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Abstract: Ransomware is a strain of malware that disables access to the user’s resources after
infiltrating a victim’s system. Ransomware is one of the most dangerous malware organizations
face by blocking data access or publishing private data over the internet. The major challenge of
any entity is how to decrypt the files encrypted by ransomware. Ransomware’s binary analysis can
provide a means to characterize the relationships between different features used by ransomware
families to track the ransomware encryption mechanism routine. In this paper, we compare the
different ransomware detection approaches and techniques. We investigate the criteria, parameters,
and tools used in the ransomware detection ecosystem. We present the main recommendations
and best practices for ransomware mitigation. In addition, we propose an efficient ransomware
indexing system that provides search functionalities, similarity checking, sample classification, and
clustering. The new system scheme mainly targets native ransomware binaries, and the indexing
engine depends on hybrid data from the static analyzer system. Our scheme tracks and classifies
ransomware based on static features to find the similarity between different ransomware samples.
This is done by calculating the absolute Jaccard index. Results have shown that Import Address Table
(IAT) feature can be used to classify different ransomware more accurately than the Strings feature.

Keywords: dynamic analysis; encryption; honeypot; Jaccard index; malware; machine learning;
ransomware; similarity matrix; shared code analysis; static analysis

1. Introduction

Ransomware is the most trending malware. As per its dangerousness, it can be
considered one of the significant internet industry threats [1]. Ransomware intends to
obtain quick money from victims by encrypting systems and users’ files until victims
pay [2]. Ransomware works by encrypting data, files, and other system resources on the
victim’s computer and demanding a ransom in exchange for their release [3]. Ransomware
is relatively simple to develop compared with other malware variants. At the same time,
ransomware is challenging to deal with from a remediation aspect because once encrypted,
the data causes significant losses for users and needs a significant amount of effort to undo
the harm and return the system to its previous state [4]. The authors in [5] presented the
lifecycle of ransomware. Figure 1 summarizes the different ransomware attack phases,
from creation to extortion.
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Figure 1. Ransomware lifecycle from creation to extortion. 

1.1. Malware via Ransomware 
Ransomware is a sub-category of malware designed to harm a computer or computer 

network. Ransomware can be defined as “an ever-evolving form of malware designed to 
encrypt files on a device, rendering any files and the systems that rely on them inopera-
ble.” 

Malicious actors will then demand a ransom to decrypt the data. If the ransom is not 
paid, ransomware criminals frequently target and threaten to sell or disclose exfiltrated 
data or authentication information.  

Ransomware authors are highly technically skilled people. Ransomware is still evad-
ing detection and infecting companies’ networks across all industries. Defenders must 
continuously improve their dynamic detections. 

Ransomware is spreading fast, which increases the number of security incidents on 
computers. Ransomware detection is not easy, but adding the propagation feature to the 
malware increases the dangerousness, as it is not centrally controlled. The ransomware 
industry has become more and more attractive from a business perspective, especially for 
governmental or political purposes. It offers many funds, encouraging ransomware au-
thors to invent new evasion techniques against the ransomware detectors. Ransomware 
analysis is about understanding ransomware functions, determining their nature and pur-
pose, host and network indicators, and persistence mechanisms. Ransomware analysis is 
the study or process of determining a malware sample’s functionality, origin, and poten-
tial impact. Malware analysis can be divided into two main types: 
i. Static Analysis 

Analysis of ransomware that is performed without the actual execution of the mali-
cious code. Static analysis scales well and can provide better coverage of a ransomware 
binary code. However, static analysis can produce false execution behavior as code paths 
may not be reachable during actual execution [6]. 
ii. Dynamic Analysis 

Executing ransomware in an instrumented or monitored manner garners more fac-
tual information on behavior. Dynamic analysis can provide more accurate information 
on the actual execution behavior of a ransomware binary, and dynamic analysis can be 
computationally expensive [7]. 

The authors in [8] compared the static and dynamic ransomware analysis. Table 1 
summarizes the comparison using the following parameters: Speed, safety, ability to an-
alyze obfuscated and polymorphic hardware, level of false positives, and accuracy. 
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1.1. Malware via Ransomware

Ransomware is a sub-category of malware designed to harm a computer or computer
network. Ransomware can be defined as “an ever-evolving form of malware designed to
encrypt files on a device, rendering any files and the systems that rely on them inoperable.”

Malicious actors will then demand a ransom to decrypt the data. If the ransom is not
paid, ransomware criminals frequently target and threaten to sell or disclose exfiltrated
data or authentication information.

Ransomware authors are highly technically skilled people. Ransomware is still evad-
ing detection and infecting companies’ networks across all industries. Defenders must
continuously improve their dynamic detections.

Ransomware is spreading fast, which increases the number of security incidents on
computers. Ransomware detection is not easy, but adding the propagation feature to the
malware increases the dangerousness, as it is not centrally controlled. The ransomware
industry has become more and more attractive from a business perspective, especially for
governmental or political purposes. It offers many funds, encouraging ransomware authors
to invent new evasion techniques against the ransomware detectors. Ransomware analysis
is about understanding ransomware functions, determining their nature and purpose, host
and network indicators, and persistence mechanisms. Ransomware analysis is the study
or process of determining a malware sample’s functionality, origin, and potential impact.
Malware analysis can be divided into two main types:

i. Static Analysis

Analysis of ransomware that is performed without the actual execution of the mali-
cious code. Static analysis scales well and can provide better coverage of a ransomware
binary code. However, static analysis can produce false execution behavior as code paths
may not be reachable during actual execution [6].

ii. Dynamic Analysis

Executing ransomware in an instrumented or monitored manner garners more fac-
tual information on behavior. Dynamic analysis can provide more accurate information
on the actual execution behavior of a ransomware binary, and dynamic analysis can be
computationally expensive [7].

The authors in [8] compared the static and dynamic ransomware analysis. Table 1
summarizes the comparison using the following parameters: Speed, safety, ability to
analyze obfuscated and polymorphic hardware, level of false positives, and accuracy.
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Table 1. Comparison between static and dynamic ransomware analysis.

Parameters Degree Static Analysis Dynamic Analysis

Speed Low
√

High
√

Safety Low
√

High
√

Obfuscated and polymorphic
ransomware analysis

Not Able
√ √

Able

False Positives Level
Low

√

High
√

Accuracy Low
√

High
√

1.2. Ransomware Tracking Approach

Analyzing a new ransomware sample can take effort and time to find the ransomware
family that the sample belongs to. This could be achieved by running it through a multi-
engine antivirus scanner such as VirusTotal. However, depending on this approach some-
times becomes difficult because VirusTotal detection naming may also have generic naming,
as malware authors could check the VirusTotal database. Hence, they become aware that
their ransomware is detectable, so they can change the ransomware’s code or encryption
function, which we try to track [9]. The second approach is to run the ransomware sample
in CuckooBox or another malware sandbox to acquire a limited report on the callback
servers and the behavior of the malware sample. This takes processing time, which is not
practical in large malware datasets because it will take too much time to analyze the submit-
ted ransomware samples dynamically [10]. The third approach we followed in our paper
is ransomware shared code analysis tracking or similarity check analysis. This method
compares two ransomware samples by calculating the proportion of recompilation source
code they have in common and calculating the absolute Jaccard Index of the ransomware
samples. This is done to find similar samples to track their encryption function, which
allows us to apply existing decryption tools on similar samples to a reference sample that
already has a decryptor.

1.3. Paper Contributions

This paper surveys the different ransomware detection approaches and techniques
proposed in the literature. It also analyzes the various criteria, parameters, and tools used in
the ransomware detection ecosystem. It presents the different recommendations proposed
in the literature for ransomware prevention. The paper proposes a flexible and automated
approach to extract malware’s static features performed in a virtualized environment.
Similarities anddifferences between malware features are computed, which allows malware
classification and the detection of the similarity between different samples’ static features.
This helps our proposed system track the ransomware samples based on their functionality.
Moreover, it aids in identifying similar ransomware samples to our reference sample. The
second main goal after finding the similarity is to apply the ransomware’s decryptor across
similar ransomware samples to identify the ransomware encryption weaknesses in different
ransomware families. The reference ransomware sample is SALAM ransomware [11].

The contributions of this paper are as follows.

1. Compare different ransomware families’ infection behavior and provide a timeline
for the ransomware’s history.

2. Survey and compare the different ransomware detection approaches and present in de-
tail the ransomware detection ecosystem, which comprises the detection environment,
data analysis, Machine Learning, outcomes, evaluation criteria, and detection tools.
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3. Study ransomware encryption mechanisms and techniques and identify the encryp-
tion algorithm used by SALAM ransomware.

4. Suggest a reference file that could be inserted into the environment’s machines to
be used later as the most significant reference file in case of encryption. The most
prominent reference file is the non-encrypted copy of the encrypted ransomware file.

5. Set up an automated technique to extract different samples’ features (Strings and
Import Address Table) to calculate the Jaccard Index and Similarity matrix.

The remainder of this paper is organized as follows. Section 2 is a background about
different static features used for malware tracking. Section 3 presents the effort done in
the literature for ransomware detection. Section 4 presents our system setup results and
analysis. Finally, conclusions and future work are presented in Section 5.

2. Background

In this section, we define and present the features affecting ransomware tracking and
introduce the different static features used for malware tracking. Section 2.1 introduces ran-
somware types and history. Section 2.2 Ransomware infection source routines. Section 2.3
discusses ransomware encryption mechanisms and compares different ransomware en-
cryption techniques. Finally, Section 2.4 presents malware tracking using static features.

2.1. Ransomware Types and History

Ransomware has become ubiquitous. No matter how much we organize to rid the
world of the ransomware plague, we find that ransomware is becoming more common,
and threat actors are becoming more brazen. Companies are crumbling under the weight
of these attacks.

Ransomware is the most dangerous type of malware. Ransomware can be classified
into different types:

Crypto worm-based ransomware: This is legacy ransomware as it uses other malware
capabilities to spread through the network, but most modern anti-malware block this type
of ransomware [12].

Ransomware-as-a-Service (RaaS): The Idea of Ransomware as a Service (RaaS) is that
cybercriminals can create a customized version of various types of ransomware for profit;
30% of the profits go to the service developer [13].

Automated Active Adversary targeted ransomware [14]: the most dangerous type of
ransomware used in APT attacks. One example is Shamoon data wiper malware [15,16]
which was used by the APT-33 group [17] to attack the Middle East and Europe, whether
for commercial or military reasons.

Each ransomware type has key features, infection spreading techniques, such as
Phishing emails, Stolen RDP credentials, and exploit kits, exploitation mechanisms used by
the ransomware such as exploiting the SMB protocol, which the WannaCry ransomware
used in 2017, and finally, the ransomware families for each type, Table 2 summarizes the
comparison between different ransomware malware behavior types.

2.2. Ransomware Infection Source Routine

There are several sources of ransomware infection. The percentage of different ran-
somware infection vectors was mentioned in [18]. There are an automated ransomware
infection routines, such as random phishing emails and drive-by downloads. The new
infection routine known as human-operated ransomware, which is the result of a targeted
attack by cybercriminals who gain access to an organization’s on-premises or cloud IT
infrastructure, gain administrative access, and then use that access to push ransomware to
critical data via domain controller group policy or network shared folders.

Human-operated ransomware attacks frequently include stealing credentials and then
using those credentials to move laterally within an organization and get administrative
access to more accounts. It is possible for fraudsters to exploit security configuration
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gaps during maintenance windows. The end goal is to release a malware payload into
the system.

Table 2. Comparison Between Ransomware Malware Behavior Types.

Ransomware Type Crypto Worm Ransomware-as-a-Service
(RaaS) Automated Active Adversary

Key Features Is a legacy ransomware.

Allows cybercriminals with
limited technical expertise to

launch ransomware attacks. The
malware is made available to
them, resulting in lower risk

and more significant profit for
the ransomware’s developers.

Is an opportunistic
ransomware attack.

Spreading techniques
Standalone ransomware that

copies itself on other machines
is used.

Dark web communities who
buy the ransomware and use

Phishing emails to infect
the targets.

Ransomware is spread by
attackers who use automated
tools to search the internet for

vulnerable IT systems.

Exploitation
Exploits the vulnerabilities

within the operating
system itself.

Social engineering techniques
are used to deceive victims into

opening emails or malicious
attachments attached to emails

or via exploit kits.

Targets are vulnerable to
brute-force password-guessing
attacks. They are a sought-after
entry point. although victims
may assume they are being

targeted.

Detection

Monitoring the shared folders
and limiting access.

Security vendors use
signature-based anti-malware

engines to detect this type
of ransomware.

Intrusion prevention and
detection systems can prevent
and monitor exploit attempts.
Email security products can

analyze the email attachment
before the user receive it.

Anti-malware products can
detect ransomware, but user

awareness is key to eliminating
this ransomware type.

Virtual patching products can
be used to minimize the

ransomware actors’ capabilities.

Ransomware Family WannaCry, Ryuk Satan, Cerber, Netwalker,
MacRansom, SALAM, Conti Egregor, Stop

The sources of infection for most ransomware are illustrated in Figure 2 and can be
summarized as follows in Table 3.
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Table 3. Ransomware infection source types.

Infection Source Type

Random phishing emails Automated legacy ransomware
Targeted phishing emails (Spear phishing) human-operated ransomware

Leaked credentials human-operated ransomware
RDP brute force human-operated ransomware

APT attacks human-operated ransomware
Vulnerable internet-facing systems human-operated ransomware

Drive-by downloads Automated legacy ransomware
Exploit kits human-operated ransomware
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The authors in [19] summarized the ransomware evolution as shown in Figure 3 [19],
while in [20], the authors discussed the history of ransomware in detail. In Table 4, we
summarized the ransomware timeline with the date of the ransomware family and the
damage caused by those ransomware families.
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Table 4. Ransomware History Timeline.

Date Ransomware Family Event Description Damage

January 1989 AIDS AIDS Trojan emerges Leakage of boot directories,
loss of system files

December 2004 Gpcode, PGPcoder emerges
The first quasi-modern

crypto-ransomware called
PGPcoder emerges

Loss of system and user files

November 2005 Krotten emerges The first known operating system locker
called Krotten emerges Data and money loss

March 2006 Archiveus The Cryzip crypto ransomware involving
ZIP archives emerges data and money loss

June 2006 Cryzip The first guides on how to create crypto
ransomware appear in the underground data and money loss

May 2009 Krotten, WinLock The Winlock ransomware for sale on
underground forums for the first time data and money loss

June 2009 Locker ransomware Sales of various locker ransomware surge
on forums data and money loss

July 2009 Locker ransomware Articles about developing locker
ransomware appear in the underground data and money loss

January 2010 WinLock The first locker ransomware affiliate
programs emerge

Holding up the operating
system, data and money loss

December 2010 Crypto ransomware
Crypto ransomware returns with
Encoder Builder, which is made

freely available.

Holding up the operating
system, data and money loss

July 2011 Encoder An improved version of Encoder is sold Holding up the operating
system, data and money loss

January 2012 Reveton Locker ransomware with the MBR
overwrite functionality appears

Holding up the operating
system, data and money loss
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Table 4. Cont.

Date Ransomware Family Event Description Damage

September 2012 Encoder, Unlocker, Reveton,
Citadel

A series of crypto-ransomware attacks
start in Australia

Holding up the operating
system, data and money loss

June 2013 FakeDefender The first crypto-ransomware affiliate
program emerges

Holding up the operating
system, data and money loss

September 2013 FakeAV The first CryptoLocker attacks and
affiliate programs begin

Holding up the operating
system, data and money loss

December 2013 Crypto-Locker, PowerLocker

Known underground users report that
the locker ransomware trade is dead and

that the crypto-ransomware era
has begun

Holding up the operating
system, data and money loss

January 2014 Simplocker, Locker, Koler,
LockDriod, Cypto-Wall

Many new crypto-ransomware and
affiliate programs emerge

Holding up the operating
system, data and money loss

May 2015

TorrentLocker, VaultCrypt, Tox
ransomware,

LowLevel04, Chimera, Linux.
Encoder, CryptoWall

The publicly available
crypto-ransomware called Tox emerges

Holding up the operating
system, data and money loss

November 2015 Ransomware as a service (RaaS)
The ransomware called Chimera is used

to attack law firms only, and hackers
threaten to publish stolen data.

Holding up the operating
system, data and money loss

November 2015 Linux Encoder emerges The first Linux ransomware called Linux
Encoder emerges

Holding up the operating
system, data and money loss

December 2015 Linux Encoder emerges
Many threads on underground forums

are created in which threat actors discuss
that only legal entities should be attacked

Holding up the operating
system, data and money loss

February 2016 Cerber
One of the most large-scale and notorious

affiliate programs, Cerber
ransomware, begin

Holding up the operating
system, data and money loss

March 2016 Crysis The first macOS ransomware called
KeRanger appears

Holding up the operating
system, data and money loss

March 2016 Locky
The notorious ransomware called Petya,

with the MBR, overwrite
functionality, emerges

Holding up the operating
system, data and money loss

November 2016
Cerber ransomware, KeRanger,

Petya, Mischa, Satana, ZCryptor,
CTB-Locker, Locky, TeslaCrypt

Some pieces of ransomware start using
Telegram as a Command-and-Control

(C&C) server

Holding up the operating
system, data and money loss

May 2017 WannaCry
Attacks use WannaCry ransomware, with

an automatic spreading function as
a worm

Holding up the operating
system, data and money loss

June 2017 Sopra, WannaCry, NotPetya
The ransomware NotPetya, which

continued the WannaCry
activity, emerges

Holding up the operating
system, data and money loss

January 2018 Zeus, GandCrab
The first modern ransomware affiliate
program called GandCrab is born, and

the targeting of legal entities begins

Holding up the operating
system, deleting the backup
data, data and money loss

March 2019 GandCrab, REvil, Mephistophilu
The first RaaS called Snatch, which uses

the double extortion technique,
is released

Holding up the operating
system, data and money loss

May 2019 Maze The ransomware called Maze is created
Holding up the operating

system, deleting the Backup
data, data and money loss
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Table 4. Cont.

Date Ransomware Family Event Description Damage

December 2019 Ransomware Snatch,
ChaCha/Maze, REvil, Babuk The first DLS (Maze) appears

Holding up the operating
system, deleting the Backup
data, data and money loss

June 2020 Ransomware as a service (RaaS),
SALAM Ransowmare

The number of new RaaS affiliate
programs surges

Holding up the operating
system, deleting the Backup
data, data and money loss

May 2021 Ransomware as a service (RaaS) “No more ransoms!”: publishing RaaS on
underground forums is banned

Holding up the operating
system, deleting the Backup
data, data and money loss

July 2021 Ramp platform, Groove Ramp a ransomware-related forum
Holding up the operating

system, deleting the Backup
data, data and money loss

January 2022 REvil REvil ransomware gang arrested
in Russia

Holding up the operating
system, deleting the backup
data, data and money loss

2.3. Ransomware Encryption Mechanisms

Some ransomware encrypt all discovered files and directories. Others, such as Cerber
and Locky, look for and encrypt specific document files [21]. Others, such as Petya, simply
encrypt the boot data and the file system tables. Some ransomware authors search for and
encrypt cloud-based information, while others exclusively encrypt local files. It is impossi-
ble to predict which one will attack. Most ransomware encryption employs both public and
symmetric key encryption [22]. Asymmetric key encryption is used to secure the symmetric
keys that encrypt all files. The encryption process goes through the following steps:

1. The ransomware’s author generates one or more asymmetric public/private key pairs
and one or more symmetric keys. Each file or computer could have its symmetric key.

2. The symmetric keys are used to encrypt the data, and the plaintext data versions are
permanently deleted once the encrypted version is completed. The encrypted data file
copies are usually given a recognized file extension by most ransomware applications.

3. The plaintext version of the symmetric keys is erased after encryption with the
asymmetric public key.

4. The ransomware’s key storage server receives the asymmetric private key and waits
for additional instructions.

Different forms of encryption are used by different ransomware authors, but they
are all quite good and standard. The Maze ransomware group, for example, employs
ChaCha20 or RSA with 2048-bit keys [23]. Many ransomware authors prefer to use the far
more widely used AES encryption cipher, but ChaCha20 is much stronger and faster [24].

SALSA20 is an encryption algorithm used by the SALAM ransomware family to
encrypt files [25]. We tracked the SALSA20 algorithm used by this family and found it
vulnerable as it generates a random key to be used for encryption and uses it for all files
on the infected machine. In each round of encryption, the key state is derived from the
key and the previous key state. The derived key state is XORed with the current block
of the file’s content. The steps of changing the key state and XORing are repeated until
all blocks of the file are encrypted; Obtaining the original key is not feasible as the key is
16 bytes and cannot be derived from the files or the remnants of the malware. The stream
of the key state is obtained by comparing an encrypted file with its original unencrypted
file from a backup. This yields the actual key stream, which was used to encrypt each file
in the system. The key stream can be used to decrypt the files directly without requiring
the encryption key. The key stream length determines how long the beginning of the file
has been decrypted. The challenge would be to find for each machine an unencrypted file
backed up in some place, and that file must be large enough to generate a large key stream
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to decrypt other files in the system [26]. Table 5 summarizes the different ransomware
encryption algorithms. The salsa20 block diagram is shown in Figure 4 [27].

Table 5. Ransomware Encryption Algorithms [28–30].

Ransomware Family Encryption Algorithm

SALAM Salsa 20
TeslaCrypt AES-256

Petya Salsa 20
Cerber RC4

Dharma AES-256
Shade AES-256

GrandCrab RSA, AES
BadRabbit Salsa 20

Locky RSA, AES
Darkside Salsa 20, RSA

BlackMatter Salsa 20
Stop AES-256

Babuk ChaCha
AgeLocker ChaCha 20

Conti AES-256
Maze ChaCha 20, RSA
Ryuk RSA, AES

Anatova Salsa 20
Snake AES-256

WestedLocker AES-256
GoldenEye Salsa 20

TorrentLocker AES-CTR
Misha Salsa 20
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2.4. Static Features Ransomware Tracking

Our proposed ransomware classification, clustering, and detection system in Section 4
aims to help ransomware analysts and reverse-engineers from redoing tedious tasks done
before by other analysts and provide a joint collaborative analysis, estimating the amount
of code shared by two malicious ransomware binaries before attackers assembled them.

There are a variety of approaches to this problem, but a consistent thread appears
from the hundreds of computer science research papers that have been published on the
subject to estimate the amount of shared code between ransomware binaries. We classify
malware samples into different static features before comparing them; those static features
could be strings, hashes, export, and import address tables [31]. Shared features between
two malware samples are shown in Figure 5 [31].
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An N-gram is a substring of a given text or speech string sample with a length of n.
This string can include several types depending on the application. For example, it can
include letters, words, phonetics, syllables, etc. N-grams are created by splitting a text
string into substrings of fixed length. For example, world MALWARE 3-g will look like
this “MAL,” “ALW,” “LWA,” “WAR,” “ARE.” As a result of the string-based nature of
analysis files, this technique has been widely adopted by security researchers to represent
the features of ransomware [32,33]. We employ a similarity function with the following
properties to determine the level of code commonality between two malware samples
shown in Figure 6:

• It produces a normalized value that allows all similarity comparisons across malware
samples to be compared on the same scale. The function should return a value
ranging from 0 (no code sharing) to 1 (all code sharing) (samples share 100 percent of
their code).

• The function should aid us in calculating accurate estimates of code sharing between
two samples.

• Able to understand why the function does a good job modeling code similarities.
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The Jaccard index is a straightforward function with these characteristics. Even though
alternative mathematical techniques to code similarity estimation (such as cosine distance,
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L1 distance, Euclidean [L2] distance, and so on) have been tested in the security research
community, the Jaccard index has emerged as the most generally adopted—and with good
reason. It quantifies the degree of overlap between two sets of malware features simply and
sensibly, providing us the percentage of unique features common to both sets normalized
by the percentage of unique features in each group, JI = intersection length/union length,
Jaccard Index explanation shown in Figure 7 [34].
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3. Related Work

Reverse engineering can be used for ransomware detection. Shared code analysis
identifies samples that can be analyzed together (since they were generated from the same
malware toolkit or are different versions of the same malware family), allowing us to
determine whether a group of malware samples was created by the same developers.
Given a new sample, a shared code estimate allows seeing which samples it is likely to
share code with and what we know about those samples in seconds. Feature extraction,
feature selection, classification/clustering, and decision are the four essential elements of a
generic malware detection system. The raw data sample is fed into the feature extraction
module, which extracts the most important qualities as a set of features. Following that,
feature selection is used to alleviate the curse of dimensionality, minimize computational
complexity, and improve system performance by quantifying feature correlations. A
classifier/clustering scheme is given the generated feature vector. Finally, the decision
module obtains a final binary decision: malware or benign [35]. This is only one technique
of malware detection.

In this section, we present the effort made in the literature for ransomware detection
and prevention. Ransomware detection approaches, ransomware detection ecosystem, and
ransomware prevention recommendations are presented in Sections 3.1–3.3, respectively.

3.1. Ransomware Detection Approaches and Techniques

There are different classifications for ransomware detection approaches in the liter-
ature; one of them is categorizing the approaches to Machine Learning, Honeypot, and
Statistical Analysis [5]. In the following, we present each approach, examples of the tech-
niques that adopted the approach, as well as the advantages and disadvantages of each
approach. It is worth mentioning that some ransomware detection techniques proposed in
the literature use more than one approach.

3.1.1. Machine Learning

Security vendors Kaspersky, Trend Micro, and FireEye use the machine learning
approach to identify new malware samples. Machine learning algorithms frequently
operate under the premise of constant data distribution or one that does not change over
time by training the model to effectively reason any new sample in a test set once we
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have a large enough training set. The model will continue to work as expected as time
passes. After using machine learning to detect malware, we must acknowledge that our
data distribution is not the same,

Thousands of software companies produce new types of benign executables that
are significantly different from previously known types. Active adversaries (malware
writers) are constantly working on avoiding detections and releasing new versions of
malware files that differ significantly from those that have been seen during the training
phase. Although there was no data on these types in the training set, the model must
recognize them as benign. This leads to significant changes in data distribution and, in
any machine learning application, the problem of detection rate degradation with time.
This is a difficulty that cybersecurity firms that use machine learning in their anti-malware
products must overcome. The design must be adaptable and allow for ‘on-the-fly’ model
modifications between retraining sessions. Vendors must also have efficient systems for
collecting and labeling new samples, regularly enriching training datasets, and regularly
retraining models [36].

Machine learning algorithms can be classified as Bayesian, decision tree, dimension
reduction, instance-based, clustering, deep learning, ensemble, neural network, regulariza-
tion, rule system, and regression [5].

A technique to discriminate between ransomware and benign files, as well as mal-
ware, was proposed in [37]. The authors used Machine Learning methods to construct
the detection model automatically, allowing new ransomware samples to be identified
by developing the detection model. In [38], the authors examined significant research
projects that used machine learning or deep learning to identify ransomware. An engine for
ransomware detection using machine learning was proposed in [39]. It identifies and cate-
gorizes ransomware using a digital DNA sequencing engine and an AI machine learning
network. It offers a technique of classification that distinguishes between different types of
ransomware and groups them into well-known families based on their “digital genomes.”
With machine learning as the main focus, the authors in [40] analyzed and summarized the
ransomware detection research status from different angles, such as sample acquisition,
data preprocessing, feature selection, machine learning models, algorithms, and the evalua-
tion of detection effectiveness. This classification methodology detected and categorized
the detected ransomware into well-known families based on their “digital genome.” The
authors also evaluated the potential for future research into Android malware detection.
Researchers in [40] used hybrid multi-level profiling to do a detailed forensic investigation
of crypto-ransomware.

Furthermore, they used a unique behavioral chaining approach, as well as association
rule mining and AI tools. Distinct behavioral chains were discovered during a hybrid multi-
level inspection at the DLL, function call, and assembly levels, assisting in creating unique
ransomware signatures and a specific dataset for the machine-learning model. Experiments
have proven that the approach works with high accuracy and low false positives. With two
class datasets, one of the machine learning algorithms had the best accuracy of 99.72 percent
and the lowest false positive rate of 0.003. Experiments with multiclass malware families
found a 94.6 percent accuracy rate, with an extremely low false-positive rate of 0.001. The
chain ratio of ransomware behavioral profiling is a new concept.

3.1.2. Honeypots

Honeypots can identify the user with the number of edited files, which can inform
actions. Honeypot principles revolve around gathering information about an attack and
utilizing it for defense. User awareness training must be combined with email notifications
sent to users, and the message may even ask them to remove their network cables. Therefore,
using honeypots for ransomware detection is beneficial.

The authors in [41] used a combined approach; they benefited from machine learn-
ing in identifying malware by categorizing instances and used honeypots as a trap for
packages that are suspected of containing malware. As classification methods, Decision
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Tree and Support Vector Machine (SVM) were employed. In the study, the authors suggest
architectural design as a malware detection method.

An Intrusion Detection Honeypot (IDH) was suggested in [42]. IDH was made up of
three components: Honeyfolder, Audit Watch, and Complex Event Processing (CEP). It
was designed to be attacked and serve as an early warning system to notify the user during
unusual file operations. The authors in [43] proposed layers of deception mechanisms
to identify any attempted hacking or ransomware using a deception strategy based on
Honeyfiles and Honeytokens to obtain access to compromised private files. A honeypot-
based strategy that uses machine learning methods to identify malware was proposed
in [44]. A machine learning model was effectively and dynamically trained using data
from an IoT honeypot as a dataset. Based on the client honeypot idea and active download
interception, a study proposed in [45] a framework consisting of an IPS gateway, an analytic
system, and a honeypot for identifying and detecting ransomware. Six modules made up
the suggested structure. The IPS detects the download and routes it to the gateway. The
static detector, dynamic detector, and honeynet evaluate the sample and establish its type
and ransomware family. The notification module is in charge of informing and providing
information to the user.

3.1.3. Statistics

Statistics may be used to analyze ransomware and better understand its key features.
Statistical tests can detect unpredictability and may then be used to signal the existence
of encryption is a common way of detecting ransomware [46]. Based on the frequency
of opcodes in the portable executable file, the authors in [47] proposed an approach for
detecting malware. The study used a machine learning system to detect false positives,
false negatives, true positives, and true negatives in malware.

In [48], the authors created a similarity measurement algorithm-based malware detec-
tion technique. The proposed approach aimed to increase the speed and rate of malware
detection. This method has several benefits, including a significantly higher speed because
it uses opcodes directly and better detection results because it is unaffected by obfuscation
and disassembly techniques.

The research in [49] offered a malware categorization method. This work suggests
binary texture analysis over greyscale pictures generated straight from malware executables,
which is motivated by the visual similarities among viruses from the same family. The
method generates second-order statistical texture features over the visualized malware.
This method is resistant to obfuscation techniques (e.g., packing, code relocation, and
encryption). In [50], the authors evaluated five malware detection metrics without ground
truth, a practical scenario that presents several technological difficulties. The ultimate
objective was to create automated, principled techniques for assessing these indicators
with the highest degree of precision. Concerning these five malware detection metrics,
they provided statistical estimators. They employed fictitious data with established ground
truth to verify these statistical estimators. Afterward, they used these estimators to measure
five metrics using a sizable dataset obtained from VirusTotal and to quantify the five
metrics. In [46], the authors examined the widespread usage of statistical methods currently
used to identify ransomware, mainly focused on false positive rates. Their research’s
primary goal was to demonstrate how the present over-reliance on basic statistical tests
in anti-ransomware programs may seriously compromise the accuracy and consistency of
ransomware detection by often classifying samples incorrectly.

As mentioned earlier, this is only one way to categorize the different approaches used
for ransomware detection. The techniques proposed in the literature can combine more
than one approach. Table 6 summarizes the different ransomware detection approaches,
their advantages, and their disadvantages.
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Table 6. Comparison between ransomware detection approaches.

Ransomware
Detection Approach Ref. Description Advantages Disadvantages

Machine Learning [34–40]

Machine learning (ML) uses
data to identify patterns to

build a model. The outcome
may then be predicted using
this model and fresh data [7].
However, the challenge with

ML is finding the correct
method to match the type of
data and the desired result.

With sufficient training data,
ML has the benefit of being able

to anticipate the result with
accuracy. Training data should

be balanced in terms of the
distribution of expected results.
ML is less prone to obfuscation

since it requires learning the
pattern in the data.

A few rounds of trial and error
may be necessary to find the best
algorithm, which is frequently not
simple. If sufficient caution is not
used, biases and overfitting may

also arise.

Honeypot [42–45]

Setting up a honeypot allows
the malware to target fake data.
The ransomware can be found

in these accessed files.

The honeypot files or traps may
be set up, and they just need to

wait for an assault.
Consequently, the method does
not need a lot of system upkeep

or processing resources.

There is no assurance that a
ransomware assault on the
honeypot files will occur.

Understanding the traits of the
files the ransomware would

target is crucial. The honeypot
files or traps may be set up; after
that, they must wait for an assault.
Consequently, the method does
not need a lot of system upkeep

or processing resources.

Statistical [46–50]
Statistics may be used to

analyze ransomware and better
understand its key features.

It is natural to investigate
employing randomness tests to
identify encryption (since the
encryption process produces
effective random data). The
simplicity with which these

randomization checks may be
implemented could potentially

be an advantage.

There may be major problems
with the consistency and
reliability of ransomware

detection due to the over-reliance
on simple statistical tests inside

anti-ransomware solutions, which
frequently result in incorrect

classifications. Therefore,
depending only on these basic

statistical methods is insufficient
to identify ransomware reliably.
Instead, it is better to investigate

higher-order statistics.

3.2. Ransomware Detection Ecosystem

Recent ransomware research was presented in [5]. The authors surveyed the ran-
somware detection techniques proposed in the literature and included in their research the
motivation methodology, results, limitations, and future directions of surveyed techniques.
They also analyzed the ransomware detection techniques concerning many parameters
such as the operating system for PCs and Mobiles, Cloud, Data Sources, different types
of used machine learning algorithms, and outcome and evaluation criteria. Based on the
studies in [5], we illustrated the ransomware detection ecosystem, including the different
criteria and associated parameters in Figure 8. The number of literature occurrences of the
ransomware detection parameters provided in [5] was used to create the comparative charts
of the detection environment, data analysis, machine learning, outcomes, and evaluation
criteria charts in Figures 9–13, respectively.

The authors in [51] categorized the ransomware detection techniques into Behavior-
based, I/O Request packet monitoring, and Network traffic monitoring. They also provided
a performance comparison of various ransomware detection techniques.

In [18], the authors surveyed and classified the ransomware detection tools and input
information used by ransomware. Industry and academic researchers have proposed
various methods for detecting ransomware, all of which involve gathering information
from the malware in question before it is executed (or while it is running). This data is then
utilized to determine if the piece of software in question is safe or harmful. The authors
provide a categorization of the data and metrics gleaned from ransomware activity. They
have something to do with the many forms of ransomware. In the first level of catego-
rization, they grouped over 16 parameters related to prior actions into three groupings.
They distinguished static or dynamic data gathered locally from the infected machine from
data gathered through the network. In the parts that follow, they examine the following
three groups: The information is locally static, meaning it is gathered prior to running
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the malware program by extracting it. Second, data is gathered locally in real-time as the
malware operates on the infected machine. Thirdly, information is gleaned through the
malware’s own network activity. In Figure 14, we summarize ransomware detection tools
and input information used within the scope of [18].

Electronics 2022, 11, x FOR PEER REVIEW 15 of 28 
 

 

 
Figure 8. Ransomware detection ecosystem. 

 
Figure 9. Different ransomware detection environments. 

Figure 8. Ransomware detection ecosystem.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 28 
 

 

 
Figure 8. Ransomware detection ecosystem. 

 
Figure 9. Different ransomware detection environments. Figure 9. Different ransomware detection environments.



Electronics 2022, 11, 3307 16 of 26Electronics 2022, 11, x FOR PEER REVIEW 16 of 28 
 

 

 
Figure 10. Data analysis approaches for ransomware detection. 

 
Figure 11. Machine Learning techniques used in ransomware detection. 

  

0
1
2
3
4
5
6
7
8

Machine Learning Ransomware Detection 
Techniques

Figure 10. Data analysis approaches for ransomware detection.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 28 
 

 

 
Figure 10. Data analysis approaches for ransomware detection. 

 
Figure 11. Machine Learning techniques used in ransomware detection. 

  

0
1
2
3
4
5
6
7
8

Machine Learning Ransomware Detection 
Techniques

Figure 11. Machine Learning techniques used in ransomware detection.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 28 
 

 

. 

Figure 12. Ransomware detection outcomes. 

 
Figure 13. Ransomware Detection evaluation parameters. 

In [18], the authors surveyed and classified the ransomware detection tools and input 
information used by ransomware. Industry and academic researchers have proposed var-
ious methods for detecting ransomware, all of which involve gathering information from 
the malware in question before it is executed (or while it is running). This data is then 
utilized to determine if the piece of software in question is safe or harmful. The authors 
provide a categorization of the data and metrics gleaned from ransomware activity. They 
have something to do with the many forms of ransomware. In the first level of categori-
zation, they grouped over 16 parameters related to prior actions into three groupings. 
They distinguished static or dynamic data gathered locally from the infected machine 
from data gathered through the network. In the parts that follow, they examine the fol-
lowing three groups: The information is locally static, meaning it is gathered prior to run-
ning the malware program by extracting it. Second, data is gathered locally in real-time 
as the malware operates on the infected machine. Thirdly, information is gleaned through 
the malware’s own network activity. In Figure 14, we summarize ransomware detection 
tools and input information used within the scope of [18]. 

Figure 12. Ransomware detection outcomes.



Electronics 2022, 11, 3307 17 of 26

Electronics 2022, 11, x FOR PEER REVIEW 17 of 28 
 

 

. 

Figure 12. Ransomware detection outcomes. 

 
Figure 13. Ransomware Detection evaluation parameters. 

In [18], the authors surveyed and classified the ransomware detection tools and input 
information used by ransomware. Industry and academic researchers have proposed var-
ious methods for detecting ransomware, all of which involve gathering information from 
the malware in question before it is executed (or while it is running). This data is then 
utilized to determine if the piece of software in question is safe or harmful. The authors 
provide a categorization of the data and metrics gleaned from ransomware activity. They 
have something to do with the many forms of ransomware. In the first level of categori-
zation, they grouped over 16 parameters related to prior actions into three groupings. 
They distinguished static or dynamic data gathered locally from the infected machine 
from data gathered through the network. In the parts that follow, they examine the fol-
lowing three groups: The information is locally static, meaning it is gathered prior to run-
ning the malware program by extracting it. Second, data is gathered locally in real-time 
as the malware operates on the infected machine. Thirdly, information is gleaned through 
the malware’s own network activity. In Figure 14, we summarize ransomware detection 
tools and input information used within the scope of [18]. 

Figure 13. Ransomware Detection evaluation parameters.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 28 
 

 

 
Figure 14. Ransomware detection tools and input information. 

3.3. Ransomware Mitigation 
Ransomware attack prevention is a challenging socio-technical issue [51]. An Ap-

proach to Preventing, Mitigating, and Recovering from Ransomware Attacks from a So-
cio-Technical Perspective related to the medical sector was proposed in [52]. This proposal 
is important nowadays, especially during the COVID-19 era. The approach consisted of 
four main pillars: 
1. First, health IT experts must effectively install and configure machines and the net-

works that connect them to guarantee adequate system protection. 
2. Next, healthcare companies must employ user-focused techniques, such as simula-

tion and training on proper and thorough usage of computers and network applica-
tions, to enable more dependable system defense.  

3. The firm also has to regularly monitor computer and program usage to spot suspi-
cious activity, identify security issues, and fix them before they have a negative im-
pact. 

4. Lastly, enterprises must appropriately address ransomware attacks, recover 
promptly, and take steps to avoid them in the future. 
The authors in [50] also proposed best practice solutions to prevent ransomware for 

both organizations and individuals. The following key recommendations were men-
tioned: 
1. Backing up crucial data and making it easy to restore is one of the most effective lines 

of defense against ransomware attacks. 
2. All software should be updated regularly. 
3. Only a few people in the organization should have administrator accounts. 
4. Backups should be verified and replicated offline. 
5. Train employees. 
6. Endpoint sandboxing, next-generation antivirus, and antivirus endpoint protection 

with updated signatures. 
7. To prevent phishing attacks, use network sandboxing along with next-generation 

firewalls and email security. 

Figure 14. Ransomware detection tools and input information.

3.3. Ransomware Mitigation

Ransomware attack prevention is a challenging socio-technical issue [51]. An Ap-
proach to Preventing, Mitigating, and Recovering from Ransomware Attacks from a Socio-
Technical Perspective related to the medical sector was proposed in [52]. This proposal is
important nowadays, especially during the COVID-19 era. The approach consisted of four
main pillars:

1. First, health IT experts must effectively install and configure machines and the net-
works that connect them to guarantee adequate system protection.

2. Next, healthcare companies must employ user-focused techniques, such as simulation
and training on proper and thorough usage of computers and network applications,
to enable more dependable system defense.
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3. The firm also has to regularly monitor computer and program usage to spot suspicious
activity, identify security issues, and fix them before they have a negative impact.

4. Lastly, enterprises must appropriately address ransomware attacks, recover promptly,
and take steps to avoid them in the future.

The authors in [50] also proposed best practice solutions to prevent ransomware for
both organizations and individuals. The following key recommendations were mentioned:

1. Backing up crucial data and making it easy to restore is one of the most effective lines
of defense against ransomware attacks.

2. All software should be updated regularly.
3. Only a few people in the organization should have administrator accounts.
4. Backups should be verified and replicated offline.
5. Train employees.
6. Endpoint sandboxing, next-generation antivirus, and antivirus endpoint protection

with updated signatures.
7. To prevent phishing attacks, use network sandboxing along with next-generation

firewalls and email security.
8. Scale-out storage of the future, including capabilities for continuous data preservation

and automatically collecting immutable snapshots.

In order to help individuals to prevent ransomware, the authors in [53] presented
some suggestions. Figure 15 depicts their main suggestions.
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The authors in [55] provided suggestions for people and companies attempting to
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considering the extra miles that should be followed because ransomware developers try to
bypass these precautions to fulfill their objectives.

Electronics 2022, 11, x FOR PEER REVIEW 20 of 28 
 

 

 
Figure 16. Ransomware mitigation for organizations and individuals. 

4. Experimental Work 
In this section, we present the experimental work done to study shared static features 

between different malware samples to check the similarity to a reference SALAM ransom-
ware sample. The lab approach and tools used in our analysis are presented in Section 4.1, 
while the results are presented in Section 4.2. 

4.1. Approach 
Our approach is finding shared features between malware families to classify the 

ransomware samples first, then check the similarity between different samples by calcu-
lating N-gram and Jaccard Index and then applying the decryptor to similar samples. Jac-
card Index has these properties: it is a simple function that does this. The Jaccard index 
has become the most popular way to figure out how similar two codes are, even through 
other mathematical methods. This is because it is the best way to figure out how similar 
two codes are. It shows how many malware features from two different sets overlap, giv-
ing us the percentage of unique features that are found in both sets normalized by the 
percentage of unique features that are found in each set to determine the degree to which 
the sample’s bag of features resembles the bag of features from another sample. Similarity 
functions can help us determine how similar two malware samples are in terms of their 
source code  
1. In this case, it gives a normalized value so that all comparisons between two malware 

samples can be put on the same scale. If the function does not share code, it should 
return a value between 0 and 1. (samples share 100 percent of their code). 

2. The function should help us figure out how much code is shared between two sam-
ples (we can do this by doing experiments). 

3. To understand why the function works so well, we should be able to quickly figure 
out why it works so well. 

Figure 16. Ransomware mitigation for organizations and individuals.

4. Experimental Work

In this section, we present the experimental work done to study shared static fea-
tures between different malware samples to check the similarity to a reference SALAM
ransomware sample. The lab approach and tools used in our analysis are presented in
Section 4.1, while the results are presented in Section 4.2.

4.1. Approach

Our approach is finding shared features between malware families to classify the ran-
somware samples first, then check the similarity between different samples by calculating
N-gram and Jaccard Index and then applying the decryptor to similar samples. Jaccard
Index has these properties: it is a simple function that does this. The Jaccard index has
become the most popular way to figure out how similar two codes are, even through other
mathematical methods. This is because it is the best way to figure out how similar two
codes are. It shows how many malware features from two different sets overlap, giving us
the percentage of unique features that are found in both sets normalized by the percentage
of unique features that are found in each set to determine the degree to which the sample’s
bag of features resembles the bag of features from another sample. Similarity functions can
help us determine how similar two malware samples are in terms of their source code

1. In this case, it gives a normalized value so that all comparisons between two malware
samples can be put on the same scale. If the function does not share code, it should
return a value between 0 and 1. (samples share 100 percent of their code).

2. The function should help us figure out how much code is shared between two samples
(we can do this by doing experiments).

3. To understand why the function works so well, we should be able to quickly figure
out why it works so well.
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K means is a very popular algorithm for clustering objects. However, it requires the
number of clusters k to be specified a priori. K means a prototype-based clustering, which
means that a prototype represents each cluster; the prototype can be:

• Centroid: Average of similar points with continuous features.
• Medoid: The most representative or most frequently occurring point.

The choice of k is critical to the clustering performance.
N-grams: Contiguous sequence of n items from a given sample of text or speech

(concept originating from the field of linguistics), “N-gram” is a small subset of some larger
sequences of events with a predetermined length. Slide a window over the sequential
data to extract this subsequence. This is done by going through a sequence of events and
recording the subsequence from index i up to index i + N − 1.

We will use the following static features in our lab setup Strings and Import address
table (IAT).

Our reference ransomware sample which we developed a decryptor before, its MD5
hash is “9c16b48fed1032c6bf6beb06e9d37fe2”.

The ransomware classification and detection system submit samples through Python
API and then applies a classification and clustering algorithm using disassembled binaries
to generate mnemonic N-gram, calculating Jaccard similarity between different samples,
and performing clustering on those samples to cluster them into classified clusters.

The proposed ransomware classification and detection system diagram is illustrated
in Figure 17. It includes a System Controller with APIs for submitting ransomware samples
to the static analysis server and querying the MongoDB NoSQL database for various prop-
erties. The Analyzer server on Windows retrieves the static characteristics and attributes
from the given samples through the disassembler process.
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The lab setup machines and tools used in our Lab are presented in Table 7. The
controller is the key component that interacts with all the analysis engines and performs
database queries to get relevant samples to the analyst’s requests and submit samples to
the analyzer server, which is responsible for disassembling executable binaries into a set of
static features and extracting pertinent properties and features that the controller uses to
categories the binaries. The disassembler is part of the analyzer server, which will disassem-
ble the samples. MongoDB is used to index all extracted features to run the Jaccard Index
familiarity on it. VirusTotal has its own clustering and similarity matching for each sample
set. It includes a comprehensive graph view allowing users to rotate around malicious
objects associated with the same campaign that helped us collect classified samples.



Electronics 2022, 11, 3307 21 of 26

Table 7. Machines and Tools Used in Lab Setup.

Machines/Tools Description and Purpose Techniques Output

Controller (Windows 10)

The main component that
interacts with all the analysis

engines and performs database
queries to retrieve relevant
samples for analyst request.

Implement ML models Hybrid attributes

Static Analyzer Engine
(Windows 10)

Responsible for converting the
executable binaries into a set of

static features through
disassembly to extract relevant

static attributes used by the
controller to classify the binaries.

Disassembler
Decompiler

Control flow graphs
Call graphs
Functions

Basic blocks
Arguments count

Cyclomatic complexity
Instructions

Strings
Imports/Exports

Segments

NoSQL MonogoDB
database

Document-based store for all the
extracted attributes by the

analysis engines.

Receive controller queries
for binaries hybrid

attributes.
Hybrid attributes

Ghidra

Open-source disassembler used in
samples disassembly and

decomply in order to extract
static features.

Decompiler
Disassembler Static features of the samples

Python PyCharm Python IDE Python
System scripts

Database connections script
Sample submissions script

VirusTotal

Open-source malware and URLs
online scanning service.

VT academic malware dataset ~10
GB of classified samples.

VirusTotal live hunt, Need
the most recent

ransomware samples

The used samples set collected
over three months > 1000

ransomware samples spanning
~13 known classified

families extracted

4.2. Results

The below steps are used to find the similarity between the 16 samples of ransomware
that used the Salsa 20 algorithm in their encryption. The first sample is the reference sample
in which we developed a decryptor to break Salsa 20 algorithm encryption lifecycle.

Step 1—Store the samples.
Step 2—Index the samples.
Step 3—Search for samples.
Step 4—Visualize similarity.
We compared two static features to choose the best of them for our future work: the

Strings and Import table.

4.2.1. Binary Strings Similarity

As shown in Figure 18, we found a similarity between our reference sample and one
sample by 0.98749822, which is a good similarity score. The other samples are not similar
to our reference sample. However, there are two matches in the families between the four
samples into two families, as shown in Figure 19. As per the strings feature analysis, we
have sixteen samples and thirteen different ransomware families, and one sample similar
to the reference sample, samples with zero similarities Jaccard score are packed samples,
and their strings are few compared with unpacked samples.
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4.2.2. Import Table

As shown in Figure 20, we found a similarity between our reference sample and one
sample by 1, which is a full similarity score. The other samples are not similar to our
reference sample. However, there are three matches in the families between six samples
into three families, as shown in Figure 21. As per the strings feature analysis, we have
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sixteen samples and twelve different ransomware families, and one sample similar to the
reference sample.
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5. Conclusions and Future Work

The threat posed by ransomware to people’s and companies’ data files is increasing
quickly. On an infected computer, it encrypts files and withholds the key to unlock them
until the victim pays a ransom. Every year, hundreds of millions of dollars are lost due to
this spyware. New versions constantly come out since so much money can be earned. In
this paper, we surveyed the different ransomware detection approaches and techniques.
We investigated the criteria, parameters, and techniques used in the ransomware detection
ecosystem and the recommendations presented in the literature to mitigate and prevent
ransomware attacks. In this paper, we provided an efficient malware indexing system that
provides search functionalities, similarity checking, sample classification, and clustering.
The system mainly targets native binaries, and the indexing engine depends on hybrid
data from static analysis, comparing different ransomware families to find the similarity
to a reference sample. We provided two solutions to previous research limitations to find
the largest file in the infected machine. This file is compared with the encrypted sample to
break the key stream to use it in decrypting other files from the same machine. We found
that the import address table can be used as a static feature to classify different ransomware
or malware families more accurately than Strings used as a static feature. The research
limitation is the packed samples which the malware author obfuscates by hiding and
packing the malicious code. Many strings exist in unpacked samples. However, obfuscated
or packed samples contain few strings compared with unpacked samples. Therefore, the
strings static feature similarity check is more accurate in identifying packed samples. In the
future, we plan to develop a dynamic analyzer using sandboxing to analyze the packed
samples and get more features from both static and dynamic analyzers to classify, index,
and find similar samples.
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