vegetation Column Street
Furn. Ground Facade mIoU MA

S1 57.3 79.3 54.2 62.2 99.8 89.4 39.0 98.1 99.2 75.4 83.5
S2 61.5 80.5 62.0 62.0 99.9 91.5 42.3 98.1 99.3 77.5 85.2
S3 68.0 93.7 59.5 62.5 99.8 95.1 39.0 98.1 99.4 79.5 86.9
S4 61.9 80.4 60.4 51.0 99.9 90.4 44.1 98.1 99.2 76.1 84.7
S5 45.4 99.0 54.8 60.8 99.8 90.2 50.1 98.1 99.2 77.5 86.8

(a) (b) (c)

(d) (e) (f)

Figure 8. Qualitative results of the methods for SZTAKI-CityMLS with SPG. (a) Ground Truth; (b) S1;
(c) S2; (d) S3; (e) S4; (f) S5.
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4.4. Results of Semantic Segmentation on Paris

There are many classes with different geometrical structures in the Paris dataset.
Successful results were obtained in all subsets in building, road, and vegetation compared
to other classes. Since IG and ReliefF select the same features, the results of the subsets
created by the two methods are the same. While the road line class has a 0.0 IoU ratio when
only geometric features are used, the algorithm can extract the road line class with up to
70% IoU by adding RGB information. IoU increases up to 10% in subsets created by feature
selection in the traffic light class. P8 and P10 have 55.2% mIoU. The lowest mIoU with
42.7% was obtained in the P1 subset containing only 3D coordinates (x, y, z). The results of
RandLA-Net in the Paris dataset are presented in the Table 5. The qualitative assessment of
the Paris dataset with RandLA-Net is illustrated in Figure 9.

Table 5. Class-based results of RandLA-Net on subsets of Paris. Highest values are marked as bold.

Class P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Unlabeled 72.5 67.3 68.4 68.3 72.0 68.3 60.2 72.0 68.9 72.0
Building 85.7 84.9 84.6 85.4 85.5 85.4 83.6 86.1 88.1 86.1

Fence 15.5 22.9 15.9 12.2 16.1 12.2 20.5 22.3 18.9 22.3
Other 22.0 30.2 23.1 20.3 26.0 20.3 27.7 23.5 27.4 23.5

Pedestrian 68.9 58.4 50.7 61.4 64.1 61.4 42.2 60.5 67.9 60.5
Pole 51.3 61.8 48.5 49.6 49.4 49.6 55.0 60.2 56.0 60.2

Road Line 0.0 65.3 0.0 0.0 0.0 0.0 72.3 69.2 70.0 69.2
Road 84.9 86.9 85.1 85.6 83.7 85.6 91.9 91.2 93.2 91.2

Sidewalk 63.7 58.6 63.1 62.1 57.4 62.1 67.5 72.5 60.9 72.5
Vegetation 89.5 84.3 90.2 88.5 91.9 88.5 89.4 86.8 85.6 86.8

Vehicles 75.7 84.2 84.7 84.3 75.2 84.3 77.3 82.0 84.1 82.0
Traffic Sign 0.0 51.8 24.2 21.8 29.0 21.8 34.6 48.1 46.5 48.1

Static 0.0 30.5 2.6 0.0 0.0 0.0 0.0 32.2 0.0 32.2
Traffic Light 33.4 36.0 36.2 46.1 24.6 46.1 38.4 45.7 42.5 45.7

Dynamic 15.1 18.9 14.9 14.2 10.0 14.2 23.4 25.6 28.1 25.6
Terrain 4.2 1.3 5.0 3.8 5.7 3.8 7.5 5.0 6.4 5.0

mIoU 42.7 52.7 43.6 43.9 43.2 43.9 49.5 55.2 52.6 55.2
MA 54.1 68.0 55.0 54.7 53.6 54.7 63.7 67.9 65.5 67.9

With the SPG method, high metrics were obtained in the building and vegetation in
the Paris dataset. Road class IoU decreased compared to RandLA-Net results. Sidewalk
could not be detected in almost any subset. It is usually assigned to the road class. The SPG
method could not detect the road line in any of the subsets. Similar to Sidewalk, the road
line is mixed with the road class. The terrain class reached 55.8% IoU in P8 and P10 subsets,
which consist of features selected with IG and RelieF algorithms. The IoU of the fence class
decreased when all geometric features were used, but increased when feature selection was
applied. The vehicles class reached the highest IoU with 87.0% and 91.6% IoU, respectively,
in P5 and P9 subsets containing features selected with Chi2. The highest accuracy was
achieved in the P8 and P10 subsets, resulting in 59.0% IoU. The lowest IoU (52.3%) was
obtained in the P3 subset, where 3D coordinates and all geometrical properties were used.
The Chi2 algorithm has lower metrics than IG and ReliefF in the SPG method, as in RandLA-
Net. The results of RandLA-Net in Paris dataset are presented in the Table 6. The qualitative
assessment of Paris dataset with RandLA-Net is illustrated in Figure 10.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 9. Qualitative results of the methods for Paris dataset with RandLA-Net. (a) Ground Truth;
(b) P1; (c) P2; (d) P3; (e) P4; (f) P5; (g) P6; (h) P7; (i) P8; (j) P9; (k) P10.

Table 6. Class-based results of SPG on subsets of Paris. Highest values are marked as bold.

Class P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Unlabeled 1.9 2.0 2.5 2.7 3.4 2.7 2.5 55.8 2.7 55.8
Building 88.3 86.3 87.4 88.3 87.1 88.3 85.9 87.4 85.8 87.4

Fence 31.1 23.8 0.7 10.6 28.3 10.6 6.1 14.7 14.7 14.7
Other 23.4 17.0 6.3 19.1 24.6 19.1 20.0 11.9 10.5 11.9

Pedestrian 33.4 62.7 59.6 58.3 50.2 58.3 48.2 62.7 73.7 62.7
Pole 56.8 54.7 58.1 58.9 47.9 58.9 54.8 50.9 55.4 50.9

Road Line 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Road 74.6 72.9 73.0 74.6 73.7 74.6 75.2 75.2 74.6 75.2

Sidewalk 0.9 2.1 2.5 0.7 0.2 0.7 2.4 1.2 1.2 1.2
Vegetation 94.7 94.3 94.9 93.9 88.6 93.9 80.9 89.2 93.9 89.2

Vehicles 77.3 88.9 84.6 82.5 87.0 82.5 84.5 86.2 91.6 86.2
Traffic Sign 35.8 23.9 38.8 24.5 22.6 24.5 34.6 41.8 35.7 41.8

Static 30.1 22.3 13.4 34.5 10.4 34.5 24.9 24.9 26.3 24.9
Traffic Light 1.2 33.0 6.7 12.1 19.5 12.1 9.0 9.1 16.7 9.1

Dynamic 4.4 17.3 17.0 6.2 5.9 6.2 20.4 4.5 8.7 4.5
Terrain 1.9 2.0 2.5 2.7 3.4 2.7 2.5 55.8 2.7 55.8

mIoU 53.1 57.5 52.3 54.4 52.6 54.4 52.7 59.0 56.7 59.0
MA 46.1 45.8 43.1 46.4 44.3 46.4 45.9 48.1 45.8 48.1
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Figure 10. Qualitative results of the methods for Paris dataset with SPG. (a) Ground Truth; (b) P1;
(c) P2; (d) P3; (e) P4; (f) P5; (g) P6; (h) P7; (i) P8; (j) P9; (k) P10.

5. Discussion

The results of the study allow general inferences to be made regarding the usage of
suitable 3D geometric features for deep-learning-based point cloud segmentation.

• When Tables 1–6 are examined, it is concluded that the use of geometric features
improves IoU and mean accuracy. The RandLA-Net algorithm achieved higher perfor-
mance in T3, S2, and P3 subsets where 3D coordinates and all 3D geometric features
are used together, compared to T1, S1, and P1 subsets containing only 3D point coor-
dinates. In Toronto3D, accuracy metrics have increased in subsets where RGB and
3D geometric features are used together, except for the T7 subset, because there are
features that do not positively impact accuracy among 3D geometric features. Ob-
taining the highest mean accuracy metrics with the T8, T9 and T10 subsets applied
to the feature selection confirms this situation. Furthermore, the addition of RGB
information of the points improves accuracy. T2 has higher mIoU than T8, T9 and
T10 with an added 3D geometric feature. The main reason for this is that the road
marking class is detected more accurately in T2. When the mIoU average of the classes
is calculated by subtracting the road marking, T2 has 73.4% mIoU, and T8, T9 and
T10 have 72.4%, 76.0% and 75.0% mIoU, respectively. Geometric features improve
accuracy in many classes, especially when Chi2 and ReliefF algorithms are applied.
In the SZTAKI-CityMLS dataset, although two features were eliminated with the
IG method in the S2 subset, more successful results were obtained by 3.4% in mIoU
and 1.6% in MA than S1, which includes all geometric features. Despite the large
number of classes, RandLA-Net has successful results in the Paris dataset. In the P7
subset, which includes all of the RGB and 3D geometric features, there is a decrease in
accuracy compared to P2. However, the highest mIoU value is obtained in P8 and P10
using the features selected with IG and ReliefF. When 3D coordinates and geometric
features are used together, there is no significant metric difference between filter-based
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algorithms. Since RGB information is advantageous for finding classes such as road
line, subsets P2, P7, P8, P9, and P10 containing RGB information significantly increased
in IoU compared to those without RGB.

• RandLA-Net performed well in the road, building, and natural classes in Toronto3D.
However, road marking was confused by the road. As seen in Table 1, road marking
IoU values are very low, especially in subsets T1, T3, T4, T5, and T7 without RGB. Road
markings cover pavement markings including driving lines, arrows, and pedestrian
crossings. These markings do not differ from the road class geometrically. Therefore,
it is not possible to distinguish road markings using only 3D geometric features.
The main difference between road and road markings is in the RGB information.
Therefore, road marking has higher IoU in subsets with RGB compared to others.
In the T2 subset, the road marking IoU reached approximately 50%. In the fence class,
IoU values are generally below 30%. Because fence class has a fewer numbers of
points than the others, it was predicted with lower IoU. In SZTAKI-CityMLS dataset,
tram/bus, vegetation, column, ground, and facade classes are predicted correctly in all
cases. Here, phantom objects are usually the class with the lowest IoU. Classification
of phantom objects is a challenge in MLS point clouds. Phantom objects that exist in
point clouds representing temporary objects (vehicles, people, or animals) cannot be
used for mapping purposes. Phantom objects are confused with other objects because
they have irregular geometric structure. It is quite difficult to detect phantom objects
using 3D geometric features. When all geometric features are used in the S2 subset,
the IoU of the phantom class decreases. However, the IoU value was significantly
increased, with seven features selected by the IG method. It seems that the planarity
and linearity features negatively affect the accuracy of the phantom class. Significant
improvement in the accuracy of the phantom class has been achieved with optimal
feature selection. The pedestrian class is often mixed with other classes located nearby.
According to Table 5, building, road, and vegetation were successfully extracted in
all subsets with RandLA-Net in Paris dataset. Higher IoU is achieved when RGB
information is added to the feature vector for the road line class, as in Toronto3D.
The classes with the lowest IoU are fence, other, static, dynamic, and terrain. These
classes are often confused with other classes of similar characteristics. Dynamic objects
can be assigned to other classes because they are geometrically complex and diverse.
While the Terrain class is almost never removed in other subsets, the IoU value reaches
55.8% IoU with the P8 and P10 subsets. It is often confused with vegetation and road.
sphericity and planarity selected with Chi2 are not enough to distinguish terrain.

• Feature selection improves evaluation metrics in all datasets in the semantic segmenta-
tion performed with SPG. Adding RGB or geometric features in the Toronto3D dataset
increases the accuracy of semantic segmentation. Chi2 is superior to other methods in
semantic segmentation of Toronto3D with SPG. The mIoU of T5 is 1.2% higher than
T3, which includes all geometric features, and the mIoU of T9 is 2.8% higher than
T7, which includes RGB and all geometric features. Features selected with ReliefF
reduce the semantic segmentation accuracy of SPG in Toronto3D. In SZTAKI-CityMLS,
the highest accuracy was obtained in the S3 subset created with the features selected
with IG. In the Paris dataset, as in RandLA-Net, the highest mIoU was obtained in
P8 and P10 created with IG and ReliefF. Generally, the subset results are similar to
RandLA-Net. Thus, it was concluded that the features determined via filter-based
methods have similar effects in different algorithms.

• Road markings are assigned as road. Since road and road marking (line) have the
same geometric structure, they cannot be distinguished by SPG, which mostly uses
geometric relationships. The most significant differences between the subsets in the
Toronto3D dataset occur in the fence class. Adding RGB information in particular
increases the IoU of the car class. Although SPG has a better result in determining
the phantom class in SZTAKI-CityMLS, some points belonging to the tram/bus class
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are assigned to the phantom class. IoU increased in most classes with IG, while it
decreased with ReliefF.

• IG and Chi2 algorithms performed more successful feature selection in the Toronto3D
dataset. Semantic segmentation with features determined by ReliefF has lower ac-
curacy. According to the results presented in Figure 2, ReliefF calculated the effect
of features other than height difference as both very low and close to each other.
In addition, although similar features have high importance, it was concluded that the
combination of features is important for semantic segmentation. Although there is
only one feature difference between T4 and T6, an increase of approximately 3% mIoU
and 1.6% MA is achieved with T4. Even though only the omnivariance feature was
added in T6, mIoU decreased by 1.2% and MA by 4.2% compared to T5. When RGB is
added to the selected features, the highest metrics T9 created with Chi2 are obtained.
In the semantic segmentation of the SZTAKI-CityMLS dataset, the positive effect of
3D geometric features on accuracy is seen more clearly. All other subsets containing
3D geometric features are superior to the dataset S1, which contains only the 3D coor-
dinates of the points. Although there is no significant difference between filter-based
algorithms when only selected geometric features are used, when RGB information is
added, approximately 2.5% improvement in mIoU is achieved in subsets created with
features selected by IG and ReliefF algorithms compared to Chi2 in Paris dataset.

• However, instead of using all of the geometric features, the results are more successful
when the most suitable ones are selected with feature selection. Although all geometric
features were used in the subsets T3, T7, S1, P3, and P7, the highest metrics could not be
obtained. Some of the features can negatively affect semantic segmentation. For this
reason, applying feature selection methods enabled the development of semantic
segmentation results by eliminating unnecessary features. This is confirmed by the
results of the study.

6. Conclusions

In this study, the effect of using 3D geometric features for deep-learning-based seman-
tic segmentation of mobile point clouds was examined, and appropriate feature selection
was carried out. The performances of three filter-based methods for feature selection (IG,
Chi2 and ReliefF) were compared on two different datasets. RandLA-Net and SPG were
used as a deep learning network. For the semantic segmentation of Mobile LiDAR point
clouds, we obtained the following conclusions by comparing the 3D coordinate information,
geometric features, spectral features, and feature subsets created using filter-based methods.

• Using all geometric features does not guarantee better results. Feature selection
methods improve semantic segmentation accuracy by identifying suitable features.
This improvement becomes even more evident, especially if there are geometrical
differences between classes. The usage of effective geometric features provides an
advantage in semantic segmentation.

• Successful results were obtained by selecting features with the IG method in all
datasets. Thanks to the feature selection with the Chi2 method, the highest mean
accuracy is obtained in Toronto3D, while the IG method is more successful than Chi2
in the SZTAKI-CityMLS and Paris datasets. The feature selection problem may differ
depending on the dataset. The fact that the datasets are different and the datasets
have different features related to each other causes the appropriate feature selection
method to change. Similar feature selection algorithms can be used for datasets with
similar features.

• Evaluation metrics increase if spectral information is used together with 3D geometric
features. Spectral features are useful for separating features such as road lines.

• Mobile point clouds are often captured in a dynamic environment. Future studies
will focus on eliminating the noise caused by dynamic objects (moving car, moving
pedestrian, other living beings, etc.) in the mobile LiDAR point clouds.
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