
Citation: Hou, Y.; He, R.; Dong, J.;

Yang, Y.; Ma, W. IoT Anomaly

Detection Based on Autoencoder and

Bayesian Gaussian Mixture Model.

Electronics 2022, 11, 3287. https://

doi.org/10.3390/electronics11203287

Academic Editor: Andrei Kelarev

Received: 23 September 2022

Accepted: 10 October 2022

Published: 12 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

IoT Anomaly Detection Based on Autoencoder and Bayesian
Gaussian Mixture Model
Yunyun Hou 1, Ruiyu He 1, Jie Dong 1, Yangrui Yang 1 and Wei Ma 1,2,3,*

1 School of Information Engineering, North China University of Water Resources and Electric Power,
Zhengzhou 450046, China

2 School of Information Science and Technology, Zhengzhou Normal University, Zhengzhou 450044, China
3 School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
* Correspondence: mawei@ncwu.edu.cn

Abstract: The Internet of Things (IoT) is increasingly providing industrial production objects to
connect with the physical world and has been widely used in various fields. Although it has brought
great industrial convenience, there are also potential security threats due to the vulnerabilities and
malicious nodes in IoT. To correctly identify the traffic of malicious nodes in IoT and reduce the
damage caused by malicious attacks on IoT devices, this paper proposes an autoencoder-based
IoT malicious node detection method. The contributions of this paper are as follows: firstly, the
high complexity multi-featured traffic data are processed and dimensionally reduced through the
autoencoder to obtain the low-dimensional feature data. Then, the Bayesian Gaussian mixture model
is adopted to cluster the data in a low-dimensional space to detect anomalies. Furthermore, the
method of variational inference is used to estimate the parameters in the Bayesian Gaussian mixture
model. To evaluate our model’s effectiveness, we used a public dataset for our experiments. As a
result, in the experiment, the proposed method achieves a high accuracy rate of 99% distinguishing
normal and abnormal traffic with three-dimension data reduced by the autoencoder, and it establishes
our model’s better detection performance compared with previous K-means and Gaussian Mixture
Model (GMM) solutions.

Keywords: IoT security; anomaly detection; autoencoder; Bayesian Gaussian mixture model

1. Introduction

Industry 4.0 has brought the Internet of Things (IoT) into every industrial development
field, which has positively impacted industrial development [1]. Industrial IoT is a subset of
IoT, and IoT technology plays a crucial role in modern industry by introducing automation
and incorporating IoT sensors into industrial systems [2]. According to Accenture, the
Industrial IoT will be worth USD 7.1 trillion for the United States and more than USD
1.2 trillion for Europe by 2030 [3].

Although the Internet of Things offers many opportunities for industrial development,
it also faces a growing number of problems. Due to the complexity of IoT devices, their
vulnerability to attacks is greatly increased. Many potential security issues, such as vulner-
abilities and mobile threats, will significantly affect the security and privacy reliability of
IoT [4]. Some miscreants use IoT vulnerabilities— which are caused by a variety of con-
straints, such as limited resources and weak IoT security [5]—to access legitimate devices,
such as using malicious packet injection and distributed denial of service (DDoS) attacks.
Almost half of the US was plunged into disconnection by a DDoS attack on US service
provider Dyn in October 2016 [6]. This massive DDoS attack was launched by IoT devices
infected with the Mirai virus. In early 2020, the FDA identified a vulnerability in St. Jude
Medical implantable cardiac devices that occurred in transmitters that read device data
and share it remotely with physicians, allowing hackers to control appliances by accessing
their transmitters, including pacemakers and defibrillators, and an attack would pose a
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serious threat to patient lives [7]. It follows that an attack on the IoT would be a huge loss,
and without security, the IoT would not be able to reach its full potential in the industry.

A primary key to solving security problems in IoT lies in discovering abnormal nodes
in the network. In practical applications of IoT, abnormal behavior of nodes may come
from network attacks, or nodes may be in an abnormal state due to environmental factors,
failures, etc. We classify anomalies in IoT into two categories: interventional anomalies
and non-interventional anomalies; interventional anomalies are also anomalies caused by
network attacks in the usual sense, such as DDoS attacks, replay attacks, etc., whereas non-
interventional anomalies are those caused by device failures. Noninterventional anomalies
are easy to find, while interventional anomalies need to be detected by detection means;
thus, this paper takes interventional anomalies as the primary research object.

Cyberattacks generally cause network traffic not to conform to the expected behav-
ior pattern [8]. To alleviate network attacks, mitigate the damage caused by intervening
anomalies in the IoT environment, and further improve the efficiency and security of the
IoT, researchers have introduced anomaly detection to identify behaviors that compromise
the security of the IoT, and this detection usually utilizes the unintended behavior pat-
terns caused by network attacks for anomaly identification. There are various methods
for intervening to detect anomalies in the IoT, mainly statistical-based methods, feature
selection-based methods, and machine learning-based methods.

Network traffic data are usually untagged; therefore, unsupervised anomaly detection
methods are traditionally used to distinguish normal and abnormal traffic data in the
IoT. Unsupervised anomaly detection deals with traffic data that are manually extracted
from complex network systems, which are generally characterized by high dimensionality,
strong redundancy, and low correlation. It is challenging to perform anomaly detection
on unsupervised high-dimensional data. Since it is difficult to have a more intuitive
understanding of high-dimensional data, the higher the dimensionality of the data, the
more difficult it is to perform anomaly detection tasks in the original dimensional space.
On the basis of the current development status of IoT anomaly detection, we summarize
the existing problems of anomaly detection as follows:

• Higher dimensionality of data, which is more complex to process;
• A certain degree of randomness and uncertainty in the selection of features using

feature selection methods;
• Clustering algorithms are often used to classify normal and abnormal data. However,

traditional clustering algorithms, such as K-means, need to manually specify clusters
and have certain limitations. Their clustering results are easily disturbed by noise
points and easily fall into local optima.

In response to the above existing problems in anomaly detection, this paper proposes
a Bayesian Gaussian mixture model based on autoencoder. The model uses an autoencoder
to reduce high-dimensional data to low-dimensional data to achieve feature selection of
the data; the Bayesian Gaussian mixture model is used to cluster low-dimensional data to
achieve anomaly detection. The Bayesian Gaussian mixture model adopts the method of
variational inference, uses posterior probability for parameter estimation, and dynamically
adjusts the division of cluster classes, which solves the problem of the local optimum of the
model. The contributions of this paper are as follows:

• We use an autoencoder for feature selection, which effectively solves the problem that
high-dimensional data is difficult to handle, and the autoencoder feature selection
method improves the uncertainty and randomness of other feature selection methods.

• We propose a Bayesian Gaussian mixture model based on autoencoder, which uses
posterior probability for parameter estimation and dynamically adjusts the cluster
class division to solve the problem that the model tends to fall into local optima;
and the Bayesian Gaussian mixture model is useful for both the data class imbalance
problem and the data complex hard-to-fit problem.
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• We compare different methods used for anomaly detection, and the results show that
the autoencoder-based Bayesian Gaussian mixture model achieves over 99% accuracy
for anomaly detection.

We outline the framework of this article as follows. Section II summarizes the current
research results related to IoT security. Section III describes the overall architecture and
principles of the autoencoder-based Bayesian Gaussian mixture model. Section IV contains
the experimental evaluation and provides an intuitive display of our experimental results.
Section V summarizes our paper and concludes.

2. Related Work

Currently, a series of investigations have been carried out on anomaly detection in
the IoT.

Firstly, the reconstruction-based method assumes that the samples of the target class
are sufficiently clustered. Samples deviating from the model are judged as outliers through
the model estimation and its parameters, such as the mean point, plane, surface or manifold,
subspace, etc. [9]. Traditional methods in this category include principal component
analysis (PCA) with explicit linear projections [10], kernel PCA (KPCA) with implicit
nonlinear predictions induced by a specific kernel [11], and robust PCA (RPCA) that makes
PCA less sensitive to noise by enforcing sparse structure [12]. However, the performance of
the reconstruction-based anomaly detection method is limited. This method can only detect
anomalies on the part of the reconstruction error. Although the compression and model
estimation of abnormal samples and normal samples may be very different, and some
abnormal samples have high reconstruction errors when the samples have considerable
noise, there are still a large number of abnormal samples whose reconstruction errors are
close to those of normal samples.

Secondly, cluster analysis is a popular anomaly detection method which groups objects
with similar features into a group in an unsupervised way, such as a multivariate Gaussian
model, Gaussian mixture model, K-means, etc. In the literature [13], Chang et al. adopted
two anomaly detection algorithms, K-means algorithm and convolution auto-encoding
algorithm, to perform anomaly detection. The K-means anomaly detection module aims to
detect whether each attribute value is within the normal range. In principle, all attributes
are used as far as possible, but if there is no influence between attributes, they will be filtered
out. The task of the convolution autoencoder anomaly detection module is to learn the
normal change pattern of multiple attributes in continuous time. Finally, the two modules
are formed into a double anomaly detection module. Only when the predicted outputs of
the two modules are normal will the test data be predicted to be normal. However, this
method does not use a proprietary feature selection algorithm in feature selection, and
only manually filters out the attributes that have no impact, which is very random. In
the literature [9], Bozong et al. proposed a deep autoencoding Gaussian mixture model
(DAGMM) which uses a deep autoencoder to store the critical information of a sample in a
low-dimensional space, and the DAGMM uses a Gaussian mixture model (GMM) in the
learned low-dimensional space to handle the density estimation task for input data with
complex structures. However, Gaussian mixture models (GMM) are usually learned by
alternate algorithms such as expectation maximization algorithms (EM), which can easily
lead to local optima and do not perform well for anomaly detection.

Deep learning methods are also more common in anomaly detection, such as convolu-
tional neural network (CNN) [14,15], recurrent neural network (RNN) [16–18], generative
adversarial neural network (GAN) [19–21], and long short-term memory neural network
(LSTM) [22], etc. Ferrag et al. [15] studied CNN, RNN, and deep neural network (DNN)
for intrusion detection and their performance in different approaches. The performance
of CNN was compared and analyzed under different configurations. Still, CNN has a
drawback that makes it impossible to ignore, i.e., they cannot learn the long-time dependent
features of IoT traffic. The literature [23] proposes a compressed convolutional variational
autoencoder for anomaly detection of time-series data in IIoT, which reduces the model’s
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size and inference time, but the classification performance is largely unimproved; addition-
ally in the literature [24], Sumathi et al. propose a DDoS attack detection mechanism using
neural networks. Their model uses a deep learning classifier based on a publicly available
data-integration cost-minimization strategy to evaluate network traffic. Detection accuracy,
sample cost, packet loss rate, average delay, packet delivery rate, overhead, and throughput
are used as evaluation metrics for performance analysis. However, the algorithm suffers
from computational overload when used on IoT data with a large number of features and a
large data volume, which will reduce the efficiency of anomaly detection.

In addition, one-classification methods (one-class) are also widely used for anomaly
detection, which learn discriminative boundaries around normal data by algorithms. For
example, the one-classification support vector machine (OCSVM) learns the boundary of
normal data and identifies all events or data points outside the boundary as abnormal
behavior of the system [25]. However, when the number of dimensions increases, the
performance of this method is usually unsatisfactory due to the high dimensionality of
the data.

The Bayesian Gaussian mixture model based on autoencoder proposed in this paper
performs anomaly detection in the low-dimensional feature space learned by the autoen-
coder, which well avoids the problem that high-dimensional data are difficult to handle,
and at the same time, it reduces the computational effort and improves the computational
efficiency. In addition, the Bayesian Gaussian mixture model adaptively acquires hyperpa-
rameters during the model construction process and has a clear probabilistic interpretation
of the output prediction.

3. Bayesian Gaussian Mixture Model Based on Autoencoder
3.1. Methodology Model Overview

The method proposed in this paper is shown in Figure 1. Specifically, the first step
of the model is to preprocess the original network traffic data H = {h1, h2, . . . , hk}. The
original data have k network traffic features, where hi =

[
f i
1, f i

2, . . . , f i
m
]T denotes the

ith m-dimensional (m is 43 in this paper) network traffic feature vector, i = 1, 2, . . . , k,
pre-processed to obtain data P = {p1, p2, . . . , pk}.

The second step is to train the autoencoder model using the pre-processed data
P, extract the encoder part, use the encoder part to dimensionalize the existing data,
reduce the m-dimension data to n dimensions (m is much larger than n), and obtain
the data Q = {q1, q2, . . . , qk}, where qi =

[
ti
1, ti

2, . . . , ti
n
]T denotes the jth n-dimensional

network traffic characteristic data after dimension processing, i = 1, 2, . . . , k. The decoder
reconstructs the data L = {l1, l2, . . . , lk} and calculates the reconstruction errors of P and L
to judge the merits of the autoencoder.

Finally, the low-dimensional data Q is transmitted to the Bayesian Gaussian mixture
model to obtain the weight of the cluster class and classify the data to determine whether
the data is normal or abnormal.

3.2. Data Preprocessing

There are large magnitude differences between different features of the original net-
work data, and if the data are directly applied to the Bayesian Gaussian mixture model of
the autoencoder, it will increase computational effort and reduce computational accuracy.
Therefore, it is necessary to normalize the data. The data normalization process converts all
data into numbers between [0,1], and its purpose is to cancel the difference in magnitude
between the data of each dimension so as to avoid the large error in network prediction
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due to the large difference in magnitude of the input and output data. In this paper, the
Min-Max normalization method is used, and its calculation formula is as follows [26]:

pi
j =

f i
j − min

1<j<m

{
f i
j

}
max

1<j<m

{
f i
j

}
− min

1<j<m

{
f i
j

} , (1)

where min
1<j<m

{
f i
j

}
is the minimum value of the original attribute and max

1<j<m

{
f i
j

}
is the

maximum value of the original attribute.
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Figure 1. Autoencoder Bayesian Gaussian mixture model.

3.3. Autoencoder Network-Based Feature Processing

The autoencoder is an unsupervised deep learning network model that reconstructs
input data through the network for effective coding [27], which is usually used for feature
learning and feature dimension reduction. The structure of the autoencoder is shown in
Figure 2. The autoencoder compresses the original data features by the encoder to get new
features and then reconstructs the original data by the decoder.
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In this paper, the autoencoder neural network is used to process data features. Given
a sample P, its learning process through the autoencoder is as follows:

q = g1(p, θe), (2)

l = g2(q, θd), (3)

L(p, l) = ‖p− l‖2, (4)

where q is the low-dimensional representation learned by the autoencoder, θe and θd are the
parameters of the encoding part and decoding part, respectively, g1(.) denotes the encoding
function, g2(.) denotes the decoding function, and L(p, l) is the loss function characterizing
the reconstruction error of the autoencoder.

The internal network structure of the autoencoder is presented in Figure 3. The
encoding part and the decoding part are two fully connected layers, where Dense1 is the
fully connected layer for the encoding part, and Dense2 is the fully connected layer for the
decoding part.
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3.4. Bayesian Gaussian Mixture Model

After learning the low-dimensional representation q of the data through the autoen-
coder, anomaly detection is performed in the framework of a Bayesian Gaussian mix-
ture model.

Gaussian mixture models quantify the exact representation of observations by means
of Gaussian probability densities. Each Gaussian mixture model consists of K Gaussian
distributions, then each observation q has the following distribution [28]:

P(qi|π, µ, γ) =
K

∑
j=1

πjN(qi

∣∣∣µj, γ−1
j ) , (5)

where the observation qi is the low-dimensional data obtained by the autoencoder, µ =
{

µj
}

is the mean, γ =
{

γj
}

is the covariance matrix, π =
{

πj
}

is the mixing coefficient, and
K
∑

j=1
πj = 1, then the observation can be obtained by the following process:

ci ∼ categorical(π1, π2, . . . , πK), (6)

pi|ci ∼ N(µci , γ−1
ci

), (7)

In this paper, we expand the simple Gaussian mixture model into a full Bayesian model,
and use the mixture coefficient, mean value, and covariance matrix as latent variables in
the prior distribution.

P(π1, π2, . . . , πK|α0) =
Γ(Kα0)

[Γ(α0)]
K πα0−1

1 . . . πα0−1
K , (8)

where α0 is the concentration parameter, the larger its value, the more likely the value
of the mixing coefficient is to be close to zero, and Γ(x) is Gamma function. Using the
normal–Wishart distribution as the conjugate prior for the multivariate normal likelihood,
the mean and covariance matrices are sampled,

P(µj, γj) = N(µj

∣∣∣β0(η0γj)
−1)W(γj

∣∣∣υ0, σ0), (9)

Therefore, the process of generation of the Bayesian Gaussian mixture model for each
observation is as follows:

π1, . . . , πK ∼ Dir(α0), (10)

ci ∼ categorical(π1, . . . , πK), (11)

(µj, γj) ∼ NW(β0, η0, υ0, σ0), (12)

pi|ci ∼ N(µci , γ−1
ci

), (13)

The traditional Gaussian mixture model uses the EM algorithm to iteratively solve
the parameters, but the EM algorithm does not always find the optimal global solution
in practice, and it must specify the number of clusters [29]. Obviously, for interventional
anomaly detection, this approach is not applicable because the total number of attack types
is not known before detection; therefore, the method of variational inference is chosen to
solve the parameters.

Variational inference plays a good role in solving the posterior probabilities of ob-
servations and latent variables. In general, the calculation of posterior probabilities of
observations and latent variables is complicated, and this problem is solved using the
method of variational inference to obtain an approximation of the posterior probability
instead of the true value, which, in turn, infers to which cluster the observation most
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likely belongs [30]. Suppose the variational distribution is q(π, c, µ, γ), which can be
decomposed as:

q(π, c, µ, γ) = q(π)
m

∏
i

q(ci)
k

∏
j=1

q(µj, γj), (14)

From the variational inference, we can obtain the variational distribution of each
potential variable [31]:

q∗(ci) = categorical(ci|φi1, . . . , φik), (15)

q∗(π) = Dirichlet(π|α1, . . . , αk), (16)

q∗(µj, γj) = N(µj

∣∣∣β j, (ηj, γj)
−1)W(γj

∣∣∣υj, σj), (17)

The variance distribution of the observation qi is a categorical distribution related to
the parameter φi1, . . . , φik, where φi1, . . . , φik can be obtained from the following equation:

ln φij = (ψ(αj)− ψ(
k
∑

t=1
αt))+

1
2 (

D
∑

t=1
(

σj+1−t
2 ) + D ln 2 + ln |νj|)+

(− D
2ηj
− σj

2 (qi − β j)νj(qi − β j)
T) + const

(18)

The variational distribution q∗(π) is a Dirichlet function with parameters α1, . . . , αk,
where

αj = α0 + Nj, (19)

The variance distribution q∗(µj, γj) is a normal–Wishart distribution containing four
parameters, which are updated to the values:

ηj = η0 + Nj, (20)

β j =
1
ηj
(η0β0 + Njqj), (21)

νj = ν−1
0 + NjSj +

η0Nj

η0 + Nj
(qj − β0)(qj − β0)

T , (22)

σj = σ0 + Nj, (23)

where

Nj =
m

∑
i=1

φij, (24)

qj =
1
Nj

m

∑
i=1

φikqi, (25)

Sj =
1
Nj

m

∑
i=1

φij(qi − qj)
(

qi − qj

)T
, (26)

From this, we can find the approximate posterior distribution of π, c, µ, γ. By iterating
several times, we can obtain the most likely cluster of each observation qi, and then
implement the anomaly detection function.
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4. Experiment and Analysis
4.1. Dataset Introduction

The data chosen for this article come from a publicly available dataset [32] whose au-
thors created various types of attacks in an experimental setting, and whose raw packet files
(in pcap format) were captured using the monitoring mode of a wireless network adapter.

This dataset main involves four attack methods: MITM, DoS, Scanner, and Mirai.
In this paper, packets obtained by two types of attack methods, MITM attack and Mirai
virus, are selected for analysis. MITM attacks (Man-In-The-Middle) mainly connect target
devices and routes through ARP spoofing or DNS spoofing to eavesdrop and control the
transmission of information, causing information leakage [33]. The Mirai virus is a type of
virus that searches for IoT devices through the Internet. Once it scans an IoT device (e.g.,
webcam, smart switch, etc.), it tries to log in using the default or weak password, and once
the login is successful, this IoT device starts to be manipulated by hackers to attack other
network devices. With the exception of the Mirai botnet category, all of the attack data are
packets captured during simulated attacks using tools such as Nmap.

In order to verify the validity of the model in this paper, labeled data were used to
validate the model in this paper. After preliminary processing, we divided the data into
six categories and used the feature selection method of the literature [33] to roughly select
the features on the data to obtain data with 43-dimensional features. Table 1 describes the
traffic types and traffic sources of the six categories of data, which are benign, arpspoofing,
udpflooding, ackflooding, httpflooding, and hostbrute, obtained from the attacks launched
by MITM and Mirai. Table 2 shows the 43-dimensional features selected.

Table 1. Flow types and their classification.

Flow Types Description

benign Data
arpspoofing Traffic data of MITM (arp spoofing)

udpflooding UDP attack traffic data from bot computers compromised by
Mirai malware

udpflooding ACK attack traffic data for bot computers compromised by Mirai malware

httpflooding HTTP Flooding attack traffic data for bot computers compromised by
Mirai malware

hostbrute Initial stages of Mirai malware, including host discovery and Telnet
exhaustive method

4.2. Feature Processing Using Autoencoder

In this paper, we build a three-layer neural network on TensorFlow framework to
implement the function of autoencoder, the number of neurons in the input layer is 43.
In Dense1, the number of input neurons is 43 and the number of output neurons is 3; in
Dense2, the number of input neurons is set to 3 and the number of output neurons is set to
43. The Relu function is used as the activation function for the encoding part, the activation
function used for the decoding part is the sigmoid function, and the mean square error is
chosen to represent the loss function of the reconstruction error. The entire autoencoder
is trained using the dataset, the model is trained using the Adam optimization algorithm,
and finally the low-dimensional representation q of the data learned by the encoder is used
as the input data for the Bayesian Gaussian mixture model. When training the autoencoder,
the learning rate LR is set to 0.001, the epoch is set to 15, and the batch size is set to 500.
Table 3 summarizes the hyperparameter settings for the autoencoder network. Here, the
activation function (Encoding) represents the activation function of the encoding part, and
the activation function (Decoding) represents the activation function of the decoding part.
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Table 2. Selected characteristic index.

Index Feature Name Index Feature Name

1 frame.time_epoch 23 tcp.flags
2 frame.time_delta 24 tcp.flags.ack
3 frame.time_delta_displayed 25 tcp.flags.push
4 frame.time_relative 26 tcp.flags.reset
5 frame.number 27 tcp.flags.syn
6 frame.len 28 tcp.window_size
7 frame.cap_len 29 tcp.window_size_scalefactor
8 eth.lg 30 tcp.checksum.status
9 ip.version 31 tcp.analysis.bytes_in_flight

10 ip.hdr_len 32 tcp.analysis.push_bytes_sent
11 ip.len 33 tcp.time_relative
12 ip.flags 34 icmp.ident
13 ip.flags.df 35 icmp.seq
14 ip.ttl 36 icmp.seq_le
15 ip.proto 37 data.len
16 ip.checksum.status 38 udp.srcport
17 tcp.stream 39 udp.dstport
18 tcp.len 40 udp.length
19 tcp.seq 41 udp.checksum.status
20 tcp.nxtseq 42 udp.stream
21 tcp.ack 43 dns.count.queries
22 tcp.hdr_len

Table 3. Flow types and their classifications.

Hyperparameter Content

LR 0.001
Epoch 15

Batch size 500
Loss function mse

Optimization algorithm Adam
Activation function (Encoding) Relu
Activation function (Decoding) Sigmoid

The variation in loss rate and accuracy during autoencoder training is demonstrated in
Figure 4. The loss rate of the autoencoder starts to decrease at the 1st epoch and gradually
converges to below 0.02 at the 6th epoch. The accuracy improves rapidly at the first epoch,
with minor fluctuations between the 3rd and 11th epochs, and gradually stabilizes at the
12th epoch, with the accuracy finally converging to 0.90.
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4.3. Cluster Analysis
4.3.1. Evaluation Indicators

In order to ensure the fairness of clustering performance evaluation, in this paper
four widely used clustering model performance evaluation indices are used: Purity of
clustering (P), Rand Index (RI), Adjusted Rand Index (ARI), and F-score, and the meanings
represented by each index are described in detail below:

1. P. Purity P is the most intuitive criterion to show how good the evaluation results are.
Its calculation formula is as follows:

P = (Ω, C) =
1
N ∑

k
maxj

∣∣ωk ∩ cj
∣∣, (27)

where N denotes the total number of samples; Ω = {ω1, ω2, . . . , ωk} denotes a
cluster after clustering; C =

{
c1, c2, . . . , cj

}
denotes the correct category; ωk denotes

all samples in the kth cluster after clustering; and cj denotes the number of true
samples in the jth category after clustering. The value of P is in the range of [0,1], and
the larger the value, the better the clustering effect.

2. RI. The Rand Index (RI) is a common criterion for evaluating the effect of clustering
and is calculated as follows:

RI =
a + d

a + b + c + d
, (28)

where a denotes the number of data point pairs that group similar samples into the
same cluster, b is the number of data point pairs that group different samples into
the same cluster, c is the number of data point pairs that group similar samples into
different clusters, and d denotes the number of data point pairs that group dissimilar



Electronics 2022, 11, 3287 12 of 17

samples into different clusters. The value of the RI is between [0, 1], and the RI is 1
when the clustering results are perfectly matched.

3. F-score. Similar to the F1 score in the classification index, it is calculated as follows:

Precision = a
a+b

Recall = a
a+d

F = (1 + β2) Precision·Recall
β2·Precision+Recall

(29)

where β is a parameter, and in this paper, we set β = 1.
4. ARI. Adjusted Rand Index (ARI) is an improved version of the Rand Index (RI) to

remove the influence of random labels on the RI assessment criteria. The API takes
values in the range [−1,1], with larger values representing better results.

ARI =
RI − E[RI]

max(RI)− E(RI)
, (30)

4.3.2. Analysis of Clustering Results

In this paper, we implement the anomaly detection method of the literature [9,13] and
compare it with our proposed autoencoder Bayesian Gaussian mixture model.

• Autoencoder K-means model (AE-Kmeans). Refer to Section 4.2 for the parameter
setting of the autoencoder; cluster class of K-means is set to 2.

• Autoencoder Gaussian Mixture Model (AE-GMM). The autoencoder parameter set-
tings are referred to in Section 4.2, the number of cluster classes is set to 2 for GMM,
and the number of iterations is set to 10.

• Bayesian Gaussian Mixture Model for Autoencoder (AE-VBGMM). The parameter
setting of the autoencoder is described in Section 4.2. VBGMM sets the initial cluster
class to 2, calculates the weight of each cluster, dynamically adjusts the number of
cluster classes according to the weight, and sets the number of iterations to 10.

In the same dataset, two models, AE-Kmeans and AE-GMM, are implemented in this
paper, and the results are visually represented and compared with AE-VBGMM.

The normal data benign were, respectively, combined with five different types of
abnormal data for anomaly detection. Table 4 shows the values of P, RI, ARI, and F obtained
after the three methods were used for anomaly detection. Three comparison experiments
of AE-Kmeans, AE-GMM, and AE-VBGMM were performed using an autoencoder to
reduce the dimensionality of the data and combining the three clustering methods of K-
means, GMM, and VBGMM, respectively. When comparing the experimental results, it
can be found that for the arpspoofing type of attack, all three methods can achieve a good
clustering effect. For the attack type hostbrute, two methods, AE-GMM and AE-VBGMM,
have sound cluster effects. For the other three attack types, the autoencoder Bayesian
Gaussian mixture model proposed in this paper for anomaly detection is significantly better
than the other two methods, with a clustering purity of more than 99% and little difference
between K-means and GMM clustering effects. The poor clustering effect of K-means and
GMM is because the clustering effect of K-means is closely related to the selection of the
initial value, which is random. At the same time, the GMM uses the EM algorithm for
parameter estimation, which is prone to fall into local optima.
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Table 4. P, RI, ARI, and F-score of AE-GMM with AE-VBGMM and AE-Kmeans with AE-VBGMM
for anomaly detection. The best value of each evaluation criterion is marked in bold.

Attack
AE-GMM AE-Kmeans AE-VBGMM

P RI ARI F P RI ARI F P RI ARI F

hostbrute 1.000 1.000 1.000 1.000 0.999 0.998 0.997 0.998 1.000 1.000 1.000 1.000
ackflooding 0.885 0.797 0.579 0.833 0.887 0.799 0.585 0.834 0.995 0.991 0.981 0.991
arpspoofing 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
httpflooding 0.896 0.814 0.616 0.845 0.896 0.814 0.615 0.845 1.000 1.000 1.000 1.000
udpflooding 0.899 0.821 0.630 0.850 0.901 0.820 0.630 0.850 0.999 0.999 0.999 0.999

Therefore, in this paper, the results of three attack types—other than arpspoofing and
hostbrute—using three clustering algorithms, AE-Kmeans, AE-GMM, and AE-VBGMM,
are visualized and displayed as follows with ARI as the main evaluation index.

The visualization results of anomaly detection by AE-Kmeans, AE-GMM, and AE-
VBGMM for normal data benign and abnormal data ackflooding are shown in Figure 5.
From the visualization results in the figure, we can see that AE-VBGMM can well separate
normal data from abnormal data, and there is no overlap between them. In contrast,
the results obtained by the two methods, AE-GMM and AE-Kmeans, have overlapping
situations. There are 100,000 normal and 50,000 abnormal data in the experimental data,
and the ratio of normal data to abnormal data is 2:1. Figure 5a indicates the results of the
visualization of AE-Kmeans, which yielded 116,849 normal data and 33,151 abnormal data,
where orange represents normal data, and blue represents abnormal data, with an ARI
of 0.585. Figure 5b indicates the AE-GMM visualization results with 117,183 normal data
and 32,817 abnormal data after clustering, with an ARI of 0.579. Figure 5c displays the
visualization, results of the AE-VBGMM, with 100,057 normal data and 49,943 abnormal
data after clustering and an ARI of 0.981. Obviously, for the attack type of ackflooding, the
clustering effect of AE-VBGMM is better than those of AE-Kmeans and AE-GMM.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 17 
 

 

after clustering and an ARI of 0.981. Obviously, for the attack type of ackflooding, the 

clustering effect of AE-VBGMM is better than those of AE-Kmeans and AE-GMM. 

   

(a) AE-Kmeans (b) AE-GMM (c) AE-VBGMM 

Figure 5. Abnormality detection of normal data benign and abnormal data ackflooding using three 

methods, AE-Kmeans, AE-GMM, and AE-VBGMM, where orange represents abnormal data, and 

blue represents normal data. 

Figure 6 shows the anomaly detection visualization results of AE-Kmeans, AE-GMM, 

and AE-VBGMM that implement normal data benign and abnormal data httpflooding. 

The visualization result graph indicates a partial overlap between AE-Kmeans and AE-

GMM clustering results, while AE-VBGMM does not. The ratio of normal data to abnor-

mal data is 2:1. Figure 6a indicates the clustering results using AE-Kmeans, which clus-

tered 115,486 normal data and 34,514 abnormal data, with an ARI of 0.616. Figure 6b 

shows the results using AE-GMM, with 116,472 normal data and 33,528 abnormal data 

obtained using this method, with an ARI of 0.595. Figure 6c indicates the clustering result 

using AE-VBGMM; the received normal data is 100,000, abnormal data is 50,000, and ARI 

is 1, the abnormal data is wholly detected. For the attack type of httpflooding, the AE-

VBGMM for anomaly detection effect is significantly better than the AE-GMM and AE-

Kmeans. 

   

(a) AE-Kmeans (b) AE-GMM (c) AE-VBGMM 

Figure 5. Abnormality detection of normal data benign and abnormal data ackflooding using three
methods, AE-Kmeans, AE-GMM, and AE-VBGMM, where orange represents abnormal data, and
blue represents normal data.

Figure 6 shows the anomaly detection visualization results of AE-Kmeans, AE-GMM,
and AE-VBGMM that implement normal data benign and abnormal data httpflooding. The
visualization result graph indicates a partial overlap between AE-Kmeans and AE-GMM
clustering results, while AE-VBGMM does not. The ratio of normal data to abnormal data
is 2:1. Figure 6a indicates the clustering results using AE-Kmeans, which clustered 115,486
normal data and 34,514 abnormal data, with an ARI of 0.616. Figure 6b shows the results
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using AE-GMM, with 116,472 normal data and 33,528 abnormal data obtained using this
method, with an ARI of 0.595. Figure 6c indicates the clustering result using AE-VBGMM;
the received normal data is 100,000, abnormal data is 50,000, and ARI is 1, the abnormal
data is wholly detected. For the attack type of httpflooding, the AE-VBGMM for anomaly
detection effect is significantly better than the AE-GMM and AE-Kmeans.
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Figure 6. Anomaly detection of normal data benign and abnormal data httpflooding by AE-Kmeans,
AE-GMM, and AE-VBGMM, where orange represents abnormal data, and blue represents nor-
mal data.

The visualization results of AE-Kmeans, AE-GMM, and AE-VBGMM for anomaly
detection of normal data benign and abnormal data udpflooding are presented in Figure 7.
The visualization result graph shows that there is partial overlap between AE-Kmeans
and AE-GMM clustering results, while AE-VBGMM has almost no overlap. The ratio
of normal data to abnormal data is 2:1. Figure 7a represents the result of AE-Kmeans,
the normal data obtained by clustering is 114,737, the abnormal data is 35,263, and the
ARI is 0.630. Figure 7b indicates the results using AE-GMM, with 115,135 normal data
and 34,865 abnormal data obtained using this method, with an ARI of 0.625. Figure 7c
indicates the clustering results using AE-VBGMM, which yielded 100,005 normal data,
49,995 abnormal data, and an ARI of 0.999. It can be found that for udpflooding such
attack types, AE-VBGMM for anomaly detection is significantly better than AE-GMM and
AE-Kmeans.
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4.4. Discussion

As a result, in the experiment, the AE-VBGMM proposed in this paper outper-
formed existing methods such as AE-Kmeans and AE-GMM. The main advantages of
AE-VBGMM are:

• The model adopts an autoencoder for feature processing of high-dimensional data, and
its non-linear dimensionality reduction feature well preserves the effective features
of the data, solves the problem of the high dimensionality of data which is difficult
to process, and circumvents the randomness and uncertainty of traditional feature
processing methods.

• The Gaussian mixture model often uses the EM algorithm, and the Bayesian Gaussian
mixture model uses variational inference to estimate the parameters. Using variational
inference to estimate the parameters can effectively circumvent the disadvantage that
the EM algorithm can easily lead to local optima.

• The Bayesian Gaussian mixture model can dynamically implement cluster partitioning
according to the weights assigned to each cluster class in the clustering process. In
contrast, the traditional clustering algorithm K-means requires manual specification
of the number of clusters. Still, in the realistic anomaly detection environment, the
number of abnormal attacks cannot be predicted in advance, so K-means is unsuitable
for anomaly detection.

5. Conclusions

This paper addresses the issue of IoT security, especially the malicious nodes in IoT
network. Therefore, we propose AE-VBGMM, a model for IoT anomaly detection. With
this model, the autoencoder is adopted to reduce the dimensionality of network data with
high complexity, and a Bayesian Gaussian mixture model is used to cluster the dimensional
reduced data. To evaluate the proposed model, we used four performance metrics in the
experiments, including Purity of clustering, Rand Index, Adjusted Rand Index, and F-score.
The results of the experiments indicated that the proposed model can detect the abnormal
nodes in IoT and mean, and it outperformed existing methods such as Kmeans and GMM.
Furthermore, although we focus on solving the anomaly detection problem in this paper,
we believe that the method can be extended to other areas as well, which will be the aspects
we explore later.
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