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Abstract: In Federated Learning (FL), data communication among clients is denied. However,
it is difficult to learn from the decentralized client data, which is under-sampled, especially for
segmentation tasks that need to extract enough contextual semantic information. Existing FL studies
always average client models to one global model in segmentation tasks while neglecting the diverse
knowledge extracted by the models. To maintain and utilize the diverse knowledge, we propose a
novel training paradigm called Federated Learning with Z-average and Cross-teaching (FedZaCt) to
deal with segmentation tasks. From the model parameters’ aspect, the Z-average method constructs
individual client models, which maintain diverse knowledge from multiple client data. From the
model distillation aspect, the Cross-teaching method transfers the other client models’ knowledge to
supervise the local client model. In particular, FedZaCt does not have the global model during the
training process. After training, all client models are aggregated into the global model by averaging
all client model parameters. The proposed methods are applied to two medical image segmentation
datasets including our private aortic dataset and a public HAM10000 dataset. Experimental results
demonstrate that our methods can achieve higher Intersection over Union values and Dice scores.

Keywords: Federated Learning; segmentation; Z-average; Cross-teaching

1. Introduction

Automatically recognizing structures in a medical image is an important process for
screening or diagnosing disease. Though segmentation models based on deep learning
methods [1,2] have shown promising performances [3,4], large amounts of data are always
required to train robust models. As privacy concerns increase, collecting data, especially
medical image data from multiple institutions, is difficult. To collaboratively learn from
distributed data stored on multiple clients, Federated Learning (FL) [5–8] aggregates models
in the Central server trained on multiple clients with promising privacy preservation.
During the FL process, though all the data samples are kept locally and not exchanged, the
distribution knowledge about the client data is extracted by the client models. To cover the
distribution of all client data, we believe that model communication [9] among clients is
necessary to enhance the FL model.

In existing FL methods, the model communication mainly focuses on two usual aspects
including the model parameters [10,11] and the model distillation. Due to the simple and
reliable implementation, the parameter-averaged method named Federated Averaging
(FedAvg) [10] is popular. In FedAvg, the Central server averages the model parameters
of all client servers and transfers the synchronized model to clients for locally continued
training. Unlike the Ensemble Learning (EL) [12,13], which always combines many weak
learners to vote on the final results, FL always obtains one global model ultimately and
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uses the global model to acquire the final results. However, weak learners in EL actually
learn diverse knowledge from sample data, which contributes to the high performance. It is
necessary to design a new FL method to fully use the diverse knowledge of the client data.

The distillation-based method attempts to use the teaching method to train the global
model, where the client models teach the global model to learn the client data knowledge.
The common operation [14] uses the locally computed logits to build global models. Though
some methods [15] distill the public data to preserve privacy, introducing extra data is an
unnecessary burden. Recently, new teaching methods [16,17] using multi-teacher models
have been proposed to improve the domain adaptation performance. Learning from the
diverse knowledge of multi-teacher models trained on different domains, the student model
learns more information about multiple domains. Actually, the teacher models may become
better by learning from each other, which has not been introduced to FL. In addition, most
distillation-based methods are used in classification tasks. For segmentation tasks, the
parameter-averaged methods are always adopted. However, all these studies try to train
a global model representing all client models during the training process. Meanwhile,
traditional FL approaches train client models to fit the local data distribution and limit
models to only learn semantic information from the local data. This crucial problem
restricts the model communication effects of client models to limit FL’s global performance.
Therefore, an effective and privacy-preserving model communication method for utilizing
knowledge is essential for training robust FL models.

In this study, we design a new Federated learning training paradigm that promotes
model communication from model parameters and distillation. This paradigm is called
Federated Learning with Z-average and Cross-teaching (FLZaCt). For one thing, FLZaCt
disables the global model during the training process while producing the individual client
models to maintain diverse knowledge extracted from multiple client data. Additionally,
local client models learn from the local data distribution and the other clients’ data distribu-
tion. The proposed paradigm enables each client to access other clients’ model knowledge
rather than the dataset to preserve privacy. The local client model knowledge can represent
the local data distribution and transmit the distribution information to the other clients.

In this way, FLZaCt captures the local client data distribution and benefits from the
cross-client knowledge. Effective communication contributes to high FL model perfor-
mance because of high knowledge utilization. This paradigm is conducted on our private
and public datasets, which outperforms the traditional FedAvg paradigm in extensive ex-
periments.

Our main contributions are summarized as follows:

1. In a medical image segmentation scenario, a novel Federated learning training
paradigm called Federated Learning with Z-average and Cross-teaching (FLZaCt)
is proposed to improve the knowledge communication effects among client models
trained by the client under-sampled data, which protects the privacy and does not
need extra data.

2. We present a new parameter-based communication method called the Z-average to
construct differentiated multiple client models that maintain diverse knowledge about
the semantic information.

3. We introduce a new distillation-based communication method called Cross-teaching
that optimizes the local client model to learn more semantic information using the
local ground truth and the other client models’ knowledge.

4. Extensive segmentation experiments demonstrate that our methods achieve supe-
rior performance over traditional methods with evaluations on our private aortic
segmentation dataset and a public HAM10000 segmentation dataset.

2. Related Work
2.1. Federated Learning

As a promising privacy-preserving method, FL aims to train models from decen-
tralized data scattered on various clients. After locally training on the client data, client
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models will be aggregated to a global model shared with all clients for continued local
training. The training round, including the local training and the global updating, is
repeated several times until the stopping condition is met. Without sharing local data
among clients, most FL methods regard the client model as representing the client data
distribution. From the view of the model parameters, the Federated Averaging method
(FedAvg) [10] is generally adopted, where a global model can be learned after every training
round. It is well known that FedAvg is effective for aggregating all client models and is
extensively applied in many works [18–20]. To alleviate the challenge of a non-i.i.d. data
distribution in multiple clients [21], some studies proposed extensions of FedAvg such as
FedProx [22] and MOON [23] to reduce the bias. From the view of the model distillation,
many data-dependent distillation methods [14] rely on the extra auxiliary dataset to train
the global model. Recently, the data-free method [15] has been proposed to tackle the
heterogeneity problem. These methods design new schemes to tackle the client drift in
classification problems.

However, few FL ideas are studied in segmentation tasks. Segmentation models
have different network architectures that need enough context information. Though the
study [24] tried implementing FL systems for segmenting brain tumors, the adopted strat-
egy still proves the effectiveness of Federated averaging parameters. For privacy-preserving
medical image segmentation, the FedAvg remains the preferred algorithm [25] regardless
of low communication efficiency due to ignoring the diverse model knowledge. Unlike
FedAvg, our study explores a new FL paradigm to promote the information communication
efficiency by fully using the differentiation among multiple under-sampled datasets.

2.2. Semantic Segmentation

Semantic segmentation has attracted extensive attention in image processing as a typi-
cal computer vision task. Most segmentation models are based on an encoder–decoder [26]
structure to capture useful segmentation features. Unet [27] and DeeplabV3+ [28] are two
current models widely utilized in many studies [29,30]. To contain enough context features,
the convolution segmentation models usually use progressive down-sample and up-sample
stages to obtain the low-level spatial information and the high-level position information.
Benefiting from the skip connections, Unet, based on the encoder–decoder architecture,
makes full use of the high-level and low-level feature maps to aggregate multi-level deep
features, which can generate better results. This structure concurrently learns low-level
details and high-level semantics without extra parameters. This feature fusing idea is
proven to be effective according to its tremendous success. Additionally, a series of Deeplab
models [31,32] adopts the dilated (or atrous) convolution [33] to obtain a larger reception
field and wider context semantic features. What is more, Deeplab uses ASPP [34] to further
learn multi-scale information. Large amounts of extensions of Unet and Deeplab have been
proposed such as Bayesian UNet [35] and DeeplabV3+. Different combinations of skip
connections are conducted to aggregate full-scale feature maps such as Unet++ [36]. What
is more, the STDC model [37] is a popular one for the real-time segmentation.

Various deep segmentation models have addressed many clinical medical image
processes [3,4]. In the segmentation of brain images [38,39] and MRI sequence images [40,
41], deep learning methods successfully segment the target area. Reference [42] used Unet
to segment the fetal heart structures for the first time. Reference [30] also used DeeplabV3+
to segment aortic vessels and compare the difference among several backbones. These
well-known segmentation models can be directly applied in training FL segmentation
models. In this paper, we focus on the FL training paradigm and conduct experiments
mainly adopting the Unet, DeepLabv3+, and STDC model.
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3. Methods
3.1. Overview

The traditional FedAvg method is the baseline method and is described as Equation (1).

FedAvg(w) =
ni
N

n

∑
i=1

wi, (1)

where wi represents the client model parameters, ni represents the data number of client i,
and N represents the total data number of all clients, as shown in Equation (2).

N =
n

∑
i=1

ni. (2)

In the FedAvg process, the Central server aggregates all client models to one global
model, which is then shared with clients to update the local models.

The main procedure and the corresponding framework of this study are shown in
Algorithm 1 and Figure 1. Firstly, we conducted the client models by locally training
to calculate the Z-average metric, whose details are shown in Section 3.2. Then, in the
Federated training process, the dotted lines of the proposed method are shown in Figure 1.
The corresponding descriptions are shown in Algorithm 1. After initializing the client
models and five local training epochs, all the client models are uploaded to the global
server, where n client models are aggregated to the Z-average models. Different from
the common FL paradigm, the Z-average models have n models, not one global model.
Moreover, each client downloads all the Z-average models instead of the corresponding
one. Next, the client updates the corresponding local model. In the Cross-teaching epoch,
the local data are input in the client model, as well as the Z-average models. The Z-average
models retain the diverse knowledge and provide the fundament for the Cross-teaching
method. Not only the local ground truth, but all the predictions of the Z-average models
are regarded as the supervision to optimize the local model.

Figure 1. The framework of this study. After five local training processes, all clients upload the
models to the global server. In total, n client models are aggregated to the Z-average models. Each
client will download the Z-average models and update the corresponding local model. Then, in
the next cross-training epoch, in total, n predictions from the Z-average models, as well as the local
ground truth are used together to teach the local model.
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Algorithm 1 The process of FedZaCt.

1: procedure Z-AVERAGE METRIC( )
2: for each i ∈ {1...N} do
3: local training: client model Mi
4: end for
5: cross-client inference: cemi,j
6: Z transformation: Zcemi,j
7: Z-average metric: Zj,i
8: setting diagonal value: Zi,i = 0.5, ∀i ∈ {1...N} return Z
9: end procedure

10: procedure LOCAL TRAINING ( )
11: for each i ∈ {1...N} do
12: for epoch ∈ {1...5} do
13: local training: client model Mi ← {xi, yi}
14: end for
15: end for
16: end procedure
17: procedure CROSS-TEACHING ( )
18: for each i ∈ {1...N} do
19: one Cross-teaching epoch: Mi ← {xi, yi, Z-average models}
20: end for
21: end procedure
22: procedure FEDERATED TRAINING
23: for each i ∈ {1...N} do
24: client model Mi loads the same initial model
25: end for
26: for each training round t ∈ {1...T} do
27: local training
28: client models are uploaded to the Central server
29: the Central server conducts Z-average models
30: all clients download the Z-average models
31: client i updates the corresponding model Mi
32: Cross-teaching
33: end for
34: return Mi
35: end procedure

3.2. Z-Average

Supposing we have n clients, n client models should be aggregated to one global
model in the common FL paradigm, while in this study, we used the Z-average method to
aggregate n client models to the Z-average models that own n models and still maintain
diverse knowledge. The Z-average method constructs multiple aggregation models from
the parameter-based communication aspect to retain diverse knowledge. More details are
as follows. Firstly, we trained the models for each client individually without exchanging
any information among the clients. This process is only a local training, not a Federated
learning process. The local training model Mi learns from the data distribution in client
i. After enough local client training, we conducted the cross-client inference to obtain
the cross-evaluation metric cem, where cemi,j represents the evaluation of model Mj on
client i. For each evaluation vector in client i, the cemi are normalized as Zcemi by Z-score
transformation. The equation is defined as:

Zcemi,j = Abs(cemi,j −mean(cemi))/std(cemi), (3)

where mean(cemi) represents the mean value of cemi, Abs(.) represents the absolute value,
and std(cemi) represents the standard deviation value of cemi.
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Then, we set the average value of Zcemi,j and Zcemj,i as the Zi,j and Zj,i values of the
Z-average metric. This average method is shown in Equation (4).

Zi,j = Zi,j = 0.5 ∗ (Zcemi,j + Zcemj,i). (4)

Finally, the diagonal values of the Z-average metric, which are regarded as hyperpa-
rameters, are set as 0.5 to aggregate more information from other client models.

After calculating the Z-average metric, the FL training process begins. Every five local
training epochs later, for n clients, we aggregate all client models to conduct Z-average
models that have n models by means of the Z-average metric. The parameters of Mj are
calculated as Equation (5).

ZAvg(w, j) =
ni
n

n

∑
i=1

Zi,j ∗ wi. (5)

During the FL training process of this study, the client models are different from each
other, which means Mi learns all the client data distribution and retains a unique individual
representation. Every five local training epochs, the client models are uploaded to the
global server to be aggregated as the Z-average models, which will be downloaded to
all clients.

3.3. Cross-Teaching

From the distillation-based communication aspect, we propose a data-free Federated
distillation method. This Cross-teaching method attempts to use the Z-average models to
train local client models. After downloading the Z-average models, each client updates
the corresponding local model. In the next local training epoch, all the client models,
including the local client model and the other client models, provide guidance information
for the local model optimization. Because the model knowledge represents the trained
data distribution, not only is the ground truth worth learning, but the diverse knowledge
from Z-average models is essential for supervising the local model. For each batch, the Z-
average models generate predictions, which are also regarded as the targets corresponding
to the sampled data. We optimized the local model parameters by the local ground truth
and the predictions from the Z-average models together. This Cross-teaching process is
implemented by designing the loss function, shown in Equation (6).

L(xi, yi, wi, w) = Lce( f (xi, wi), yi) + Lcross(xi, w, wi), (6)

where xi represents the input image for the models, yi represents the local ground truth
corresponding to xi, wi represents the parameters of the local client model Mi, w represents
the parameters of the Z-average models, f (.) represents the prediction of the segmentation
model, L represents the total loss, Lce represents the loss between the prediction of wi and
yi, and Lcross represents the loss between the prediction of wi and the prediction of w.

Lcross(xi, w, wi) =
1
n

n

∑
j=1
Lce( f (xi, wi), Binary( f (xi, wj))), (7)

where Binary(.) represents the binary value of the prediction of wj and is used as the target
information.

Lce(ŷ, y) = ylogŷ, (8)

where y represents the ground truth and ŷ represents the prediction value.
After the Cross-teaching epoch, the client model will train with local data and the local

ground truth only for five epochs. The local training epoch number and Cross-teaching
epoch number are hyperparameters. Then, the client models are uploaded to the global
server for aggregating the Z-average models. This training round repeats until the stop
condition is met.
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4. Experiments
4.1. Dataset

In this study, we chose two datasets, including a private aortic dataset and the public
HAM10000 dataset [43] to perform the experiments. Based on these two datasets, the re-
ported results are consistent, though different segmentation models are adopted showing
our methods’ generality. We conducted comparison experiments to prove the effectiveness
of our method and ablation studies to observe more details.

4.1.1. The Private Aortic Dataset

This private aortic dataset comes from An Zhen hospital. This study has the approval
of the Ethics Committee of Beijing Anzhen Hospital Affiliated with the Capital University of
Medical Sciences. The data were collected in accordance with the tenets of the Declaration
of Helsinki from studies that had research ethics committee approval.

The data were annotated by junior doctors and then reviewed by senior doctors. The
target area was the aortic vessel area. In total, 108 persons, including 25,117 images, were
annotated. The dataset was split into the training set (87 persons) and the test set (21
persons). The training set included 20,020 images, which was divided into four clients.
Clients 1, 2, 3, and 4 have 20, 26, 19, and 22 persons, obtaining 5060, 5059, 4926, and 4975
images, respectively. The test set had 21 persons and includes 5097 images. All client
datasets and the test dataset did not have an intersection with each other.

4.1.2. The Public HAM10000 Dataset

As a public dataset, the HAM10000 dataset [43] has 10,015 dermatoscopic images,
which aims to diagnose pigmented skin lesions automatically. The training set, including
8012 images, was divided into four clients. Each client had 2003 images. The test set also
had 2003 images. All these images had their corresponding ground truth.

4.2. Experiment Implementations

Each client adopted the same training configuration , which contained the model
structure, the loss function, the optimizer, and the learning rate. To show the generality, we
chose three typical model structures, Unet, DeepLabV3+, and STDC, as the base structures.
As a segmentation task, cross-entropy loss is commonly used. The Adam optimizer was
applied, and the learning rate was set to 0.0001.

When beginning to train the FL models, all client models load the same initial model
to reduce the model perturbation.

After five local training epochs, the Central server aggregates all client models by
the Z-average metric and transfers the Z-average models to the clients. Then, each client
updates its local model and trains by Cross-teaching for one epoch. Next, the client model
is only trained with the ground truth for five epochs. One training round contains five local
training epochs and one Cross-teaching epoch. The whole training process has 15 training
rounds, including 80 epochs. In the inference stage, all client models are averaged equally
in the inference stage to conduct one global model as the FL model.

In particular, the experiments were conducted on Unet, DeepLabV3+, and STDC.
Unet adopts four down-sample and four up-sample stages, which use the DenseNet block.
Each DenseNet block contains four convolution layers and one concatenation operation.
DeepLabV3+ adopts ResNet18 as the backbone. STDC adopts STDCNet813 as the backbone.

4.3. Evaluation Metrics

We chose the commonly used Intersection over Union (IoU), Dice score (Dice), Preci-
sion (Prec), and Recall as the basic quantitative evaluation methods in the segmentation
tasks. The IoU and Dice score are defined in Equations (9) and (10).

IoU =
X ∗Y

X + Y− X ∗Y
, (9)
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Dice = 2 ∗ X ∗Y
X + Y

, (10)

where X and Y represent the prediction and the target metric, respectively.
In this study, we conducted ten repeated experiments and calculated the mean values

of the IoU, Dice, Prec, and Recall in repeated experiments to report the evaluation results.
Higher scores represent better performance, which means a higher similar degree between
the prediction and the ground truth.

5. Results and Discussion

To reveal the effectiveness of the proposed methods, we observed the performance
of both the private aortic dataset and the public HAM10000 dataset. These two datasets
are similar tasks that segment one foreground object and the background. In this section,
the mean evaluation values of ten repeated experiments show the comparison of different
training methods. To clearly show the performance of our method, the experiments were
not only conducted in the Federated training scheme, but also the Central training scheme.
To fairly compare the methods in the communication cost, we conducted experiments by
communicating models every epoch. It is noted that “Central” means the Central training
method with collecting all data, “FedAvg1” means that the models communicate every
epoch, and “FedAvg” means that models communicate every six epochs. “FedAvg+Ct”
means the combination of the FedAvg and the Cross-teaching method; “Fed+Za” means
adopting the Z-average method instead of the FedAvg method to train the FL models;
“FedZaCt” means the combination of “Fed+Za” and the Cross-teaching method,. In FedAvg,
FedAvg+Ct, Fed+Za, and FedZaCt, models communicate every six epochs. Based on these
training methods, we ran the experiments using private and public datasets to observe
the results.

5.1. Results

Shown in Table 1 are the results on the private aortic dataset. Compared to the models
from the Central training , one baseline method, models adopting Federated training
generally achieve higher scores. In the Federated scheme, Fed+Za and Ct are the proposed
methods that both performed better than FedAvg. Furthermore, the combination of Fed+Za
and Ct obtained the best results significantly, which improved the IoU, as well as the
Dice scores dramatically compared to FedAvg. The proposed approaches successfully
outperformed the traditional method FedAvg and the Central training method. Based on
Unet, our achieved IoU scores were 1.32% and 1.80% higher than FedAvg and Central. From
the communication cost aspect, the proposed method was less expensive and achieved
better scores than FedAvg1.

Table 1. Mean evaluation values of ten repeated experiments on the private aortic dataset.

Scheme Paradigm Unet DeepLabV3+ STDC
IoU Dice Rrec Recall IoU Dice Rrec Recall IoU Dice Rrec Recall

Central - 80.30 88.36 92.76 87.22 78.54 87.06 89.11 86.33 72.16 82.21 88.68 80.80

Federated

FedAvg1 80.26 88.99 92.87 86.72 78.63 87.17 89.33 86.64 72.52 82.13 88.37 79.98
FedAvg 80.78 88.73 92.39 85.78 78.20 86.78 90.22 85.31 72.77 82.31 88.15 80.70
FedAvg+Ct 81.51 89.28 91.55 88.21 78.94 87.39 90.28 86.13 72.84 82.41 88.69 80.41
Fed+Za 81.24 88.91 93.18 86.51 79.34 87.66 89.91 86.89 73.34 82.77 89.15 80.50
FedZaCt
(Ours) 82.10 89.62 92.20 88.24 79.67 87.89 89.57 87.63 73.75 83.10 89.22 80.91

The results of the public HAM10000 dataset are reported in Table 2. In contrast to the
results on the private dataset, the Central training on the public dataset had higher scores
than FedAvg. However, it is noticeable that, based on Unet, the Fed+Za and Ct methods
achieved better performance than FedAvg. In addition, based on Unet and DeepLabV3+,
the combination method performed best as usual, with scores higher than the Central
training and the other Federated methods. Based on Unet, our achieved IoU scores were
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0.96% and 0.13% higher than FedAvg and Central. Though the improved evaluation
values on this public dataset were not as high as the values on the private dataset, it is
consistent that our methods can achieve superior performance over the other methods on
both datasets.

Table 2. Mean evaluation values of ten repeated experiments on the public HAM10000 dataset.

Scheme Paradigm Unet DeepLabV3+
IoU Dice IoU Dice

Central - 85.52 92.29 86.15 92.51

Federated

FedAvg 84.69 91.78 85.74 92.31
FedAvg+Ct 85.22 92.10 85.72 92.10

Fed+Za 85.57 92.38 86.20 92.56
FedZaCt (Ours) 85.65 92.40 86.38 92.67

5.2. Ablation Study

To assess the importance of our methods, more details on Unet were compared among
the Federated methods. In Table 3, there are client models results that were before the
latest aggregating. “Aggregation” means that these four models were aggregated into one
Federated model by averaging all parameters.

Table 3. Ablation results in the Federated paradigms. Based on Unet, the mean IoU values of ten
repeated experiments on the private aortic dataset.

Paradigm client1 client2 client3 client4 Aggregation

FedAvg 71.03 ± 7.73 72.55 ± 7.05 72.01 ± 3.62 79.64 ± 0.78 80.78 ± 0.83
FedAvg+Ct 76.13 ± 4.30 74.12 ± 2.68 75.48 ± 1.94 79.11 ± 1.03 81.51 ± 0.39

Fed+Za 81.60 ± 0.70 79.42 ± 0.80 79.68 ± 0.89 78.40 ± 1.32 81.24 ± 1.74
FedZaCt (Ours) 81.04 ± 1.03 79.22 ± 0.64 79.72 ± 0.84 78.69 ± 0.53 82.10 ± 0.22

5.2.1. The Differentiation among Multi-under-Sampled Datasets

According to the results on the two datasets, different client models had different
performances, especially in the FedAvg paradigm. After the latest local training on the
private dataset, the performance difference in models represents the difference of the client
dataset distribution. With the FedAvg paradigm on the private dataset, the highest and
lowest scores were 79.64% and 71.03%, which reveals the significant distribution difference
among client datasets. It is noted that, with our method, the difference range was narrowed
with the highest score 81.04% and the lowest score 78.69%. What is more, the client
models generally achieved higher scores with our method rather than FedAvg. These
phenomena were consistent on the public dataset. This result reflects that our method
guides client models to learn more about the global distribution. Besides, the aggregation
models performed better than the client models, which shows that the client datasets
are under-sampled.

5.2.2. The Performance of the Z-Average Method

From the parameter-based view, to design models with diverse knowledge, the Z-
average method was introduced to enrich the representation of the models. To show the
effectiveness of Za, we observed that the scores of Fed+Za and FedZaCt were better than
those of FedAvg and FedAvg+Ct, respectively. The methods with Za generally obtained
high performance in all clients. When adopting Za, not only the aggregation models, but
all the client models commonly achieved high scores. Though not all client models had
the same improvement on both datasets, the aggregation models had conclusively higher
results than the models without Za.

5.2.3. The Performance of the Cross-Teaching Method

In this experiment, we studied the effect of the Cross-teaching method, which aims to
enrich the knowledge of the models. From the distillation-based view, the Cross-teaching
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method takes advantage of diverse knowledge to optimize the model training. To show the
effectiveness of Ct, we observed that the scores of FedAvg+Ct and FedZaCt were better
than those of FedAvg and Fed+Za, respectively. Compared to the methods without Ct,
the methods with Ct were able to achieve reliably better scores, not only on all client
models, but also on the aggregation models. Despite the little fluctuation in some clients,
the aggregation models with Ct had stable improvements.

In particular, the aggregation models generally performed better than the client mod-
els. This phenomenon reveals that the clients did not have enough data to cover the whole
distribution and under-sampling really existed in each client. To alleviate the over-fitting of
the client models, communication is necessary for a robust FL model. Our proposed com-
munication methods, including the model parameters and distillation aspects, contributed
to better segmentation results.

5.3. Discussion

Deep learning models are extensively applied to automatically process medical images.
However, the privacy issue limits medical image processing. FL is a promising privacy-
preserving training scheme as a typical method without collecting all data together. Instead
of sharing data among clients, exchanging of the model information is secure for protecting
the privacy, while training robust models from multiple client datasets. Due to the under-
sampling problem, each client model is over-fit within the local data, resulting in under-
fitting the true distribution. To tackle this problem, we proposed a novel training paradigm
named Federated Learning with Z-average and Cross-teaching (FLZaCt), which trains
models to learn diverse model representation and from multiple client datasets. This
paradigm provides a novel and fundamental idea for learning from decentralized data.
Extensive experiments conducted on the private aortic dataset and the public HAM10000
dataset demonstrated the proposed approach’s superiority.

Our study applied the proposed paradigm to a Federated learning scene with four
clients and one Central server. Each client owns the subset of the whole dataset and has
no intersection with the other clients. Experiments were conducted on two datasets. In
Tables 1 and 2, it is found that, on the private and the public dataset, the performance details
were different. On the private dataset, Central may obtain models adopting Unet with
lower evaluation scores than FedAvg. However, on the public dataset, Central obtained
models adopting Unet or DeepLabV3+ with higher evaluation scores than FedAvg. In
addition, Unet was more suitable for the aortic segmentation , while DeepLabV3+ was
more suitable for the HAM10000 dataset. Though some inconsistent details may be due
to the model structure difference, it is convincing that the proposed approach FedZaCt
outperformed the other Federated schemes and exceeded the Central. Our paradigm
consists of the Z-average method and the Cross-teaching method. These two methods both
contribute to improving the information exchange among client data. As the combination of
Za and Ct, FedZaCt, whose effectiveness was proven by adequate experimental results, uses
the Za method to develop individual models and the Ct method to facilitate information
communication among individual models. Ablation studies proved that our proposed
approach stably improved the performance of the FL models.

Comparing FedAvg1 with our proposed methods, we found it necessary to construct
diverse models to learn diverse knowledge. In FedAvg1, it requires two communication
times per epoch, including one uploading and one downloading. In FedZaCt, it requires
uploading 1 model and downloading 4 models every 6 training epochs. In terms of
the communication cost, FedZaCt is less expensive than FedAvg1. Actually speaking,
the Central training method reached the limit of the frequency of model communication,
which means the model communicates every iteration. The experimental results showed
that FedZaCt achieved better scores than FedZaCt and Central. As a consequence, diverse
knowledge is helpful for better model performance.

In Table 3, there is a distinct difference among multiple client datasets. Our proposed
method practically promoted the performance of the client models, as well as the aggrega-
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tion models. The aggregation models generally had higher scores than the client models.
Communication among clients increased the evaluation scores by reducing the over-fitting
in under-sampled data. The proposed approach successfully improved the communication
efficiency by employing more robust FL models. Though the improved degree in the
public HAM10000 dataset was low, we believe this is because the task is simpler than the
private dataset. The comparisons of the qualitative examples on two datasets are shown in
Figures 2 and 3.

Figure 2. The comparison of qualitative examples on the private aortic dataset.

Figure 3. The comparison of qualitative examples on the public HAM10000 dataset.

5.4. Limitation and Future Work

One limitation of this study is the Z-average models. To obtain the Z-average metric,
we conducted local training on local client data before FL training, which increased the time
cost. How to conduct averaged models needs more careful consideration. It is expected that
a less time-consuming method will be introduced. In addition, the suitable diagonal value
is worth exploring. Another limitation is the Cross-teaching method. All the Z-average
models must be downloaded to all clients, which increases the bandwidth cost. It may
be troublesome for models with a large scale of parameters. When the client number
increases, the communication cost due to downloading the Z-average models will limit
the application of our proposed methods. In the future, how to adjust the communication
frequency or propose new methods to construct diverse models may be explored.

6. Conclusions

In this work, we proposed a novel and fundamental Federated training paradigm,
which aims to improve the communication efficiency among under-sampled client datasets
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with privacy preservation. The effectiveness of this paradigm was demonstrated on two
typical model structures, including Unet and DeepLabV3+, which were experimented
on two medical image segmentation datasets. This paradigm enables the client models
to learn from other client data distributions without leaking privacy and extra data. In
particular, the proposed paradigm is extendable to other segmentation model structures,
which has great potential for improving the results of the FL segmentation models. It is
believed that more clinical tasks will adopt this paradigm, and the paradigm will bring
more opportunities to deep learning models in the future.
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