
Citation: Ye, J.; Yanagisawa, M.; Shi,

Y. Scalable Hardware Efficient

Architecture for Parallel FIR Filters

with Symmetric Coefficients.

Electronics 2022, 11, 3272. https://

doi.org/10.3390/electronics11203272

Academic Editors: Fei Yu, José

V Frances-Villora, Jun Mou and

Young-Ho Seo

Received: 31 August 2022

Accepted: 9 October 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Scalable Hardware Efficient Architecture for Parallel FIR Filters
with Symmetric Coefficients
Jinghao Ye 1, Masao Yanagisawa 2 and Youhua Shi 2,*

1 NVIDIA Semiconductor Technology (Shanghai) Co., Ltd., Shanghai 200001, China
2 Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
* Correspondence: shi@waseda.jp

Abstract: Symmetric convolutions can be utilized for potential hardware resource reduction. How-
ever, they have not been realized in state-of-the-art transposed block FIR designs. Therefore, we
explore the feasibility of symmetric convolution in transposed parallel FIRs and propose a scalable
hardware efficient parallel architecture. The proposed design inserts delay elements after multipliers
for temporal reuse of intermediate tap products. By doing this, the number of required multipliers
can be reduced by half. As a result, we can achieve up to 3.2× and 1.64× area efficiency improve-
ments over the modern transposed block method on reconfigurable and fixed designs, respectively.
These results confirm the effectiveness of the proposed STB-FIR architecture for hardware-efficient,
high-speed signal processing.

Keywords: FIR filter; symmetric transposed FIR; hardware efficient; high-speed signal processing

1. Introduction

Finite impulse response (FIR) filter, one primary digital filter, has been widely used in
signal processing due to its stability and linear phase characteristics. With the time domain
input, xn, and the filter coefficient, hm, the corresponding output, yn, of a T-tap FIR can be
obtained as yn = ∑T−1

m=0 hm·xn−m, according to the discrete time convolution [1]. Due to the
accuracy requirement in frequency domain, T is generally large [2] and consequently, incurs
a large silicon area with significant power consumption. Therefore, over the past decades,
much research effort has been toward hardware efficient FIR filter implementations.

Because multipliers are generally more expensive than adders in terms of area and
power consumption, many previous works have focused on the design of FIR filters
with area-efficient multipliers. In some application-specific FIRs, the coefficients can be
pre-determined; thus, instead of using the costly general multipliers, several constant-
multiplier-based designs (CM) have been proposed [3–8]. These CM-based FIRs, however,
are application-specific and only work for a specific coefficient set; therefore, they are
not suitable in reconfigurable systems with programmable coefficients for real-time appli-
cations, such as adaptive pulse shaping and signal equalization [9]. On the other hand,
because FIR filters are widely used in high-throughput multimedia signal processing and
cellular wireless communication systems, there are also several parallel FIR implementa-
tions, such as fast FIR algorithm (FFA) [10–12] and block FIRs [13–15]. The basic idea of
FFA is to break up an FIR filter into several sub-filters using polyphase decomposition so
that they can operate in parallel with reduced computation complexity. In an FFA-based
FIR filter design, the required number of multipliers can be greatly reduced at the cost of an
increase in adders for extra pre-processing and post-processing. Symmetric FFA-based de-
signs have also been proposed in [11,12] with the consideration of symmetric convolutions.
Although FFA-based methods can achieve a significant reduction in multipliers, they are
only effective for parallel FIR filters with low parallelism. Otherwise, the increased adders
will introduce significant area overhead with the increased design complexity. On the other

Electronics 2022, 11, 3272. https://doi.org/10.3390/electronics11203272 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11203272
https://doi.org/10.3390/electronics11203272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1473-9776
https://doi.org/10.3390/electronics11203272
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11203272?type=check_update&version=2

Electronics 2022, 11, 3272 2 of 14

hand, block FIRs have also been proposed in [13–15] for high-throughput signal processing.
Unlike FFA-based designs, block FIRs can be combined with CM-based methods for a
specific coefficient set; however, the corresponding hardware resource increases linearly
with the degree of parallelism. Therefore, area and power efficiency of the existing parallel
FIRs are still the design challenges.

The symmetry of coefficients, which can lead to a significant saving in hardware cost,
has not been taken into consideration in the existing block FIR designs yet. Therefore, we
explore the feasibility of symmetric convolution in transposed parallel FIRs and propose
a symmetric transposed block FIR filter (STB-FIR) architecture for area/power-efficient
implementation of block FIR filters in which delay elements are inserted after multipliers
for temporal reuse of intermediate tap products.

The remainder of this paper is organized as follows. The proposed STB-FIR architec-
ture is illustrated in Section 2 with the corresponding generalized formulation. Evaluation
results are provided in Section 3. Finally, the conclusion is given in Section 4.

2. Proposed STB-FIR

A T-tap digital FIR filter can be generally implemented either in the direct form or in
the transposed form, as shown in Figure 1.

Electronics 2022, 11, x FOR PEER REVIEW 2 of 13

they are only effective for parallel FIR filters with low parallelism. Otherwise, the in-

creased adders will introduce significant area overhead with the increased design com-

plexity. On the other hand, block FIRs have also been proposed in [13–15] for high-

throughput signal processing. Unlike FFA-based designs, block FIRs can be combined

with CM-based methods for a specific coefficient set; however, the corresponding hard-

ware resource increases linearly with the degree of parallelism. Therefore, area and power

efficiency of the existing parallel FIRs are still the design challenges.

The symmetry of coefficients, which can lead to a significant saving in hardware cost,

has not been taken into consideration in the existing block FIR designs yet. Therefore, we

explore the feasibility of symmetric convolution in transposed parallel FIRs and propose

a symmetric transposed block FIR filter (STB-FIR) architecture for area/power-efficient

implementation of block FIR filters in which delay elements are inserted after multipliers

for temporal reuse of intermediate tap products.

The remainder of this paper is organized as follows. The proposed STB-FIR architec-

ture is illustrated in Section 2 with the corresponding generalized formulation. Evaluation

results are provided in Section 3. Finally, the conclusion is given in Section 4.

2. Proposed STB-FIR

A T-tap digital FIR filter can be generally implemented either in the direct form or in

the transposed form, as shown in Figure 1.

(a) (b)

Figure 1. General FIR implementations: (a) direct form and (b) transposed form.

2.1. Generalized Mathematical Formulation for TB-Based FIRs

For L-parallel processing, the transposed block FIR proposed in [15] takes a block of

𝐿 new input samples {𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥𝑛−𝐿+1} and produces a block of 𝐿 output samples
{𝑦𝑛 , 𝑦𝑛−1, . . . , 𝑦𝑛−𝐿+1} in each clock cycle. For a 𝑇-tap 𝐿-parallel transposed block FIR with

𝑇 = 𝑀𝐿 and L and M indicate the degree of processing parallelism and the total number

of blocks, respectively, the operations can be expressed in matrix form as:

[

𝑦𝑛
𝑦𝑛−1
⋮

𝑦𝑛−𝐿+1

] =

[

𝑥𝑛 … 𝑥𝑛−𝐿+1 𝑥𝑛−𝐿 … 𝑥𝑛−2𝐿+1 … 𝑥𝑛−𝑀𝐿+1
𝑥𝑛−1 … 𝑥𝑛−𝐿 𝑥𝑛−𝐿−1 … 𝑥𝑛−2𝐿 … 𝑥𝑛−𝑀𝐿
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑛−𝑗 … 𝑥𝑛−𝑗−𝐿+1 𝑥𝑛−𝑗−𝐿 … 𝑥𝑛−𝑗−2𝐿+1 … 𝑥𝑛−𝑗−𝑀𝐿+1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑛−𝐿+1 … 𝑥𝑛−2𝐿+2 𝑥𝑛−2𝐿+1 … 𝑥𝑛−3𝐿+2 … 𝑥𝑛−(𝑀+1)𝐿+2]

∙

[

ℎ0
ℎ1
⋮

ℎ𝐿−1
⋮

ℎ𝑀𝐿−1]

 (1)

where {𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝐿+1} is the input of the current clock cycle, {𝑥𝑛−𝐿 , 𝑥𝑛−𝐿−1, … , 𝑥𝑛−2𝐿+1}

represents the input in the previous clock cycle, and {𝑥𝑛−𝑚𝐿 , 𝑥𝑛−𝑚𝐿−1, … , 𝑥𝑛−(𝑚+1)𝐿+1} rep-

resents the input m clocks before. It is obvious that the output of an FIR is a linear combi-

nation of the current input and some previous values.

According to (1), as an 𝐿-parallel FIR has 𝐿 new inputs in each cycle, we define 𝐵𝑚 as

𝐵𝑚 ≡

[

𝑥𝑛−𝑚𝐿 𝑥𝑛−𝑚𝐿−1 … 𝑥𝑛−(𝑚+1)𝐿+1

⋮ ⋮ ⋱ ⋮
𝑥𝑛−𝑚𝐿−𝑗 𝑥𝑛−𝑚𝐿−(𝑗+1) … 𝑥𝑛−(𝑚+1)𝐿−(𝑗−1)

⋮ ⋮ ⋱ ⋮
𝑥𝑛−(𝑚+1)𝐿+1 𝑥𝑛−(𝑚+1)𝐿 … 𝑥𝑛−(𝑚+2)𝐿+2]

 (2)

xn

yn
Tap

h3h2h1h0

D D D D

D D D D

xn

yn

Tap

h3h2h1h0

Figure 1. General FIR implementations: (a) direct form and (b) transposed form.

2.1. Generalized Mathematical Formulation for TB-Based FIRs

For L-parallel processing, the transposed block FIR proposed in [15] takes a block of
L new input samples {xn, xn−1, . . . , xn−L+1} and produces a block of L output samples
{yn, yn−1, . . . , yn−L+1} in each clock cycle. For a T-tap L-parallel transposed block FIR
with T = ML and L and M indicate the degree of processing parallelism and the total
number of blocks, respectively, the operations can be expressed in matrix form as:

Electronics 2022, 11, x FOR PEER REVIEW 2 of 13

they are only effective for parallel FIR filters with low parallelism. Otherwise, the in-

creased adders will introduce significant area overhead with the increased design com-

plexity. On the other hand, block FIRs have also been proposed in [13–15] for high-

throughput signal processing. Unlike FFA-based designs, block FIRs can be combined

with CM-based methods for a specific coefficient set; however, the corresponding hard-

ware resource increases linearly with the degree of parallelism. Therefore, area and power

efficiency of the existing parallel FIRs are still the design challenges.

The symmetry of coefficients, which can lead to a significant saving in hardware cost,

has not been taken into consideration in the existing block FIR designs yet. Therefore, we

explore the feasibility of symmetric convolution in transposed parallel FIRs and propose

a symmetric transposed block FIR filter (STB-FIR) architecture for area/power-efficient

implementation of block FIR filters in which delay elements are inserted after multipliers

for temporal reuse of intermediate tap products.

The remainder of this paper is organized as follows. The proposed STB-FIR architec-

ture is illustrated in Section 2 with the corresponding generalized formulation. Evaluation

results are provided in Section 3. Finally, the conclusion is given in Section 4.

2. Proposed STB-FIR

A T-tap digital FIR filter can be generally implemented either in the direct form or in

the transposed form, as shown in Figure 1.

(a) (b)

Figure 1. General FIR implementations: (a) direct form and (b) transposed form.

2.1. Generalized Mathematical Formulation for TB-Based FIRs

For L-parallel processing, the transposed block FIR proposed in [15] takes a block of

𝐿 new input samples {𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥𝑛−𝐿+1} and produces a block of 𝐿 output samples
{𝑦𝑛, 𝑦𝑛−1, . . . , 𝑦𝑛−𝐿+1} in each clock cycle. For a 𝑇-tap 𝐿-parallel transposed block FIR with

𝑇 = 𝑀𝐿 and L and M indicate the degree of processing parallelism and the total number

of blocks, respectively, the operations can be expressed in matrix form as:

[

𝑦𝑛
𝑦𝑛−1
⋮

𝑦𝑛−𝐿+1

] =

[

𝑥𝑛 … 𝑥𝑛−𝐿+1 𝑥𝑛−𝐿 … 𝑥𝑛−2𝐿+1 … 𝑥𝑛−𝑀𝐿+1
𝑥𝑛−1 … 𝑥𝑛−𝐿 𝑥𝑛−𝐿−1 … 𝑥𝑛−2𝐿 … 𝑥𝑛−𝑀𝐿
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑛−𝑗 … 𝑥𝑛−𝑗−𝐿+1 𝑥𝑛−𝑗−𝐿 … 𝑥𝑛−𝑗−2𝐿+1 … 𝑥𝑛−𝑗−𝑀𝐿+1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑛−𝐿+1 … 𝑥𝑛−2𝐿+2 𝑥𝑛−2𝐿+1 … 𝑥𝑛−3𝐿+2 … 𝑥𝑛−(𝑀+1)𝐿+2]

∙

[

ℎ0
ℎ1
⋮

ℎ𝐿−1
⋮

ℎ𝑀𝐿−1]

 (1)

where {𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝐿+1} is the input of the current clock cycle, {𝑥𝑛−𝐿, 𝑥𝑛−𝐿−1, … , 𝑥𝑛−2𝐿+1}

represents the input in the previous clock cycle, and {𝑥𝑛−𝑚𝐿, 𝑥𝑛−𝑚𝐿−1, … , 𝑥𝑛−(𝑚+1)𝐿+1} rep-

resents the input m clocks before. It is obvious that the output of an FIR is a linear combi-

nation of the current input and some previous values.

According to (1), as an 𝐿-parallel FIR has 𝐿 new inputs in each cycle, we define 𝐵𝑚 as

𝐵𝑚 ≡

[

𝑥𝑛−𝑚𝐿 𝑥𝑛−𝑚𝐿−1 … 𝑥𝑛−(𝑚+1)𝐿+1

⋮ ⋮ ⋱ ⋮
𝑥𝑛−𝑚𝐿−𝑗 𝑥𝑛−𝑚𝐿−(𝑗+1) … 𝑥𝑛−(𝑚+1)𝐿−(𝑗−1)

⋮ ⋮ ⋱ ⋮
𝑥𝑛−(𝑚+1)𝐿+1 𝑥𝑛−(𝑚+1)𝐿 … 𝑥𝑛−(𝑚+2)𝐿+2]

 (2)

xn

yn
Tap

h3h2h1h0

D D D D

D D D D

xn

yn

Tap

h3h2h1h0

where {xn, xn−1, . . . , xn−L+1} is the input of the current clock cycle,
{xn−L, xn−L−1, . . . , xn−2L+1} represents the input in the previous clock cycle, and
{ xn−mL, xn−mL−1, . . . , xn−(m+1)L+1

}
represents the input m clocks before. It is obvious that

the output of an FIR is a linear combination of the current input and some previous values.

Electronics 2022, 11, 3272 3 of 14

According to (1), as an L-parallel FIR has L new inputs in each cycle, we define Bm as

Bm ≡



xn−mL xn−mL−1 . . . xn−(m+1)L+1
...

...
. . .

...
xn−mL−j xn−mL−(j+1) . . . xn−(m+1)L−(j−1)

...
...

. . .
...

xn−(m+1)L+1 xn−(m+1)L . . . xn−(m+2)L+2


(2)

Hence, substituting it into (1), we can obtain
yn

yn−1
...

yn−L+1

 =
[
B0 B1 . . . Bm . . . BM−1

]
·


h0
h1
...

hML−1

 (3)

Similarly, the coefficients can also be divided into M blocks as

H =


h0
h1
...

hML−1

 ≡


H0
H1
...

HM−1

 where Hm =


hmL

hmL+1
...

h(m+1)L−1

 (4)

Thus, (3) can be further rewritten as

yn
...

yn−j
...

yn−L+1

 =
[

B0 B1 . . . Bm . . . BM−1
]
·



H0
...

Hm
...

HM−1


= B0·H0 + B1·H1 + . . . + BM−1·HM−1

=
M−1
∑

m=0
Bm·Hm

(5)

Here, let the calculation of Bm·Hm be TBm, called time block in the following.

TBm ≡ Bm·Hm

=



xn−mL xn−mL−1 . . . xn−(m+1)L+1
...

...
. . .

...
xn−mL−j xn−mL−(j+1) . . . xn−(m+1)L−(j−1)

...
...

. . .
...

xn−(m+1)L+1 xn−(m+1)L . . . xn−(m+2)L+2


·


hmL

hmL+1
...

h(m+1)L−1

 (6)

According to (5), a TB-based scalable FIR architecture can be implemented in a trans-
posed form, as shown in Figure 2, where a T-tap L-parallel block FIR filter has M (= T/L)
time blocks and can process ML input samples in M clock cycles with all the TBs working
simultaneously. It should be noted that the input samples Bm contains the current input and
the previous input. Moreover, each time block (TBm) has the corresponding coefficients,
Hm, and the result is added to the output of the neighboring time block (TB′m+1) to generate
the output of TBm and then is sent to the next time block (TBm−1).

Electronics 2022, 11, 3272 4 of 14

Electronics 2022, 11, x FOR PEER REVIEW 3 of 13

Hence, substituting it into (1), we can obtain

[

𝑦𝑛
𝑦𝑛−1
⋮

𝑦𝑛−𝐿+1

] = [𝐵0 𝐵1 … 𝐵𝑚 … 𝐵𝑀−1] ∙ [

ℎ0
ℎ1
⋮

ℎ𝑀𝐿−1

] (3)

Similarly, the coefficients can also be divided into 𝑀 blocks as

𝐻 = [

ℎ0
ℎ1
⋮

ℎ𝑀𝐿−1

] ≡ [

𝐻0
𝐻1
⋮

𝐻𝑀−1

] where 𝐻𝑚 = [

ℎ𝑚𝐿

ℎ𝑚𝐿+1

⋮
ℎ(𝑚+1)𝐿−1

] (4)

Thus, (3) can be further rewritten as

[

𝑦𝑛
⋮

𝑦𝑛−𝑗
⋮

𝑦𝑛−𝐿+1]

= [𝐵0 𝐵1 … 𝐵𝑚 … 𝐵𝑀−1] ∙

[

𝐻0
⋮
𝐻𝑚
⋮

𝐻𝑀−1]

= 𝐵0 ∙ 𝐻0 + 𝐵1 ∙ 𝐻1 +⋯+ 𝐵𝑀−1 ∙ 𝐻𝑀−1

= ∑ 𝐵𝑚 ∙ 𝐻𝑚

𝑀−1

𝑚=0

(5)

Here, let the calculation of 𝐵𝑚 ∙ 𝐻𝑚 be 𝑇𝐵𝑚, called time block in the following.

𝑇𝐵𝑚 ≡ 𝐵𝑚 ∙ 𝐻𝑚

=

[

𝑥𝑛−𝑚𝐿 𝑥𝑛−𝑚𝐿−1 … 𝑥𝑛−(𝑚+1)𝐿+1

⋮ ⋮ ⋱ ⋮
𝑥𝑛−𝑚𝐿−𝑗 𝑥𝑛−𝑚𝐿−(𝑗+1) … 𝑥𝑛−(𝑚+1)𝐿−(𝑗−1)

⋮ ⋮ ⋱ ⋮
𝑥𝑛−(𝑚+1)𝐿+1 𝑥𝑛−(𝑚+1)𝐿 … 𝑥𝑛−(𝑚+2)𝐿+2]

∙ [

ℎ𝑚𝐿

ℎ𝑚𝐿+1

⋮
ℎ(𝑚+1)𝐿−1

]
(6)

According to (5), a TB-based scalable FIR architecture can be implemented in a trans-

posed form, as shown in Figure 2, where a 𝑇-tap 𝐿-parallel block FIR filter has 𝑀 (= T L⁄)

time blocks and can process 𝑀𝐿 input samples in 𝑀 clock cycles with all the TBs working

simultaneously. It should be noted that the input samples 𝐵𝑚 contains the current input

and the previous input. Moreover, each time block (𝑇𝐵𝑚) has the corresponding coeffi-

cients, 𝐻𝑚, and the result is added to the output of the neighboring time block (𝑇𝐵𝑚+1
′) to

generate the output of 𝑇𝐵𝑚 and then is sent to the next time block (𝑇𝐵𝑚−1).

Figure 2. Time-block-based transposed block FIR architecture. Figure 2. Time-block-based transposed block FIR architecture.

2.2. Proposed STB-FIR Design

For a linear-phase FIR filter, the impulse response can be symmetric (hi = hT−1−i) or
anti-symmetric (hi = −hT−1−i). To simplify the explanation, only the symmetric realization
with hi = hT−1−i will be discussed in the following. It is worth noting that the proposed
architecture is also able to be applied to anti-symmetric FIR implementations.

As shown in (2), there are 2L− 1 input samples that are multiplied with the corre-
sponding coefficients in each time block. Among the 2L− 1 different input samples, L
samples {xn−mL, xn−mL−1, . . . , xn−(m+1)L+1} are the inputs in the current clock cycle while
the other L − 1 ones {xn−(m+1)L, xn−(m+1)L−1, . . . , xn−(m+2)L+2} were obtained in the
previous clock cycle. Therefore, totally L2 different multipliers are required. In [15], delay
elements are inserted on the input side to make it possible for the temporary storage of the
L− 1 samples for later calculation. Unfortunately, because Hi 6= HM−1−i in the transposed
block form, the symmetry of coefficients cannot be easily realized.

To explore the feasibility of symmetric convolution in parallel block FIR filters, a
hardware efficient symmetric transposed block FIR architecture (STB-FIR) is proposed.
In STB-FIR, delay elements are inserted after multipliers; thus, temporal reuse of the
intermediate tap products becomes possible. Consequently, half of the multipliers can be
saved at the cost of increased registers.

For a T-tap L-parallel transposed FIR with symmetric coefficients where T = ML,
there are two cases (i.e., M is odd or even) that should be considered in the proposed
STB-FIR design method, as shown in Figure 3.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 13

2.2. Proposed STB-FIR Design

For a linear-phase FIR filter, the impulse response can be symmetric (ℎ𝑖 = ℎ𝑇−1−𝑖) or

anti-symmetric (ℎ𝑖 = −ℎ𝑇−1−𝑖). To simplify the explanation, only the symmetric realization

with ℎ𝑖 = ℎ𝑇−1−𝑖 will be discussed in the following. It is worth noting that the proposed

architecture is also able to be applied to anti-symmetric FIR implementations.

As shown in (2), there are 2𝐿 − 1 input samples that are multiplied with the corre-

sponding coefficients in each time block. Among the 2𝐿 − 1 different input samples, 𝐿

samples {𝑥𝑛−𝑚𝐿 , 𝑥𝑛−𝑚𝐿−1, … , 𝑥𝑛−(𝑚+1)𝐿+1} are the inputs in the current clock cycle while the

other 𝐿 − 1 ones {𝑥𝑛−(𝑚+1)𝐿 , 𝑥𝑛−(𝑚+1)𝐿−1, … , 𝑥𝑛−(𝑚+2)𝐿+2} were obtained in the previous

clock cycle. Therefore, totally 𝐿2 different multipliers are required. In [15], delay elements

are inserted on the input side to make it possible for the temporary storage of the 𝐿 − 1

samples for later calculation. Unfortunately, because 𝐻𝑖 ≠ 𝐻𝑀−1−𝑖 in the transposed block

form, the symmetry of coefficients cannot be easily realized.

To explore the feasibility of symmetric convolution in parallel block FIR filters, a

hardware efficient symmetric transposed block FIR architecture (STB-FIR) is proposed. In

STB-FIR, delay elements are inserted after multipliers; thus, temporal reuse of the inter-

mediate tap products becomes possible. Consequently, half of the multipliers can be saved

at the cost of increased registers.

For a 𝑇-tap 𝐿-parallel transposed FIR with symmetric coefficients where 𝑇 = 𝑀𝐿 ,

there are two cases (i.e., 𝑀 is odd or even) that should be considered in the proposed STB-

FIR design method, as shown in Figure 3.

(a) (b)

Figure 3. Proposed STB-FIR structure with two cases: (a) TB-based fully symmetric folded structure

when 𝑀 is even and (b) non-symmetric folded structure when 𝑀 is odd.

2.2.1. Case 1: M Is Even

A linear FIR filter that falls into this category has an even tap (i.e., 𝑇 is even), an even

number of TBs (i.e., 𝑀 is even), and symmetric coefficients (i.e., ℎ𝑖 = ℎ𝑇−1−𝑖). Without loss

of generality, let us consider two symmetric TBs (𝑇𝐵𝑚 and 𝑇𝐵𝑀−1−𝑚) in a TB-based sym-

metric FIR.

For the time block, 𝑇𝐵𝑚, shown in (6), we can divide it into two terms as below, and

each of them can be implemented, as shown in Figure 4 a and b, respectively.

𝑇𝐵𝑚 = 𝐵𝑚 ∙ 𝐻𝑚

= [

𝑥𝑛−𝑚𝐿 𝑥𝑛−𝑚𝐿−1 ⋯ 𝑥𝑛−(𝑚+1)𝐿+1

𝑥𝑛−𝑚𝐿−1 ⋮ ⋰ 0
⋮ 𝑥𝑛−(𝑚+1)𝐿+1 ⋰ ⋮

𝑥𝑛−(𝑚+1)𝐿+1 0 ⋯ 0

] ∙ [

ℎ𝑚𝐿

ℎ𝑚𝐿+1

⋮
ℎ(𝑚+1)𝐿−1

]

+[

0 0 ⋯ 0
0 ⋮ ⋰ 𝑥𝑛−(𝑚+1)𝐿

⋮ 0 ⋰ ⋮
0 𝑥𝑛−(𝑚+1)𝐿 ⋯ 𝑥𝑛−(𝑚+2)𝐿+2

] ∙ [

ℎ𝑚𝐿

ℎ𝑚𝐿+1

⋮
ℎ(𝑚+1)𝐿−1

]

(7)

Figure 3. Proposed STB-FIR structure with two cases: (a) TB-based fully symmetric folded structure
when M is even and (b) non-symmetric folded structure when M is odd.

Electronics 2022, 11, 3272 5 of 14

2.2.1. Case 1: M Is Even

A linear FIR filter that falls into this category has an even tap (i.e., T is even), an even
number of TBs (i.e., M is even), and symmetric coefficients (i.e., hi = hT−1−i). Without
loss of generality, let us consider two symmetric TBs (TBm and TBM−1−m) in a TB-based
symmetric FIR.

For the time block, TBm, shown in (6), we can divide it into two terms as below, and
each of them can be implemented, as shown in Figure 4a,b, respectively.

TBm = Bm·Hm

=


xn−mL xn−mL−1 · · · xn−(m+1)L+1

xn−mL−1
... . . .

0
... xn−(m+1)L+1

xn−(m+1)L+1 0 · · · 0

·


hmL
hmL+1

...
h(m+1)L−1



+


0 0 · · · 0

0
... . . .

xn−(m+1)L
... 0
0 xn−(m+1)L · · · xn−(m+2)L+2

·


hmL
hmL+1

...
h(m+1)L−1


(7)

Electronics 2022, 11, x FOR PEER REVIEW 5 of 13

(a) (b)

Figure 4. Implementation of the time block, 𝑇𝐵𝑚, with the corresponding two terms in (7): (a) the

form term and (b) the latter term.

Here, it should be mentioned that there are 2𝐿 − 1 data inputs that are multiplied

with the corresponding coefficients (𝐻𝑚) in each time block (𝑇𝐵𝑚). Among the 2𝐿 − 1 dif-

ferent input samples, if the 𝐿 samples {𝑥𝑛−𝑚𝐿 , 𝑥𝑛−𝑚𝐿−1, … , 𝑥𝑛−(𝑚+1)𝐿+1} are the inputs in the

current clock cycle, the other 𝐿 − 1 ones {𝑥𝑛−(𝑚+1)𝐿 , 𝑥𝑛−(𝑚+1)𝐿−1, … , 𝑥𝑛−(𝑚+2)𝐿+2} are ob-

tained in the previous clock cycle. Since in transposed form, every input sample should

be multiplied with all the coefficients to generate the intermediate tap products, we can

conduct the multiplication firstly and then save the products in registers for later addition.

By doing this, intermediate products can be reused at the cost of several additional regis-

ters, while the required multipliers are reduced by half. As a result, the two parts shown

in Figure 4 can be combined into one circuit, as shown in Figure 5, where the current L

input samples {𝑥𝑛−𝑚𝐿 , 𝑥𝑛−𝑚𝐿−1, … , 𝑥𝑛−(𝑚+1)𝐿+1} are multiplied with all the coefficients

firstly in which some of the products will be directly delivered for addition, while some

of them are firstly saved into the registers and then sent to the adder.

Figure 5. Combined implementation of the two circuits shown in Figure 4.

Furthermore, in a TB-based symmetric FIR (i.e., ℎ𝑖 = ℎ𝑇−1−𝑖), the coefficients in the

two symmetric TBs (𝑇𝐵𝑚 and 𝑇𝐵𝑀−1−𝑚) are 𝐻𝑚 and 𝐻𝑀−1−𝑚 , respectively, and then we

have

𝐻𝑀−1−𝑚 =

[

ℎ(𝑀−1−𝑚)𝐿

ℎ(𝑀−1−𝑚)𝐿+1

⋮
ℎ[(𝑀−1−𝑚)+1]𝐿−2

ℎ[(𝑀−1−𝑚)+1]𝐿−1]

=

[

ℎ(𝑚+1)𝐿−1

ℎ(𝑚+1)𝐿−2

⋮
ℎ𝑚𝐿+1

ℎ𝑚𝐿]

= 𝐸−1 ∙ 𝐻𝑚 (8)

where 𝐸−1 = [
0 ⋯ 1
⋮ ⋰ ⋮
1 ⋯ 0

] providing the vector of coefficients in reverse order, and

Figure 4. Implementation of the time block, TBm, with the corresponding two terms in (7): (a) the
form term and (b) the latter term.

Here, it should be mentioned that there are 2L− 1 data inputs that are multiplied with
the corresponding coefficients (Hm) in each time block (TBm). Among the 2L− 1 different
input samples, if the L samples {xn−mL, xn−mL−1, . . . , xn−(m+1)L+1} are the inputs in the
current clock cycle, the other L− 1 ones {xn−(m+1)L, xn−(m+1)L−1, . . . , xn−(m+2)L+2} are
obtained in the previous clock cycle. Since in transposed form, every input sample should
be multiplied with all the coefficients to generate the intermediate tap products, we can
conduct the multiplication firstly and then save the products in registers for later addition.
By doing this, intermediate products can be reused at the cost of several additional registers,
while the required multipliers are reduced by half. As a result, the two parts shown in
Figure 4 can be combined into one circuit, as shown in Figure 5, where the current L input
samples {xn−mL, xn−mL−1, . . . , xn−(m+1)L+1} are multiplied with all the coefficients firstly
in which some of the products will be directly delivered for addition, while some of them
are firstly saved into the registers and then sent to the adder.

Electronics 2022, 11, 3272 6 of 14

Electronics 2022, 11, x FOR PEER REVIEW 5 of 13

(a) (b)

Figure 4. Implementation of the time block, 𝑇𝐵𝑚, with the corresponding two terms in (7): (a) the

form term and (b) the latter term.

Here, it should be mentioned that there are 2𝐿 − 1 data inputs that are multiplied

with the corresponding coefficients (𝐻𝑚) in each time block (𝑇𝐵𝑚). Among the 2𝐿 − 1 dif-

ferent input samples, if the 𝐿 samples {𝑥𝑛−𝑚𝐿 , 𝑥𝑛−𝑚𝐿−1, … , 𝑥𝑛−(𝑚+1)𝐿+1} are the inputs in the

current clock cycle, the other 𝐿 − 1 ones {𝑥𝑛−(𝑚+1)𝐿 , 𝑥𝑛−(𝑚+1)𝐿−1, … , 𝑥𝑛−(𝑚+2)𝐿+2} are ob-

tained in the previous clock cycle. Since in transposed form, every input sample should

be multiplied with all the coefficients to generate the intermediate tap products, we can

conduct the multiplication firstly and then save the products in registers for later addition.

By doing this, intermediate products can be reused at the cost of several additional regis-

ters, while the required multipliers are reduced by half. As a result, the two parts shown

in Figure 4 can be combined into one circuit, as shown in Figure 5, where the current L

input samples {𝑥𝑛−𝑚𝐿 , 𝑥𝑛−𝑚𝐿−1, … , 𝑥𝑛−(𝑚+1)𝐿+1} are multiplied with all the coefficients

firstly in which some of the products will be directly delivered for addition, while some

of them are firstly saved into the registers and then sent to the adder.

Figure 5. Combined implementation of the two circuits shown in Figure 4.

Furthermore, in a TB-based symmetric FIR (i.e., ℎ𝑖 = ℎ𝑇−1−𝑖), the coefficients in the

two symmetric TBs (𝑇𝐵𝑚 and 𝑇𝐵𝑀−1−𝑚) are 𝐻𝑚 and 𝐻𝑀−1−𝑚 , respectively, and then we

have

𝐻𝑀−1−𝑚 =

[

ℎ(𝑀−1−𝑚)𝐿

ℎ(𝑀−1−𝑚)𝐿+1

⋮
ℎ[(𝑀−1−𝑚)+1]𝐿−2

ℎ[(𝑀−1−𝑚)+1]𝐿−1]

=

[

ℎ(𝑚+1)𝐿−1

ℎ(𝑚+1)𝐿−2

⋮
ℎ𝑚𝐿+1

ℎ𝑚𝐿]

= 𝐸−1 ∙ 𝐻𝑚 (8)

where 𝐸−1 = [
0 ⋯ 1
⋮ ⋰ ⋮
1 ⋯ 0

] providing the vector of coefficients in reverse order, and

Figure 5. Combined implementation of the two circuits shown in Figure 4.

Furthermore, in a TB-based symmetric FIR (i.e., hi = hT−1−i), the coefficients in the
two symmetric TBs (TBm and TBM−1−m) are Hm and HM−1−m, respectively, and then
we have

HM−1−m =


h(M−1−m)L

h(M−1−m)L+1
...

h[(M−1−m)+1]L−2
h[(M−1−m)+1]L−1

 =


h(m+1)L−1
h(m+1)L−2

...
hmL+1

hmL

 = E−1·Hm (8)

where E−1 =

0 · · · 1
...
1 · · · 0

 providing the vector of coefficients in reverse order, and

TBM−1−m =



xn−(M−1−m)L xn−(M−1−m)L−1 . . . xn−(M−1−m)L−(L−1)
...

...
. . .

...
xn−(M−1−m)L−j xn−(M−1−m)L−(j+1) . . . xn−(M−1−m)L−(L+j−1)

...
...

. . .
...

xn−(M−1−m)L−(L−1) xn−(M−1−m)L−L . . . xn−(M−1−m)L−(2L−1)


·E−1·Hm

=


xn−(M−1−m)L xn−(M−1−m)L−1 · · · xn−(M−1−m)L−(L−1)

xn−(M−1−m)L−1
... . . .

0
... xn−(M−1−m)L−(L−1)

xn−(M−1−m)L−(L−1) 0 · · · 0

·E−1·Hm

+


0 0 · · · 0

0
... . . .

xn−(M−1−m)L−L
... 0
0 xn−(M−1−m)L−L · · · xn−(M−1−m)L−(2L−1)

·E−1·Hm

(9)

Although Hm 6= HM−1−m, they consist of the same L separate coefficients as
{hmL, hmL+1, . . . , h(m+1)L−1}. Since, in transposed form, every input sample should be
multiplied with all the coefficients to generate the intermediate tap products, we can imple-
ment each pair of symmetric TBs (TBm and TBM−1−m) as one symmetric time block (STBm)
to take advantage of the same separate coefficients for tap product reuse.

The proposed STB-FIR structure with an even M is shown in Figure 3a, which only
consists of the basic STB units, and the detailed STB design is shown in Figure 6. For
each STB, it has L data inputs (i.e., xn, xn−1, xn−2, . . . , xn−L+1) and L coefficients (Hk)
where Hk =

[
hkL hkL+1 . . . h(k+1)L−1

]T
. It also accepts data from the neighboring

STBs, performs the sum operations, and then sends the results to the corresponding two
neighboring STBs.

Electronics 2022, 11, 3272 7 of 14

Electronics 2022, 11, x FOR PEER REVIEW 6 of 13

𝑇𝐵𝑀−1−𝑚 =

[

𝑥𝑛−(𝑀−1−𝑚)𝐿 𝑥𝑛−(𝑀−1−𝑚)𝐿−1 … 𝑥𝑛−(𝑀−1−𝑚)𝐿−(𝐿−1)

⋮ ⋮ ⋱ ⋮
𝑥𝑛−(𝑀−1−𝑚)𝐿−𝑗 𝑥𝑛−(𝑀−1−𝑚)𝐿−(𝑗+1) … 𝑥𝑛−(𝑀−1−𝑚)𝐿−(𝐿+𝑗−1)

⋮ ⋮ ⋱ ⋮
𝑥𝑛−(𝑀−1−𝑚)𝐿−(𝐿−1) 𝑥𝑛−(𝑀−1−𝑚)𝐿−𝐿 … 𝑥𝑛−(𝑀−1−𝑚)𝐿−(2𝐿−1)]

∙ 𝐸−1 ∙ 𝐻𝑚

=

[

𝑥𝑛−(𝑀−1−𝑚)𝐿 𝑥𝑛−(𝑀−1−𝑚)𝐿−1 ⋯ 𝑥𝑛−(𝑀−1−𝑚)𝐿−(𝐿−1)

𝑥𝑛−(𝑀−1−𝑚)𝐿−1 ⋮ ⋰ 0

⋮ 𝑥𝑛−(𝑀−1−𝑚)𝐿−(𝐿−1) ⋰ ⋮

𝑥𝑛−(𝑀−1−𝑚)𝐿−(𝐿−1) 0 ⋯ 0]

∙ 𝐸−1 ∙ 𝐻𝑚

+[

0 0 ⋯ 0
0 ⋮ ⋰ 𝑥𝑛−(𝑀−1−𝑚)𝐿−𝐿

⋮ 0 ⋰ ⋮
0 𝑥𝑛−(𝑀−1−𝑚)𝐿−𝐿 ⋯ 𝑥𝑛−(𝑀−1−𝑚)𝐿−(2𝐿−1)

] ∙ 𝐸−1 ∙ 𝐻𝑚

(9)

Although 𝐻𝑚 ≠ 𝐻𝑀−1−𝑚 , they consist of the same L separate coefficients as

{ℎ𝑚𝐿 , ℎ𝑚𝐿+1,… , ℎ(𝑚+1)𝐿−1}. Since, in transposed form, every input sample should be multi-

plied with all the coefficients to generate the intermediate tap products, we can implement

each pair of symmetric TBs (𝑇𝐵𝑚 and 𝑇𝐵𝑀−1−𝑚) as one symmetric time block (𝑆𝑇𝐵𝑚) to

take advantage of the same separate coefficients for tap product reuse.

The proposed STB-FIR structure with an even M is shown in Figure 3a, which only

consists of the basic STB units, and the detailed STB design is shown in Figure 6. For each

STB, it has 𝐿 data inputs (i.e., 𝑥𝑛 , 𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥𝑛−𝐿+1) and L coefficients (𝐻𝑘) where 𝐻𝑘 =

[ℎ𝑘𝐿 ℎ𝑘𝐿+1 . . . ℎ(𝑘+1)𝐿−1]𝑇. It also accepts data from the neighboring STBs, performs

the sum operations, and then sends the results to the corresponding two neighboring STBs.

Figure 6. STB design in the proposed STB-FIR.

The proposed STB design can be viewed as the combination of two TBs, while the

total number of multipliers is reduced by half when compared with the implementation

of using two separate TBs. Meanwhile, the number of adders is kept the same as the ex-

isting transposed block FIR [15]. Therefore, the number of multipliers can be reduced at

the cost of increased delay elements in STB-FIR. Since multipliers are much more expen-

sive in area and power consumption than registers, STB-FIR can achieve significant area

and power savings when compared with the existing transposed block FIRs.

2.2.2. Case 2: M Is Odd

Figure 6. STB design in the proposed STB-FIR.

The proposed STB design can be viewed as the combination of two TBs, while the
total number of multipliers is reduced by half when compared with the implementation of
using two separate TBs. Meanwhile, the number of adders is kept the same as the existing
transposed block FIR [15]. Therefore, the number of multipliers can be reduced at the cost
of increased delay elements in STB-FIR. Since multipliers are much more expensive in area
and power consumption than registers, STB-FIR can achieve significant area and power
savings when compared with the existing transposed block FIRs.

2.2.2. Case 2: M Is Odd

When the number of time blocks (M) is odd, the FIR structure cannot be fully TB-based
folded, and a half-STB unit (TB(M−1)/2) is required, as shown in Figure 3b. Fortunately,
due to the symmetry of coefficients (i.e., hi = hT−1−i), we have

H M−1
2

=



h M−1
2 ·L
...

h M−1
2 ·L+j

...
h M−1

2 ·L+L−1


=



h M−1
2 ·L
...
...

h M−1
2 ·L+1

h M−1
2 ·L


(10)

Thus, TB(M−1)/2 can be calculated as

TB M−1
2

= B M−1
2
·H M−1

2
= B M−1

2
·



h M−1
2 ·L
...
...

h M−1
2 ·L+1

h M−1
2 ·L


(11)

Due to the symmetry in HM−1/2, TBM−1/2 can be realized using the STB-like unit

design only with the length changed from L to
[

L
2

]
.

For better illustration, Figure 7 gives the example designs of the proposed STB-FIR and
the existing transposed block FIR [15] for two 6-tap transposed FIRs with different degrees

Electronics 2022, 11, 3272 8 of 14

of parallelism (L). For the 6-tap 3-parallel transposed FIR (T = 6 and L = 3), because M
equals to 2, it is TB-based fully symmetric folded, and the corresponding implementation
of the proposed STB-FIR is shown in Figure 7a. Because L = 3, three data inputs (i.e.,
xn, xn−1, and xn−2) are sent to the STB in each clock. When compared with the transposed
block FIR [15], the number of multipliers is reduced from 18 to 9 with the same number of
adders, while the number of registers is increased by 3. On the other hand, for the 6-tap
2-parallel transposed FIR (T = 6 and L = 2), as M = 3, it is not TB-based fully symmetric
folded and then a half-STB unit is required, as shown in Figure 7b. Because L = 2, two
input samples (i.e., xn and xn−1) are applied in each clock cycle. The STB and the half-STB
units work in a similar way as obtaining the data from the neighboring units, performing
the sum operations, and then sending the results to the corresponding neighboring units.
Finally, two outputs (i.e., yn and yn−1) are generated in each clock cycle. When compared
with that of [15], the number of multipliers is reduced from 12 to 6 with the same number
of adders, and the number of registers is only increased by 2 in STB-FIR.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 13

When the number of time blocks (𝑀) is odd, the FIR structure cannot be fully TB-

based folded, and a half-STB unit (𝑇𝐵(𝑀−1) 2⁄) is required, as shown in Figure 3b. Fortu-

nately, due to the symmetry of coefficients (i.e., ℎ𝑖 = ℎ𝑇−1−𝑖), we have

𝐻𝑀−1
2

=

[

ℎ𝑀−1
2

∙𝐿

⋮
ℎ𝑀−1

2
∙𝐿+𝑗

⋮
ℎ𝑀−1

2
∙𝐿+𝐿−1]

=

[

ℎ𝑀−1

2
∙𝐿

⋮
⋮

ℎ𝑀−1
2

∙𝐿+1

ℎ𝑀−1
2

∙𝐿]

 (10)

Thus, 𝑇𝐵(𝑀−1) 2⁄ can be calculated as

𝑇𝐵𝑀−1
2

= 𝐵𝑀−1
2
∙ 𝐻𝑀−1

2
= 𝐵𝑀−1

2
∙

[

ℎ𝑀−1

2
∙𝐿

⋮
⋮

ℎ𝑀−1
2

∙𝐿+1

ℎ𝑀−1
2

∙𝐿]

 (11)

Due to the symmetry in 𝐻𝑀−1 2⁄ , 𝑇𝐵𝑀−1 2⁄ can be realized using the STB-like unit design

only with the length changed from L to ⌈
𝐿

2
⌉.

For better illustration, Figure 7 gives the example designs of the proposed STB-FIR

and the existing transposed block FIR [15] for two 6-tap transposed FIRs with different

degrees of parallelism (L). For the 6-tap 3-parallel transposed FIR (T = 6 and L = 3), because

M equals to 2, it is TB-based fully symmetric folded, and the corresponding implementa-

tion of the proposed STB-FIR is shown in Figure 7a. Because 𝐿 = 3, three data inputs (i.e.,

𝑥𝑛 , 𝑥𝑛−1, and 𝑥𝑛−2) are sent to the STB in each clock. When compared with the transposed

block FIR [15], the number of multipliers is reduced from 18 to 9 with the same number

of adders, while the number of registers is increased by 3. On the other hand, for the 6-tap

2-parallel transposed FIR (T = 6 and L = 2), as 𝑀 = 3, it is not TB-based fully symmetric

folded and then a half-STB unit is required, as shown in Figure 7b. Because 𝐿 = 2, two

input samples (i.e., 𝑥𝑛 and 𝑥𝑛−1) are applied in each clock cycle. The STB and the half-STB

units work in a similar way as obtaining the data from the neighboring units, performing

the sum operations, and then sending the results to the corresponding neighboring units.

Finally, two outputs (i.e., 𝑦𝑛 and 𝑦𝑛−1) are generated in each clock cycle. When compared

with that of [15], the number of multipliers is reduced from 12 to 6 with the same number

of adders, and the number of registers is only increased by 2 in STB-FIR.

Proposed STB-FIR Transposed Block FIR

(a)

 −
 −

 −
 −

D

D

∑

∑

∑

D

D

D

∑

∑

∑

∑

∑

∑

D

D

D

ℎ3 ℎ4 ℎ5 ℎ3 ℎ4 ℎ5 ℎ3 ℎ4 ℎ5 ℎ0 ℎ1 ℎ2 ℎ0 ℎ1 ℎ2 ℎ0 ℎ1 ℎ2

 −

D D

∑

D

∑

D

∑

D

∑

D ∑
∑

 −

D

 −

∑

∑

DD

D

D ∑ −

ℎ1ℎ0 ℎ2 ℎ1ℎ0 ℎ2 ℎ1ℎ0 ℎ2

Electronics 2022, 11, x FOR PEER REVIEW 8 of 13

Proposed STB-FIR Transposed Block FIR

(b)

Figure 7. Comparisons of parallel FIR implementations (proposed STB-FIR vs. transposed block

FIR). (a) Implementations of a 6-tap 3-parallel FIR (T = 6, L = 3 and M = 2) and (b) implementations

of a 6-tap 2-parallel FIR (T = 6, L = 2 and M = 3).

From this simple example, it can be observed that, unlike the existing transposed

block FIR structure [15] in which delay elements are inserted on the input side, the pro-

posed STB-FIR inserts delay elements after multipliers for temporal reuse of tap products.

By doing this, the costly multiplier can be reduced by half at the cost of slightly increased

low-cost registers.

3. Evaluation Results and Comparisons

To examine the effectiveness of the proposed STB-FIR architecture, implementation

results of various FIR filters are provided and compared with the existing works. In our

work, all the designs are implemented in ROHM 180 nm CMOS process technology, and

the post-synthesis simulation was conducted on the netlist for timing and power evalua-

tion.

3.1. Comparison of Hardware Complexity

As the general FIR structure, the overall hardware complexity of the proposed STB-

FIR is compared with the transposed-based block FIR [15], DA-based approach [13] and

FFA-based L-parallel structure [1] in Table 1.

Table 1. Comparisons of various parallel FIR architectures.

Architecture.
No. of

Multipliers

No. of

Adders

No. of

Registers

Transposed

block
𝑇𝐿 𝐿(𝑇 − 1) 𝑇 + 𝐿 − 1

DA 𝑇𝐿 𝐿(𝑇 − 1) 𝑇 + 𝐿 − 1

L-Parallel

FFA

𝑇

∏ 𝐿𝑖
𝑟
𝑖=1

∏𝑀𝑖

𝑟

𝑖=1

𝐴1∏𝐿𝑖

𝑟

𝑖=1

+∑(𝐴𝑖 (∏ 𝐿𝑗

𝑟

𝑗=𝑖+1

)(∏𝑀𝑘

𝑖−1

𝑘=1

))

𝑟

𝑖=2

+ (∏𝑀𝑖

𝑟

𝑖=1

)(
𝑇

∏ 𝐿𝑖
𝑟
𝑖=1

− 1)

𝑇

𝐿
(𝑅1∏𝑀𝑖

𝑟

𝑖=2

+ 𝑅𝑟) + 𝑇

Proposed

STB-FIR
⌈𝑇/2⌉𝐿 𝐿(𝑇 − 1)

𝑇(3𝐿 − 2)

8
+ 𝑇

* In DA, the number of multipliers indicates the required LUT-based multiplier blocks. * In 𝐿-Paral-

lel FFA, 𝐿 = ∏ 𝐿𝑖
𝑟
𝑖=1 , and 𝑀𝑖 , 𝑅𝑖 , and 𝐴𝑖 indicate the number of multipliers, registers, and adders of

the ith parallel FFA basic unit (𝐿𝑖), respectively. * For the registers in STB-FIR,
𝑇(3𝐿−2)

8
 is an approxi-

mate value depending on 𝑀 and 𝐿.

 −

D D

∑

D

∑

D

∑

D

∑

D ∑

∑

D

ℎ2

∑

∑

∑

∑

 −

D

D

ℎ2ℎ1 ℎ1ℎ0ℎ0

 −

D

∑

∑

D

D

∑

∑

∑

∑

D

D

∑

∑

∑

∑

D

D

 −

ℎ0 ℎ0ℎ1 ℎ1ℎ2ℎ2 ℎ3 ℎ3ℎ4ℎ4 ℎ5 ℎ5

Figure 7. Comparisons of parallel FIR implementations (proposed STB-FIR vs. transposed block FIR).
(a) Implementations of a 6-tap 3-parallel FIR (T = 6, L = 3 and M = 2) and (b) implementations of a
6-tap 2-parallel FIR (T = 6, L = 2 and M = 3).

From this simple example, it can be observed that, unlike the existing transposed block
FIR structure [15] in which delay elements are inserted on the input side, the proposed
STB-FIR inserts delay elements after multipliers for temporal reuse of tap products. By
doing this, the costly multiplier can be reduced by half at the cost of slightly increased
low-cost registers.

3. Evaluation Results and Comparisons

To examine the effectiveness of the proposed STB-FIR architecture, implementation
results of various FIR filters are provided and compared with the existing works. In our
work, all the designs are implemented in ROHM 180 nm CMOS process technology, and the
post-synthesis simulation was conducted on the netlist for timing and power evaluation.

Electronics 2022, 11, 3272 9 of 14

3.1. Comparison of Hardware Complexity

As the general FIR structure, the overall hardware complexity of the proposed STB-
FIR is compared with the transposed-based block FIR [15], DA-based approach [13] and
FFA-based L-parallel structure [1] in Table 1.

Table 1. Comparisons of various parallel FIR architectures.

Architecture. No. of Multipliers No. of Adders No. of Registers

Transposed block TL L(T − 1) T + L− 1

DA TL L(T − 1) T + L− 1

L-Parallel FFA T
∏r

i=1 Li

r
∏
i=1

Mi

A1
r

∏
i=1

Li +
r
∑

i=2

(
Ai

(
r

∏
j=i+1

Lj

)(
i−1
∏

k=1
Mk

))
+(

r
∏
i=1

Mi

)(
T

∏r
i=1 Li

− 1
) T

L

(
R1

r
∏
i=2

Mi + Rr

)
+ T

Proposed STB-FIR T/2L L(T − 1) T(3L−2)
8 + T

* In DA, the number of multipliers indicates the required LUT-based multiplier blocks. * In L-Parallel FFA,
L = ∏r

i=1 Li , and Mi , Ri , and Ai indicate the number of multipliers, registers, and adders of the ith parallel
FFA basic unit (Li), respectively. * For the registers in STB-FIR, T(3L−2)

8 is an approximate value depending on M
and L.

A canonical T-tap FIR filter consists of T multipliers, T–1 adders, and T registers which
depends on the tap number (T) for specific accuracy requirement. Therefore, a straight-
forward implementation of a T-tap L-parallel FIR design, L times hardware resources
are required. The transposed block structure proposed in [15] involves TL multipliers,
L (T − 1) adders and T + L− 1 registers in which L− 1 registers are inserted at the input
side for the storage of L− 1 samples for later calculation. The required hardware resource
of the distributed arithmetic (DA)-based FIR structure [13] is estimated according to the
results shown in [15] for comparison purpose. Here, it should be noted that DA [13] was
implemented in the direct form, while transposed block [12] was in the transposed form.
As for the FFA-based method, the required hardware resource is formulated according
to the analysis, as shown in [1,11,12]. As illustrated above, the proposed STB-FIR in total
involves T/2·L multipliers, L(T − 1) adders, and T(3L−2)

8 + T registers, among which
T(3L−2)

8 registers are approximately used as the delay elements for intermediate product
sharing, and the other T registers are required for the output storage of the adder trees.

When compared with DA-based FIR [13] and the transposed block FIR [15], the
number of multipliers in STB-FIR can be reduced by half while with the same number of
adders, which indicates the promising area savings in STB-FIR. The cost of this multiplier
reduction is a slightly increased number of low-cost registers which are used to store
the intermediate tap products for temporal reuse. According to our analysis, as L and T
increase, the ratio of saved multipliers by the increased registers will get close to 4/3, which
indicates that four multipliers can be saved at the cost of three additional registers. Because
the area and power of a general multiplier is much larger than the corresponding number
of registers, great area and power savings can be achieved in the proposed STB-FIR.

3.2. Comparison of Reconfigurable FIR Implementations

For evaluation and comparison purposes, reconfigurable FIRs in 8, 16, 24, 32, 64, and
128 taps with various degrees of processing parallelism (i.e., L = 2, 4, and 8) are imple-
mented by using STB-FIR and the existing transposed block FIR [15], and the corresponding
synthesis results are shown in Table 2.

Electronics 2022, 11, 3272 10 of 14

Table 2. Comparisons of various parallel FIR architectures.

Tap FIR Structure No. of
Multipliers

No. of
Adders

No. of
Registers

Sampling
Freq.

(MHz)
Area (um2)

Area
Saving

(%)

Power
(mw)

Power
Saving

(%)

8

Parallel
L = 2

Transposed
block 16 14 9 207.04 203,380

39.35

12.47

34.40
Proposed
STB-FIR 8 14 10 206.83 123,353 8.18

Parallel
L = 4

Transposed
block 32 28 11 382.78 383,343

39.97

21.72

34.16
Proposed
STB-FIR 16 28 18 382.41 230,127 14.30

Parallel
L = 8

Transposed
block 64 56 15 735.97 731,514

37.39

42.17

35.83
Proposed
STB-FIR 32 56 30 733.27 457,993 27.06

16

Parallel
L = 2

Transposed
block 32 30 17 207.04 410,745

39.28

26.29

37.31
Proposed
STB-FIR 16 30 24 206.83 249,384 16.48

Parallel
L = 4

Transposed
block 64 60 19 382.78 769,615

39.49

44.72

36.67
Proposed
STB-FIR 32 60 36 382.41 465,661 28.32

Parallel
L = 8

Transposed
block 128 120 23 717.49 1,474,409

39.03

88.39

41.23
Proposed
STB-FIR 64 120 60 732.60 898,994 51.95

24

Parallel
L = 2

Transposed
block 48 46 25 207.04 618,293

39.66

34.96

36.13
Proposed
STB-FIR 24 46 36 206.83 373,099 22.33

Parallel
L = 4

Transposed
block 96 92 27 382.78 1,155,887

39.07

64.99

36.42
Proposed
STB-FIR 48 92 54 382.41 704,290 41.32

Parallel
L = 8

Transposed
block 192 184 31 733.27 2,217,483

38.81

120.65

32.95
Proposed
STB-FIR 96 184 90 732.60 1,356,819 80.90

32

Parallel
L = 2

Transposed
block 64 62 33 207.04 827,379

39.62

50.40

32.34
Proposed
STB-FIR 32 62 48 206.83 499,542 34.10

Parallel
L = 4

Transposed
block 128 124 35 382.78 1,542,082

39.26

88.22

33.51
Proposed
STB-FIR 64 124 72 382.41 936,727 58.66

Parallel
L = 8

Transposed
block 256 248 39 733.27 2,963,939

39.00

159.96

33.09
Proposed
STB-FIR 128 248 120 732.60 1,808,023 107.03

Electronics 2022, 11, 3272 11 of 14

Table 2. Cont.

Tap FIR Structure No. of
Multipliers

No. of
Adders

No. of
Registers

Sampling
Freq.

(MHz)
Area (um2)

Area
Saving

(%)

Power
(mw)

Power
Saving

(%)

64

Parallel
L = 2

Transposed
block 128 126 65 207.04 1,613,977

39.29

99.83

36.44
Proposed
STB-FIR 64 126 96 206.83 979,802 63.45

Parallel
L = 4

Transposed
block 256 252 67 382.78 3,087,828

39.30

177.32

34.97
Proposed
STB-FIR 128 252 144 382.41 1,874,254 115.32

Parallel
L = 8

Transposed
block 512 504 71 733.27 5,932,523

38.87

322.64

33.07
Proposed
STB-FIR 256 504 240 732.60 3,626,413 215.93

128

Parallel
L = 2

Transposed
block 256 254 129 207.04 3,272,258

38.90

208.11

36.97
Proposed
STB-FIR 128 254 192 206.83 1,999,407 131.18

Parallel
L = 4

Transposed
block 512 508 131 382.78 6,178,507

39.12

356.05

34.70
Proposed
STB-FIR 256 508 288 382.41 3,761,321 232.5

Parallel
L = 8

Transposed
block 1024 1016 135 733.27 11,872,904

38.82

648.16

32.76
Proposed
STB-FIR 512 1016 480 732.60 7,263,638 435.81

In [15], Mohanty et.al have shown that their transposed block FIR designs outperform
the existing DA-based method [13]; therefore, we implemented their work as the state-or-
the-art design, and the corresponding results are presented in Table 2 for comparison. The
results are obtained using the logic synthesis tools, and the power consumption is extracted
based on simulation of synthesis results with back-annotation of toggling activity where
uniformly distributed sample input values are applied. In the table, the sample frequency
is calculated as the degree of parallelism (L)/minimum clock period (MCP). Therefore, it
is obvious that the L-parallel FIR designs, including both the proposed method and the
existing method, can improve the sampling frequency over the baseline non-parallel FIR
design at the cost of increased silicon area. On average, the proposed STB-FIR can achieve
39.12% area savings and 35.16% power consumption reduction for all the 18 FIRs when
compared with the existing transposed block-based designs [15].

As the structure of reconfigurable FIR filters is very regular, the measurement of area
efficiency per tap (AE) is introduced as

AE =
Tap× Parallelism

Area×MCP
(12)

where, Tap is the tap number of the FIR, Parallelism indicates the degree of processing
parallelism (i.e., L in the proposed STB-FIR), and MCP is the minimum clock period. The
normalized AE results are given in Figure 8 in which the baseline design has the parallelism
of 1, and STB-FIR can achieve up to 3.2× AE improvements.

Electronics 2022, 11, 3272 12 of 14

Electronics 2022, 11, x FOR PEER REVIEW 11 of 13

As the structure of reconfigurable FIR filters is very regular, the measurement of area

efficiency per tap (AE) is introduced as

𝐴𝐸 =
𝑇𝑎𝑝 × 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚

𝐴𝑟𝑒𝑎 × 𝑀𝐶𝑃
 (12)

where, Tap is the tap number of the FIR, 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 indicates the degree of processing

parallelism (i.e., 𝐿 in the proposed STB-FIR), and 𝑀𝐶𝑃 is the minimum clock period. The

normalized 𝐴𝐸 results are given in Figure 8 in which the baseline design has the parallel-

ism of 1, and STB-FIR can achieve up to 3.2× 𝐴𝐸 improvements.

Figure 8. Normalized AE results of various reconfigurable FIR implementations.

3.3. Comparison of Fixed FIR Implementations

As for fixed FIR filters in which the coefficients are pre-determined, by referring to

[16], a 105-tap FIR with 𝐿 = 3 and a 60-tap FIR with 𝐿 = 2, 3, and 4 are implemented in

which the CSE multiplier [4] is adopted for area saving.

For the 105-tap 3-parallel FIR, STB-FIR can achieve 13.08% area saving and 23.05%

power reduction when compared with the fixed transposed block FIR [15]. On the other

hand, when compared with the fixed symmetric FFA designs [11] and [12], STB-FIR can

achieve up to 31.5% and 40.5% sampling frequency improvement for the 105-tap 3-parallel

FIR and the 60-tap 2-parallel one, respectively.

Without loss of generality, the normalized area efficiency comparison is presented in

Figure 9 in which the baseline is the FFA-based design in [1]. For the 105-tap 3-parallel

FIR, the proposed STB-FIR architecture can achieve 1.64× and 1.20× 𝐴𝐸 improvements

over the transposed block FIR [15] and the fixed symmetric FFA design [11], respectively.

Moreover, for the 60-tap FIR, the proposed STB-FIR filter design can achieve up to 1.29×

AE improvement over the existing FFA designs.

Figure 8. Normalized AE results of various reconfigurable FIR implementations.

3.3. Comparison of Fixed FIR Implementations

As for fixed FIR filters in which the coefficients are pre-determined, by referring to [16],
a 105-tap FIR with L = 3 and a 60-tap FIR with L = 2, 3, and 4 are implemented in which
the CSE multiplier [4] is adopted for area saving.

For the 105-tap 3-parallel FIR, STB-FIR can achieve 13.08% area saving and 23.05%
power reduction when compared with the fixed transposed block FIR [15]. On the other
hand, when compared with the fixed symmetric FFA designs [11,12], STB-FIR can achieve
up to 31.5% and 40.5% sampling frequency improvement for the 105-tap 3-parallel FIR and
the 60-tap 2-parallel one, respectively.

Without loss of generality, the normalized area efficiency comparison is presented in
Figure 9 in which the baseline is the FFA-based design in [1]. For the 105-tap 3-parallel
FIR, the proposed STB-FIR architecture can achieve 1.64× and 1.20× AE improvements
over the transposed block FIR [15] and the fixed symmetric FFA design [11], respectively.
Moreover, for the 60-tap FIR, the proposed STB-FIR filter design can achieve up to 1.29× AE
improvement over the existing FFA designs.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 13

Figure 9. Normalized AE results of various fixed FIR implementations.

4. Conclusions

The feasibility of a symmetric transposed block FIR filter is explored in this paper by

taking advantage of the symmetric coefficients for area-power efficient implementation.

In the proposed STB-FIR architecture, using registers to save intermediate tap products

for temporal reuse makes it possible to realize hardware-efficient symmetric transposed

block FIR filters. The evaluation results show that compared with the state-of-the-art re-

configurable architecture [15], the proposed STB-FIR architecture can achieve up to

39.97% and 41.23% area saving and power reduction, respectively. On the other hand,

compared with the existing symmetric FFA designs [11,12], the proposed STB-FIR archi-

tecture can achieve up to 31.5% and 40.5% sampling frequency improvement and 1.20×

AE improvement as well for the fixed FIR implementations. These results clearly illustrate

the efficiency of the proposed STB-FIR architecture and confirm that STB-FIR can be ap-

plicable to both reconfigurable and fixed FIR implementations for area-power efficient

high-speed signal processing. On the other hand, the optimization of multipliers will re-

sult in an increased importance of adder trees, especially in fixed FIRs. Therefore, further

optimization of adder tree implementation will be one of our future works.

Author Contributions: Conceptualization, J.Y. and Y.S.; methodology, J.Y.; validation, J.Y., M.Y.,

and Y.S.; data curation, J.Y.; writing—original draft preparation, Y.S.; writing—review and editing,

J.Y., M.Y., and Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by Waseda University Grant for Special Research

Projects (Project number: 2021C-147).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the necessary data are included in the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Parhi, K.K. VLSI Digital Signal Processing Systems: Design and Implementation; Wiley: New York, NY, USA, 1999.

2. Mirchandani, G.; Zinser, R.L.; Evans, J.B. A new adaptive noise cancellation scheme in the presence of crosstalk [speech signals].

IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1995, 39, 681–694.

3. Dempster, A.G.; Macleod, M.D. Use of minimum-adder multiplier blocks in FIR digital filters. IEEE Trans. Circuits Syst. II:

Analog. Digit. Signal Process. 1995, 42, 569–577.

Figure 9. Normalized AE results of various fixed FIR implementations.

Electronics 2022, 11, 3272 13 of 14

4. Conclusions

The feasibility of a symmetric transposed block FIR filter is explored in this paper by
taking advantage of the symmetric coefficients for area-power efficient implementation. In
the proposed STB-FIR architecture, using registers to save intermediate tap products for
temporal reuse makes it possible to realize hardware-efficient symmetric transposed block
FIR filters. The evaluation results show that compared with the state-of-the-art reconfig-
urable architecture [15], the proposed STB-FIR architecture can achieve up to 39.97% and
41.23% area saving and power reduction, respectively. On the other hand, compared with
the existing symmetric FFA designs [11,12], the proposed STB-FIR architecture can achieve
up to 31.5% and 40.5% sampling frequency improvement and 1.20× AE improvement as
well for the fixed FIR implementations. These results clearly illustrate the efficiency of
the proposed STB-FIR architecture and confirm that STB-FIR can be applicable to both
reconfigurable and fixed FIR implementations for area-power efficient high-speed signal
processing. On the other hand, the optimization of multipliers will result in an increased
importance of adder trees, especially in fixed FIRs. Therefore, further optimization of adder
tree implementation will be one of our future works.

Author Contributions: Conceptualization, J.Y. and Y.S.; methodology, J.Y.; validation, J.Y., M.Y. and
Y.S.; data curation, J.Y.; writing—original draft preparation, Y.S.; writing—review and editing, J.Y.,
M.Y. and Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by Waseda University Grant for Special Research
Projects (Project number: 2021C-147).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the necessary data are included in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Parhi, K.K. VLSI Digital Signal Processing Systems: Design and Implementation; Wiley: New York, NY, USA, 1999.
2. Mirchandani, G.; Zinser, R.L.; Evans, J.B. A new adaptive noise cancellation scheme in the presence of crosstalk [speech signals].

IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1995, 39, 681–694. [CrossRef]
3. Dempster, A.G.; Macleod, M.D. Use of minimum-adder multiplier blocks in FIR digital filters. IEEE Trans. Circuits Syst. II Analog.

Digit. Signal Process. 1995, 42, 569–577. [CrossRef]
4. Mahesh, R.; Vinod, A.P. A new common subexpression elimination algorithm for realizing low-complexity higher order digital

filters. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2008, 27, 217–229. [CrossRef]
5. Lou, X.; Yu, Y.J.; Meher, P.K. Fine-grained critical path analysis and optimization for area-time efficient realization of multiple

constant multiplications. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 863–872. [CrossRef]
6. Meidani, M.; Mashoufi, B. Introducing new algorithms for realizing an FIR filter with less hardware in order to eliminate power

line interference from the ECG signal. IET J. Signal Process. 2016, 10, 709–716. [CrossRef]
7. Ye, J.; Togawa, N.; Yanagisawa, M.; Shi, Y. A low cost and high speed CSD-based symmetric transpose block FIR implementation.

In Proceedings of the IEEE International Conference on ASIC (ASICON), Guiyang, China, 25–28 October 2017.
8. Ye, J.; Togawa, N.; Yanagisawa, M.; Shi, Y. Static error analysis and optimization of faithfully truncated adders for area-power

efficient FIR designs. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan,
26–29 May 2019.

9. Park, J.; Jeong, W.; Meimand, H.M.; Wang, Y.; Choo, H.; Roy, K. Computation sharing programmable FIR filter for low-power and
high-performance applications. IEEE J. Solid-State Circuits 2004, 39, 348–357. [CrossRef]

10. Parker, D.A.; Parhi, K.K. Low-area/power parallel FIR digital filter implementations. J. VLSI Signal Process. Syst. 1997, 17, 75–92.
[CrossRef]

11. Tsao, Y.; Choi, K. Area-efficient parallel FIR digital filter structures for symmetric convolutions based on fast FIR algorithm. IEEE
Trans. Very Large Scale Integr. Syst. 2012, 20, 366–371. [CrossRef]

12. Tsao, Y.; Choi, K. Area-efficient VLSI implementation for parallel linear-phase FIR digital filters of odd length based on fast FIR
algorithm. IEEE Trans. Circuits Syst. II Express Briefs. 2012, 59, 371–375. [CrossRef]

13. Mohanty, B.K.; Meher, P.K. A high-performance energy-efficient architecture for FIR adaptive filter based on new distributed
arithmetic formulation of block LMS algorithm. IEEE Trans. Signal Process. 2013, 61, 921–932. [CrossRef]

http://doi.org/10.1109/82.199895
http://doi.org/10.1109/82.466647
http://doi.org/10.1109/TCAD.2007.907064
http://doi.org/10.1109/TCSI.2014.2377412
http://doi.org/10.1049/iet-spr.2015.0552
http://doi.org/10.1109/JSSC.2003.821785
http://doi.org/10.1023/A:1007901117408
http://doi.org/10.1109/TVLSI.2010.2095892
http://doi.org/10.1109/TCSII.2012.2195062
http://doi.org/10.1109/TSP.2012.2226453

Electronics 2022, 11, 3272 14 of 14

14. Mohanty, B.K.; Meher, P.K.; Al-Maadeed, S.; Amira, A. Memory footprint reduction for power-efficient realization of 2-D finite
impulse response filters. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 120–133. [CrossRef]

15. Mohanty, B.K.; Meher, P.K. A high performance FIR filter architecture for fixed and reconfigurable applications. IEEE Trans. Very
Large Scale Integr. Syst. 2016, 24, 444–452. [CrossRef]

16. Shahein, A.; Zhang, Q.; Lotze, N.; Manoli, Y. A novel hybrid monotonic local search algorithm for FIR filter coefficients
optimization. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 59, 616–627. [CrossRef]

http://doi.org/10.1109/TCSI.2013.2265953
http://doi.org/10.1109/TVLSI.2015.2412556
http://doi.org/10.1109/TCSI.2011.2165409

	Introduction
	Proposed STB-FIR
	Generalized Mathematical Formulation for TB-Based FIRs
	Proposed STB-FIR Design
	Case 1: M Is Even
	Case 2: M Is Odd

	Evaluation Results and Comparisons
	Comparison of Hardware Complexity
	Comparison of Reconfigurable FIR Implementations
	Comparison of Fixed FIR Implementations

	Conclusions
	References

