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Abstract: Military target detection technology is the basis and key for reconnaissance and com-
mand decision-making, as well as the premise of target tracking. Current military target detection
algorithms involve many parameters and calculations, prohibiting deployment on the weapon equip-
ment platform with limited hardware resources. Given the above problems, this paper proposes
a lightweight military target detection method entitled SMCA-α-YOLOv5. Specifically, first, the
Focus module is replaced with the Stem block to improve the feature expression ability of the shal-
low network. Next, we redesign the backbone network of YOLOv5 by embedding the coordinate
attention module based on the MobileNetV3 block, reducing the network parameter cardinality and
computations, thus improving the model’s average detection accuracy. Finally, we propose a power
parameter loss that combines the optimizations of the EIOU loss and Focal loss, improving further the
detection accuracy and convergence speed. According to the experimental findings, when applied
to the self-created military target data set, the developed method achieves an average precision of
98.4% and a detection speed of 47.6 Frames Per Second (FPS). Compared with the SSD, Faster-RCNN,
YOLOv3, YOLOv4, and YOLOv5 algorithms, the mAP values of the improved algorithm surpass the
competitor methods by 8.3%, 9.9%, 2.1%, 1.6%, and 1.9%, respectively. Compared with the YOLOv5
algorithm, the parameter cardinality and computational burden are decreased by 85.7% and 95.6%,
respectively, meeting mobile devices’ military target detection requirements.

Keywords: military target detection; YOLOv5; Stem block; MobileNetV3 block; coordinate attention;
loss function

1. Introduction

Military target detection technology is the key to improving battlefield situation
generation, reconnaissance, surveillance, and command decision-making and is an essential
factor for winning modern warfare. Real-time and accurate detection of battlefield targets
will help us grasp the battlefield environment faster, search and track enemy units, and
understand the enemy’s dynamics to seize the opportunity in the war and be in a dominant
position [1–3].

A large amount of data, rapid changes, and strong camouflage are features of battle-
field targets in modern combat, influenced by artificial intelligence’s development [4,5].
Most traditional visual target detection technologies are based on hand-designed features
for target detection, and it is challenging to obtain target information comprehensively,
quickly, and accurately from the complex battlefield environment.

Computer vision technology has become widely used in various industries, including
video surveillance, drone piloting, and military intelligence analysis, due to the rapid
growth of deep learning [2]. Currently, target detection algorithms based on deep learning
can be divided into candidate frame-based and regression-based algorithms. The former
is represented by the Region-based Convolutional Neural Network (R-CNN) [6], Fast
R-CNN [7], and Faster R-CNN [8]. The latter mainly include You Only Look Once (YOLO)
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series algorithms [9–12] and SSD [13–15] algorithms. In order to achieve a higher detection
accuracy, the target detection algorithm based on the candidate frame first counts the
target frame on the feature map and then obtains the detection result in a refined manner.
However, there are drawbacks, such as high memory resource consumption and slow
speed. The regression-based target detection algorithm is an end-to-end detection method.
The target is obtained by direct regression on the feature map, so the detection speed
is significantly improved, but the detection accuracy is slightly lower than that of the
candidate frame-based detection algorithm.

Several scholars have successfully applied deep learning-based methods in military
target detection recently. For instance, [16] proposed a neural network-based military
vehicle detection method, attaining a recognition rate of 97.36%. In [17], the authors pro-
posed an improved Fast R-CNN algorithm for small tank target detection. This algorithm
is superior to the Faster R-CNN algorithm in detection speed and accuracy but suffers
from miss-detections when detecting occluded targets. The work of [18] suggested a tank
military robot with target detection and tracking functions, effectively improving the bat-
tlefield’s combat capability. Reference [19] proposed a remote sensing image selection
and searching method to solve the potential hot spot detection problem in large-scale
remote sensing images and improve the detection accuracy of overlapping targets. This
method improves the target detection accuracy without considering the model’s space
complexity. In [20], the authors fully integrated polarization imaging and deep learning to
detect camouflaged artificial targets quickly under normal and low illumination conditions.
Reference [21] developed a new military target detection algorithm, which introduced
the GhostNet module to improve the detection accuracy and speed and then improved
the loss function to enhance detection accuracy. The experimental results show that the
model’s parameters are about three times higher than the YOLOv5 model. Furthermore,
reference [22] solved the DIOU defect when the center of the bounding box was aligned at
the same point, which is conducive to the efficient deployment of detection algorithms in
resource-constrained environments. Reference [23] proposed an armored target detection
algorithm named GCD-YOLOv5 that utilized a LIDAR array in complex environments.
This algorithm has a strong detection ability, but its network structure is complex and thus
challenging to implement the transplantation of embedded terminals.

Based on the above research, with the continuous improvement in the performance
of the network model, the increase in the number of model parameters and computation
restricts its embedding in resource-constrained weapons and equipment. In order to meet
the requirements of military target detection under limited resources of weapon hardware
platforms, this paper proposes an improved YOLOv5 algorithm (SMCA-α-YOLOv5), which
is tested and compared through ablation experiments. The results show that compared
with YOLOv5s, the mean average precision is increased by 1.9%, the amount of model
parameters is decreased by 85.7%, and the amount of computation is decreased by 95.9%.
The main contributions of this paper can be summarized as follows:

1. The Stem block is used to replace the Focus module, and the multi-channel information
fusion improves the feature expression ability, reducing the model’s parameters and
computation complexity.

2. The coordinate attention module is embedded in the MobileNetV3 block structure
to redesign the backbone network of YOLOv5. This strategy reduces the network’s
parameters and computation complexity and improves its detection performance.

3. Considering the defects of CIOU loss, we propose a power parameter loss opti-
mized by combining the EIOU loss and Focal loss. The experiments show that the
convergence speed is faster and the regression error is lower.

The remainder of this paper is organized as follows: Section 2 introduces the con-
struction of the military target dataset. Section 3 introduces the work related to the
YOLOv5s structure, MobileNetV3 block module, coordinate attention mechanism, and
Loss Metrics in Object Detection. Section 4 introduces the improved YOLOv5 algorithm.
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Section 5 analyzes and discusses the experimental results. Finally, Section 6 presents the
conclusion and future work.

2. Datasets

With the vigorous development of deep learning, the performance of target detection
algorithms based on deep learning depends on the quality of large-scale data sets. Therefore,
preparing large-scale military target data sets is the basis and premise of research on military
target detection. The current mainstream target detection datasets mainly include PASCAL
VOC [24], MS COCO [25], ImageNet, etc. These datasets mainly include common objects
such as furniture, electronic equipment, vehicles, and people, and some datasets contain
tanks, soldiers, and military targets such as drones, but the data types are small, the amount
of data is insufficient, and the background is simple. Due to the particularity of the types
of military targets, and confidentiality considerations, the public dataset resources are
relatively small, and it is difficult to train deep neural networks. Therefore, this paper
makes the Military Image Target Dataset (MITD).

2.1. Source of Data

Military objectives can be divided into sea, land, and air. Maritime military targets
mainly refer to submarines, naval warships, etc.; land military targets mainly include
tanks, soldiers, trucks, and other weapons and equipment; air military targets mainly
include helicopters, early warning aircraft, missiles, etc. [3]. This article obtained 9369
military target images in jpg through the Google search engine. It mainly includes seven
military targets: tank, missile, helicopter, air early warning, ship, submarine, and soldier.
In this paper, all kinds of targets in the military target dataset are randomly divided into a
training set, validation set, and test set according to 7:2:1. Figure 1 shows a sample example
of MITD.

Figure 1. Sample images in MITD. (a) A picture contains a single military target; (b) A picture
contains multiple military targets.

2.2. Label Format and Data Size

In this paper, labeling software is used to label the image targets in MITD, and the
target’s position information is stored in the text document in YOLO format, and 9369 text
documents are finally obtained. Statistical analysis of various military target information is
shown in Table 1. There are 9369 images, including 13,199 target boxes, and the number of
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targets ranges from 1 to 16. The image width pixel range is [233, 4960], and the height pixel
range is [167, 2802].

Table 1. Details of the MITD.

Military Target
Name

Image Target Box

Number Range of Heights Range of Width Number

tank 1448 [233, 2560] [180, 1600] 1667
missile 1441 [273, 4096] [180, 2800] 1911

helicopter 986 [267, 3000] [230, 2000] 1126
air early warning 1456 [400, 3100] [260, 2063] 1591

submarine 1717 [399, 2500] [262, 2437] 1754
warship 1394 [240, 4960] [240, 2802] 1901
soldier 927 [266, 2048] [167, 1360] 3249

total/range 9369 [233, 4960] [167, 2802] 13,199

3. Related Work

This section will introduce the related principles of YOLOv5, MobileNetV3 block,
coordinate attention mechanism, and Loss Metrics in Object Detection.

3.1. YOLOv5 Algorithm

The YOLOv5 algorithm [26–29] is an open-source object detection project with good
engineering results. At present, four versions of YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x are included in the released YOLOv5 project. Among them, the YOLOv5s
structure is the network with the smallest depth and width, and has the advantages of high
speed and small size. Therefore, this paper adopts the YOLOv5s structure, which consists
of four parts: the Input, the Backbone network, the Neck network layer, and the Head
output, as shown in Figure 2.

Figure 2. The structure of YOLOv5s.

• Input: The Input preprocesses the original image data, mainly including Mosaic data
enhancement, random cropping, and adaptive image filling. In order to adapt to
different target data sets, adaptive frame calculation is integrated into the input.
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• Backbone: The Backbone network extracts the feature information at different levels
of the image through the deep residual structure. The main structures are Cross Stage
Partial (CSP) [30] and Spatial Pyramid Pooling (SPP) [31]. The former aims to reduce
the amount of calculation and improve the inference speed. The latter aims to perform
feature extraction at different scales for the same feature map, which helps to improve
detection performance.

• Neck: The Neck network layer includes Feature Pyramid Networks (FPN) and Path
Aggregation Network (PAN). FPN transmits semantic information from top to bottom
in the network, and PAN transmits positioning information from top to bottom. The
information is fused to improve the detection performance further.

• Head: The head output uses the feature information extracted from the Neck end to
filter the best detection frame through non-maximum suppression, and generates a
detection frame to predict the target category.

3.2. MobileNetV3 Block

The MobileNet algorithm series is representative of lightweight network models.
MobileNetV1 [32] introduced depthwise separable convolution instead of standard con-
volution and reduced the number of parameters and computation of the model through
the combination of channel-by-channel convolution and point-by-point convolution. Mo-
bileNetV2 [33] draws on the residual network to design an inverse residual structure that
first increases the dimension, performs convolution, and then reduces the dimension. At
the same time, it uses a linear bottleneck layer structure to retain the effective features to
the greatest extent, and it is easy for the model to be deployed on mobile devices. Mo-
bileNetV3 [34] introduces a lightweight attention mechanism SENet based on MobileNetV2,
uses the improved swish activation function to upgrade the nonlinear layer, and finally
uses the neural network architecture to search for the best network model. The unit module
is shown in Figure 3.

Figure 3. The structure of MobileNetV3 block. NL denotes the type of nonlinearity used.

3.3. Coordinate Attention

The coordinate attention (CA) mechanism [35] embeds location information into
channel attention, decomposing the channel attention into a one-dimensional encoding
process that aggregates feature along two spatial directions. Long-term dependencies can
be captured in one spatial direction, while precise location information can be preserved in
the other. The representation of objects of interest can be improved by applying a pair of
orientation-aware and position-sensitive feature maps in addition to the input feature maps.
The fundamental purpose of a coordinate attention block is to enhance the expressive
ability of mobile network learning features. As shown in Figure 4, this module is divided
into embedding collaborative information and generating coordinated attention. First,
it arbitrarily takes two intermediate feature tensors X = [x1, x2 · · · , xC] ∈ RC×H×W and
Y = [y1, y1, · · · , y1] ∈ RC×H×W , where X is the input and Y is the output. The embedding
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of collaborative information is given input X, using multiple pooling kernels for (H, 1)
and (1, W) to encode channels along the direction and longitudinal direction, respectively.
Therefore, the output of the height h and cth channel can be expressed as:

Zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (1)

Figure 4. The structure of the Coordinate Attention block.

Similarly, the output of the width w and cth channel can be expressed as:

Zw
c (w) =

1
H ∑

0≤j≤H
xc(j, w) (2)

The two transformations, Equations (1) and (2), aggregate features along two spatial
directions, respectively. The generation of collaborative attention is the splicing of the
two transformations, and then sent to a transformation F1 that shares the 1× 1 convolution,
which can be expressed as:

f = δ
(

F1

([
zh, zw

]))
∑

0≤i≤W
xc(h, i) (3)

In Equation (3),
[
zh, zw

]
is the splicing operation along the spatial dimension, δ is the

nonlinear activation function, and f ∈ RC/r×(H+W) is the horizontal Intermediate feature
maps that encode spatial information in the directional and vertical directions. r is the
reduction ratio. f is split into two separate tensors f h ∈ RC/r×H and f w ∈ RC/r×W along
the spatial dimension. In addition, using two 1× 1 convolutional transforms Fh and Fw to
transform fh and fw into tensors with the same number of channels for the input X yields:

gh = δ
(

Fh

(
f h
))

(4)

gw = δ(Fw( f w)) (5)

δ is a sigmoid function. Extend the outputs gh and gw. Finally, the output of Y can be
written as:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (6)

3.4. Loss Metrics in Object detection

Bounding box regression (BBR) is a critical step in object detection techniques, and
a well-designed loss function is crucial to the success of BBR. Currently, most detection
methods use BBR, and the loss function of BBR can be roughly divided into horizontal and
rotational detection regression loss.
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Researchers have carried out much work on designing level detection regression loss
functions. For instance, YOLOv1 [9] proposes the square root of the predicted bounding box
size to compensate for the difference between scales. Fast R-CNN [7] and Faster R-CNN [8]
use the l1 loss function, which is less sensitive to outliers than the l2 loss. However, most of
the ln norm loss functions assume that the bounding box variables are independent, which
is inconsistent with the real situation. In response to the above problems, the IOU [36]
loss was proposed, achieving good performance then. To address the shortcoming of IOU
loss, the Generalized IOU (GIOU) [37] loss was proposed, i.e., the IOU loss is always zero
when the two boxes do not overlap. In order to further solve the shortcomings of GIOU’s
slow convergence speed in the horizontal and vertical directions, Distance IOU (DIOU)
and Complete IOU (CIOU) [38] have been proposed, with experiments demonstrating that
these two losses converge faster and have better performance. Since the aspect ratio of the
CIOU loss is relative and does not balance the hard and easy samples, the EIOU loss and
the Focus-EIOU loss [39] are proposed. In order to achieve a more flexible accuracy of the
bounding box regression at different levels, an Alpha-IoU loss was proposed [40].

The above IOU loss only applies to the simple axis alignment case and cannot be di-
rectly applied to rotation detection. Thus, [41] studied the IoU computation of two rotating
boxes and implemented a unified framework for 2D and 3D object detection tasks. The
PIoU method [42] does this by simply counting the number of pixels. Furthermore, to
address the convex uncertainty caused by rotation, [43] proposed a projection operation to
estimate the intersection area and [44] developed a new regression loss based on the Gauss
Wasserstein distance to solve the boundary discontinuity and detection index inconsistency
problems in the design of rotation detection regression loss.

4. Approach

This section details the improvement methods of YOLOv5, including the introduction
of the Stem block, the design of the MNtV3-CA module, the optimization of the loss
function, and the overall structure design of the network.

4.1. Introduction of Stem Block

Military target detection not only puts forward higher requirements on the detection
accuracy and detection speed of the target but also is affected by the limitations of the
memory and computing resources of the weapon equipment platform. The Focus module
of the YOLOv5 algorithm improves the detection speed of the model to a certain extent but
greatly increases the amount of calculation and parameters.

Therefore, designing a military target detection algorithm with small memory and
less computation is very important. With the above requirements, this paper introduces
the Stem block structure, as shown in Figure 5. This structure has achieved good results
in real-time detection algorithms on mobile devices, such as PELEE [45], PP-LCNet [46],
YOLO5Face [47], etc. Inceptionv4 and Deeply Supervised Object Detector inspire the
design of the Stem block. By replacing the large convolution module with a smaller
computation cost and parameters, the module improves feature expression ability with
almost no increase in computation and parameters.

4.2. MNtV3-CA Block Structure

The backbone network of the YOLOv5 algorithm adopts the traditional residual
structure, which solves the problem of network degradation caused by the increase in the
network structure’s depth, and has a faster convergence speed under the same number of
network layers [48]. Residual networks have been widely used in deep neural networks,
improving the network performance by increasing the network depth. However, this
substantially increases the network parameters, making it difficult to train the model. It
is not easy for the network to calculate Deploy on weapons with limited capabilities and
memory resources. Therefore, this paper designs a lightweight MNtV3-CA structure to
redesign the backbone network of the YOLOv5 algorithm, as shown in Figure 6. This
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structure is based on the MobliNetV3 block and integrates the lightweight coordinate
attention module, enhancing the model’s detection performance while ensuring a light
network structure.

Figure 5. The structure of Stem block.

Figure 6. The structure of MNtV3-CA block.

4.3. Optimization of Loss Function

The IOU function is the most commonly used evaluation index in the field of target
detection, used to measure the overlap rate between the target box and the predicted box,
A, B ⊆ S ∈ Rn, where A represents the area of the target box, and B represents is the
predicted box area. The formula is as follows:

IOU =
|A ∩ B|
|A ∪ B| (7)

The YOLOv5 algorithm uses the CIOU loss [38], which considers three important
geometric factors: the overlap between the predicted box and the target box, the distance
between the center points, and the aspect ratio. The disadvantage is that v in the formula
only reflects the difference in aspect ratio, which increases the similarity of aspect ratio
to a certain extent, but sometimes hinders the real difference between aspect ratio and
confidence and does not consider the balance of difficult and easy samples [39].

To solve the shortcomings of the CIOU loss, this paper introduces the EIOU loss [39],
which improves the CIOU loss by discarding the penalty term of the aspect ratio and
employing the prediction results of width and height to guide the loss convergence. EIOU
loss is formulated as:

LEIOU = LIOU + Ldis + Lasp

= 1− IOU +
ρ2(b,bgt)

c2 +
ρ2(w,wgt)

Cw2 +
ρ2(h,hgt)

Ch
2

(8)
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where C2
w and C2

h are the width and height of the minimum circumscribed rectangle of the
prediction box and the target box, respectively, ρ2(·) is the Euclidean distance between the
prediction box and the target box, b is the center point of the prediction box, bgt is the center
point of the target box, w and h is the width and height of the prediction box, respectively,
and wgt and hgt are the width and height of the target box, respectively.

Equation (8) reveals that the EIOU loss is divided into three parts: the IOU loss
LIOU , the distance loss Ldis, and the aspect loss Lasp. The EIOU loss not only retains the
characteristics of the CIOU loss but also reduces the difference between the width and
height of the target box and the anchor box, affording a rapid model convergence and
accuracy improvement. Inspired by Alpha-IoU [40], this paper generalizes EIOU loss to a
loss function with power terms, defined as α-EIOU loss, formulated as:

Lα−EIOU = 1− IOUα +
ρ2α
(
b, bgt)

c2α
+

ρ2α
(
w, wgt)

Cw2α
+

ρ2α
(
h, hgt)

Ch
2α

(9)

where α is the power parameters.
The Focus-EIOU loss cannot flexibly achieve the accuracy of different levels of the

bounding box regression, and the Alpha-IoU does not consider the problem of difficult
and easy sample balance. Therefore, this paper combines Focus Loss with the α-EIOU by
using the IOUα to weight α-EIOU. This scheme is defined as Focal-α-EIOU Loss and is
formulated as:

LFocal−α−EIOU = IOUαγLα−EIOU (10)

When α = 1, Equation (10) is LFocal−EIOU = IOUγLEIOU , and γ is a parameter that
controls the degree of outlier suppression.

In summary, the proposed Focal-EIOU loss with the power alpha function has the
following advantages: (1) adjusting α provides the detector more flexibility to achieve
different levels of box regression accuracy, (2) considers the difficulty Easy sample balance
problem, and (3) the regression loss is lower, and the convergence speed is faster.

4.4. Network Structure of SMCA-α-YOLOv5

Regarding the SMA-α-YOLOv5 network structure, Section 4.1 introduced the Stem
block, and Section 4.2 presented the MNtV3-CA block, which is used to build the backbone
network of YOLOv5. Additionally, the second to twelfth layer network structures in the
MobileNetV3-Small [34] specification are used for reference. Finally, the loss function is
optimized, and the improved structure is illustrated in Figure 7.

Figure 7. The network structure of SMCA-α-YOLOv5.
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5. Experiments and Results
5.1. Experiment Platform

The experiments in this paper are carried out on the Google Colab development
platform, and the experimental environment is Python3.6, Pytorch1.11.0, CUDA11.2, and
Tesla V100-SXM2-16G. Data training, validation, and testing are performed with the same
hyperparameters. Among them, the number of iterations is set to 100, the learning rate
is set to 0.01, the initial learning rate momentum is 0.937, the weight decay coefficient is
0.0005, and the batch size is 64.

5.2. Evaluation Indicators

In order to verify the validity of the proposed model, a comprehensive evaluation
is carried out using four indicators: mean average precision (mAP), model parameters
(Parameters), model operation (GFLOPs), and detection speed (FPS). The average precision
rate (AP) is the detection accuracy rate of a single target, composed of the area enclosed by
the recall rate and the accuracy rate. The average precision is the average of all categories
of AP values [24] and is used to evaluate the comprehensive detection performance of
the model; the number of model parameters obtained during the model training process
directly determines the size of the model file and the memory resources that the model
consumes. The number of computations required throughout the model training process
is referred to as the model computation volume, which directly represents the model’s
requirement for the hardware platform’s computing capacity. The number of image data
the model can detect per second is referred to as detection speed, and it is used to measure
the model’s performance in real time.

5.3. Analysis of Ablation Experiments
5.3.1. Ablation Experiment of Backbone Network

To verify the effectiveness of the developed algorithm, we conduct six groups of
ablation experiments on the MITD dataset, while the YOLOv5s in Ultralytics 5.0 is used as
the benchmark algorithm. The input image pixel size is set to 640 × 640, and the number of
training iterations to 100.

The ablation results for each component are reported in Table 2, revealing that intro-
ducing the Stem block and MobileNetV3 block (MNtV3) increases inference time. However,
the network is more lightweight in structure. The SENet attention mechanism in No. 3 is
replaced with a CBAM and a CA attention mechanism in Nos. 4 and 5, respectively. Among
them, the MobileNetV3 block utilizing the stem block and the embedded CA attention
mechanism presents the best detection performance. Compared with YOLOv5, the mAP
value of this model increased by 1.3%. The amount of parameters and computation amount
decreased by 85.52% and 95.8%, respectively, and the average inference time increased by
0.003 sec. Although the detection speed is slightly reduced, other performances have been
greatly improved, so the overall effect is the best.

Table 2. Results of ablation experiments.

No Model mAP@0.5 Parameters/106 GFLOPs /109 Inference Time /s FPS

0 YOLOv5s 96.5 7.070 16.4 0.019 52.6
1 YOLOv5s+Stem 95.9 4.502 5.8 0.022 45.5
2 YOLOv5s+MNtV3 96.8 3.558 6.3 0.025 40
3 YOLOv5s+Stem+MNtV3 96.6 1.384 0.7 0.023 43.5
4 YOLOv5s+Stem+MNtV3-CBAM 97.3 1.016 0.71 0.024 41.7
5 SMCA-YOLOv5 97.8 1.024 0.69 0.022 45.5

The best results of every metric are bolded.

Figure 8 shows the improved PR curve of the YOLOv5s model. It can be seen that the
improved model has achieved better detection results for various military targets.
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Figure 8. PR curve graph of the improved YOLOv5s model.

5.3.2. Ablation Experiment of Loss Function

To demonstrate the effectiveness of the proposed loss function, we perform five sets
of ablation experiments on YOLOv5s and SMCA-YOLOv5, with the corresponding exper-
imental results reported in Table 3. For fairness, after extensive experiments, we set the
parameters to α = 3 and γ = 0.5, which afford the best performance.

Table 3. Ablation experiment results under different losses.

Loss YOLOv5s Algorithm
(mAP/%)

SMCA-YOLOv5 Algorithm
(mAP/%)

LCIOU 96.5 97.8
LEIOU 96.6 98.0

Lα-EIOU 96.8 97.9
LFocal-EIOU 97.0 98.2

LFocal-α-EIOU 97.3 98.4

Figure 9 illustrates the effect of five loss functions on the SMCA-YOLOv5 algorithm.
The Focal-α-EIOU Loss has a better convergence speed and regression accuracy than the
other four losses. The dataset in this paper has more high-quality samples. Thus, Focal-
α-EIOU Loss uses the weight of IOUα to focus on high-quality samples. Therefore, when
there are more high-quality samples, the convergence speed is faster and the regression
accuracy is lower.

Figure 9. The effect of different losses on SMCA-YOLOv5.
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To further verify the effectiveness of the proposed Focus-α-EIOU loss, the YOLOv5
algorithm is used to conduct experiments with different loss functions on the PASCAL VOC
dataset and the CGMU dataset. We use the training and validation sets of the PASCAL
VOC2007 and PASCAL VOC2012 datasets as training sets (containing 16,551 images in
20 categories) and the PASCAL VOC2007 test set (containing 4952 images) for testing.
The results of the PASCAL VOC2007 dataset are reported in Table 4. Moreover, we use
the training and validation sets of the CGMU dataset as a training set (containing 8007
images) and its test set (containing 1000 images) for testing. The results of the CGMU
dataset are reported in Table 5. The experimental results in Tables 4 and 5 show that the
proposed Focal-α-EIOU Loss attains the best performance on the AP55, AP60, AP95, and
mAP metrics. Overall, the proposed loss outperforms the competitor’s horizontal box
regression losses.

Table 4. PASCAL VOC2007 test detection results. mAP denotes mAP50:95.

Loss Method AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95 mAP

LIOU * 78.6 76.1 73.2 69.2 64 57.5 48.5 36.4 20.1 2.8 52.64
LGIOU * 78.5 76.3 73.2 68.6 63.7 57 48.9 36.4 21.1 3.4 52.71
LDIOU * 78.6 76.3 73.2 69.1 63.6 57.3 49.5 37.4 21.6 3.3 52.99
LIIOU * 78.7 76.5 73.5 69.3 64.1 57.8 50.2 37.5 21.4 3.2 53.22
LCIOU 78.9 76.3 73.4 69.1 63.8 57.6 50.3 37.4 21.2 3.1 53.11
LEIOU 78.7 76.5 73.3 68.9 63.9 57.7 50.5 36.7 21.4 3.2 53.08

Lα-EIOU 78.5 76.4 73.3 69.7 64.3 58.3 49.9 37.7 21.9 3.1 53.31
LFocal-EIOU 78.6 76.8 73.5 69.4 64.3 58.2 50.8 37.5 21.6 3.3 53.40

LFocal-α-EIOU 78.8 76.9 73.6 69.6 64.6 58.6 50.7 38.2 21.8 3.6 53.64

* Indicates cited reference [22]. The best results of every metric are bolded.

Table 5. CGMU test detection results.

Loss Method AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95 mAP

LIOU * 48.8 45.8 42.4 38.3 32.3 27.7 20.7 13.6 6.2 0.8 27.66
LGIOU * 49.6 46.0 42.9 38.6 34.2 28.5 22.1 14.7 5.6 1.0 28.32
LDIOU * 49.5 46.5 43.1 39.0 33.2 28.3 22.2 13.2 6.4 1.2 28.26
LIIOU * 52.1 48.6 44.6 40.5 35.5 28.0 18.5 11.6 4.6 0.6 28.46
LCIOU 50.9 47.2 43.4 40.3 34.6 27.9 21.4 13.4 6.0 1.3 28.64
LEIOU 49.9 48.2 43.7 39.6 35.2 29.5 21.8 14.1 5.6 1.2 28.88

Lα-EIOU 50.7 48.5 43.4 40.1 36.3 28.1 22.2 14.4 5.9 1.0 29.06
LFocal-EIOU 51.4 49.1 43.6 40.7 35.4 27.1 21.5 13.6 6.9 1.1 29.04

LFocal-α-EIOU 51.3 49.5 44.8 40.8 36.2 28.2 22.7 14.1 6.1 1.3 29.50

* Indicates cited reference [22]. The best results of every metric are bolded.

5.4. Compare with Other Algorithms

The detection effect of the algorithm in this paper on military targets is further ana-
lyzed, as shown in Table 6. Compared with SSD, Faster R-CNN, YOLOv3 algorithm of
Ultralytics 9.5.0 version, Pytorch_YOLOv4 of WongKinYiu, and YOLOv5 of Ultralytics 5.0
version, the average inference time of SSD algorithm is the fastest, and the other optimal
indicators are proposed in this paper.

According to Table 6, the proposed SMCA-α-YOLOv5 has the highest mAP value, and
the average detection speed is 19.1 Frames Per Second (FPS), 5.0 FPS lower than the SSD
and the YOLOv5 algorithms. Additionally, the proposed model has significant advantages
considering network parameters and computation complexity. Overall, the improved
model of this paper not only improves the detection accuracy but also effectively realizes
the lightweight of the network structure and meets the needs of military target detection
with limited platform resources.
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Table 6. Performance comparison results of different algorithms.

Model Image size mAP@0.5 Parameters /106 GFLOPs /109 Inference Time /s FPS

SSD 640*640 90.1 26.79 31.4 0.015 66.7
Faster R-CNN 640*640 88.5 60.61 284.1 0.173 5.7

YOLOv3 640*640 96.3 61.53 154.8 0.035 28.6
YOLOv4 640*640 96.8 52.53 128.5 0.040 25
YOLOv5 640*640 96.5 7.070 16.4 0.019 52.6
SMCA-α-
YOLOv5 640*640 98.4 1.014 0.67 0.021 47.6

The best results of every metric are bolded.

5.5. Analysis of Detection Results

In order to more intuitively reflect the performance of the proposed algorithm, repre-
sentative images are selected from the MITD test set as the test objects, and the military
target detection results of the SMCA-α-YOLOv5 and YOLOv5 algorithms in different sce-
narios are analyzed. Figure 10 illustrates the detection result of scene 1, while Figure 10a
presents one helicopter target and nine soldier targets. Figure 10b presents the detection
result of the YOLOv5 algorithm, where two soldier targets are missed (marked by the
yellow ellipse in Figure 10b). Figure 10c is the detection result of the SMCA-α-YOLOv5
algorithm, where a soldier target is missed (marked by a yellow ellipse in Figure 10c).
Figure 11 is the detection result of scene 2, and Figure 11b presents the detection result
of the YOLOv5 algorithm, where a tank target and a soldier target are missed (marked
by the yellow ellipse in Figure 11b). Figure 11c depicts the detection result of the SMCA-
α-YOLOv5 algorithm, where a soldier target is missed (marked by a yellow ellipse in
Figure 11c). Although the improved algorithm has missed detection, it still has advantages
compared to the YOLOv5 algorithm.

Figure 10. The detection result of scene 1. (a) Original image sample; (b) Detection results of the
YOLOv5 algorithm; (c) Detection results of SMCA-α-YOLOv5 algorithm.

Figure 11. The detection result of scene 2. (a) Original image sample; (b) Detection results of the
YOLOv5 algorithm; (c) Detection results of SMCA-α-YOLOv5 algorithm.

In conclusion, introducing the Stem block and MobileNetV3 block into the backbone
network reduces the network’s parameters and computation complexity and increases
the network structure’s depth, thereby increasing the area of the receptive field. At the
same time, combined with the lightweight coordinate attention mechanism, the network’s
feature extraction ability for occluded and small targets is enhanced further. Improving the
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loss function affords the regression process to focus on high-quality anchor boxes, and thus
the improved algorithm has strong robustness.

6. Conclusions

Aiming at the difficulty of deploying military target detection algorithms on embedded
platforms with limited resources, a lightweight military target detection method based on
improved YOLOv5 is proposed. This method redesigns the backbone network of YOLOv5
by introducing Stem block and MobileNetV3 block to reduce the number of parameters
and computation of the model. In order to further improve the feature expression ability
of the network, a coordinate attention module is embedded in the MobileNetV3 block
structure, which improves the detection performance of the model for military targets.
Based on EIOU Loss and Focal Loss, a loss with power parameter α is designed to optimize
CIOU Loss, which provides more flexibility for the detector and achieves different levels
of bounding box regression accuracy. The experimental results show that the algorithm
proposed in this paper can ensure real-time performance and detection accuracy, and can
also meet the needs of military target detection under the condition of limited resources of
weapon equipment platforms.

The experimental results show that the average inference time of the algorithm pro-
posed in this paper has increased, and the next step is to use the pruning algorithm to
compress the backbone network composed of Stem block and MNtV3-CA block to improve
the average detection speed. At the same time, the algorithm is deployed on embedded
devices with limited hardware resources to verify the applicability of the algorithm in
this paper.
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