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Abstract: Due to their small dimension and isolated energy systems, islands face a significant energy
supply challenge. In general, they use fossil fuels for electricity generation. Fossil fuels are a major
source of CO2 emissions, and they are very costly. The cost of electricity generation on islands is
up to 10 times higher than on the mainland. This situation without a doubt represents a financial
burden for the islanders. Using renewable sources, especially solar and wind sources, offers great
potential for power generation in remote locations, as they are a clean and inexhaustible source of
energy. Electrifying these zones with a hybrid system consisting of a photovoltaic (PV) and wind
systems associated to a hydraulic and an electrochemical storage system is a promising alternative.
The purpose of this study is to optimize the dimension of the components generation of systems,
especially for a remote island in Tunisia. The first part of this object outlines the PV-wind-battery-
hydraulic generation system architecture and modeling. The optimal sizing of the device additives,
satisfying two criteria with the aid of evolutionary algorithms NSGAII, is defined inside the second
part of this article. The outcomes are discussed from the point of view of the importance of the
system dimension and in terms of compliance with the criteria through the study of the most optimal
particular configurations.

Keywords: photovoltaic systems; wind; islanders; evolutionary algorithms; hydraulic storage system;
energetic modeling; NSGAII

1. Introduction and Background of This Research

Currently, the electrification of islands has become an effective instrument for the
sustainable development of these regions both in developing countries and in developed
countries. A lot of research has been carried out in the field of renewable energy use
on remote islands to increase the penetration of renewable energy [1,2]. More and more
islands have become self-sufficient in energy thanks to renewable energy. For example,
the island of EL Hierro in Spain is 100% self-sufficient due to their hydro-wind electricity
generation system. In addition, the Greek island of Tilos is the first in the Mediterranean to
produce almost all of its own electricity from wind and solar energy [3]. Thanks to 11 wind
turbines and a biomass power plant, the island of Samso in Denmark was also the first to
get completely rid of fossil fuels. However, compared to the number of islands in the world,
only 1% of the islands have become self-sufficient in energy. The cost and power system
flexibility are among the reasons for the observed low penetration of renewable energies
in remote areas. With strong social and environmental incentives to integrate maximum
renewable content, improved power system efficiency and reduced system cost can be seen
as a pathway to increased renewable energy penetration.

In Tunisia, 21 islands are not populated. They are remote islands. Power shortages
and high conventional power cost remains one of the biggest drawbacks of covering remote
areas. Islands need a continuous and reliable electricity supply from renewable sources,
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especially photovoltaic (PV) sources and wind systems (WT). Exploiting these sources
can bring great socio-economic benefits to islands. According to the National Institute of
Meteorology, Tunisia has one of the largest solar deposits in the world. The annual average
of sunshine exceeds 3000 h; it is also the most important of all the Mediterranean Basin
with 1800/m2/year. The wind resource is also important, with an annual speed wind equal
to 6 m/s [4,5]. However, their intermittent and random character does not guarantee a
continuous supply. For this reason, attaching a storage system (H2 storage) can overcome
this problem, but this solution is still hampered by the high owning costs [6–12]. Thus,
the use of hydraulic storage and a battery energy system associated with the PV/wind
system is an attractive concept to provide consumers on remote islands with reliable
and cheap electricity. However, this alternative depends upon the optimal combination
and sizing design of the renewable energy generation system coupled with the storage
system. Recently, different sizing and optimization methodologies have been developed by
the research community in order to appreciate the feasibility and the economic effect of
such solutions [13–19]. Some studies [20–24] have developed several methods to extract
the optimal sizing of renewable systems associated with different storage devices. In
Refs. [25,26], Particle Swarm Optimization (PSO) has been used for optimal sizing of hybrid
renewable energy systems. In Ref. [27], the authors used the cuckoo optimization algorithm
for sizing wind, PV, batteries, and diesel generator components for the lowest cost of energy
and loss of load probability. Another study solved the sizing problem by using the grey
wolf optimization (GWO) [28]. However, the most common is by far the class of genetic
algorithms (GA), and the most widely used one is NSGA-II [29,30]. More recent research
has used NSGA II for the optimal sizing of a hybrid renewable energy system [31–33].

In the literature, the demand for electricity on remote islands is usually provided
by diesel generators, leading to considerable uncertainty because of the cost of fuel
and the high pollution of the surrounding environment [34]. The optimal sizing of
PV/wind/hydraulic/battery with multi-objective formulation with combination of cost-
LPSP is rarely found in literature.

In this context, this paper presents techno-economic analysis and intelligent opti-
mization of a PV/wind system with hydraulic and battery storage system, ensuring the
continuous supply of electricity to a load demand on a remote island in Tunisia.

2. Description of the System

Figure 1 presents the proposed architecture of the hybrid PV/wind electricity produc-
tion system and the hydraulic/electrochemical (bank battery) storage system investigated
in this study. Wind energy production system(wind turbine), PV energy production system
(PV arrays),bank battery, and hydraulic storage (pump, turbines/generator, and reservoir)
are interfaced by static converters in a maximum power point tracking (MPPT) operation,
thus enabling energy on the DC bus (48 V) routed to the AC load demand by means of the
inverter. The energy flows of the storage system are bidirectional, while they are unidi-
rectional for the production system. The phase of pumping seawater to the reservoir and
charging the bank battery when the PV/wind hybrid electricity production has a surplus
of energy compared to the energy demand and the turbinated phase and discharge in the
event of a lack of energy by the hydraulic turbine and the battery ensures continuity of
supply to the remote site. Simulations will be carried out with solar radiation, wind, and
load of charge in the remote site, over a year on average, sampling every half an hour. This
work is interested in optimizing the dimension of this system based on two contradictory
criteria. The crucial phase will consist in defining these criteria for optimizing the problem.

The flowchart of the hybrid PV/wind and hydraulic /battery multi-storage system
operation is illustrated in Figure 2. Primary, wind profile, solar irradiation profile, and load
demand of the remote site are included. The wind will turn into wind power (Pwt), from
which the power generated by the wind turbine will be calculated. In addition, the PV
power generated by the PV panels will be measured through a solar irradiation. The sum of
PV power (Ppv) and wind power (Pwt) will be compared with power consumption (Pload)
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through the DC bus (Pbus). Second, the state of charge of the reservoir (SOCres) and of the
battery bank (SOCbat) will be calculated. If Pload < (Ppv + Pwt), we have a surplus of en-
ergy, leading to verify the SOCres. If SOCres < SOCresmax is confirmed, the pumping phase
until the water tank is full. When, the SOCres = SOCres max and SOCbat < SOCbatmax,
the surplus of energy will charge the bank of battery until SOCbat = SOCbatmax. The
second condition is when Pload > (Ppv + Pwt). Here we have a deficiency of energy. The
system switches to turn on the turbine, which operates until SOCres = SOCresmin. When
this condition is verified, the battery discharges and supplies the site with energy until
SOCbat = SOCbatmin.
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3. Modeling and Simulation

In this study, we consider that the bus DC voltage is constant and equal to 48 V. All
the elements of the system such as PV power source, wind power source, the water storage
system, and the bank of battery are coupled to the bus DC through converters (choppers
and inverters).These models will be used by the optimal design process. Due to the higher
computation time in this type of optimization problems, we use energetic models. The
processing time cost is a priority in our work.

3.1. Data Capture

The wind speed profile represented in Figure 3 has been obtained from a statistical
distribution model (based on Weibull distribution) from the wind energy potential at a
typical region in Tunisia. This model successfully models the probability of occurrence of
wind resource wind speeds [35,36].
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Figure 3. Wind speed profile during a year.

The load profile is obtained by estimating the energy needs on a remote site and the
behavior of the habitat during the day. The first phase is between 0 h and 5 h 30 min,
corresponding to a period during which the demand for electrical energy is low (no
activities). The second phase is between 5 h 30 min and 10 h, corresponding to a period
of high family activity (lighting, heating, etc.) and agricultural activities (operation of
rural equipment): during this phase, electricity consumption increases, with a peak around
7:30 a.m., then it decreases. The third phase, which is approximately between 10 a.m. and
4.45 p.m., corresponds to a period of slower activity due to lunch breaks and interruptions in
agricultural activities: during this phase, electricity consumption is at an average level and
is quite stable. The fourth phase, which extends from 4:45 p.m. to midnight, corresponds to
the return period and the end of agricultural activities; the families return to their homes
(lighting, audiovisual, etc.). During this period, the demand for electrical energy is the
highest. Electricity consumption increases sharply, and then falls again at the end of the
evening, with the peak of consumption being around 6:30 p.m. The description of the lead
demand is illustrated by Figure 4.
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Figure 4. Consumption profile for atypical day.

The solar irradiation profile is generated in a deterministic manner from the data, and
measurements are done by the National Institute of Meteorology, using high-precision
instruments to estimate solar irradiation. Figure 5 represents the power of solar irradiation
given every half hour for (sampling time Ts) a typical site in Tunisia over a whole year.
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Figure 5. Solar irradiation during a year.

3.2. Wind Turbine Modeling

In our study, we used an active wind turbine(Air X 400 W) operating at optimal
powers through a MPPT rectifier(maximum power points tracker rectifier). This convertor
is modeled using an efficiency equal to 95%. The energetic model used in the optimization
problem is defined by the electrical power Pwt, which represents the following:

Pe = CpPv =
1
2

Cpmax.ρ.π.R2.v3, (1)

where R is the blade radius is the air density, and Cp is the power coefficient from manufac-
turer data corresponding to the considered turbine.

The average value of this power generated by the wind speed over a period of one
year, with a sampling interval of half an hour, is equal to 283.3 W, as shown in Figure 6.
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Figure 6. Power of wind turbines (w).

3.3. PV Module Modeling

In the literature, many models of PV modules have been developed [37]. The famous
form is double diode mode, but the existence of a double exponential and six parameters
to makes it very complex. In contrast, using a model based on a single diode of the PV
generator makes it simple, especially in the case of optimization problems. In our study,
we implement the single diode model, or the four-parameter models for simplicity. Then,
we will use the model of a PV cell to assimilate it into a module under different lighting
and temperature conditions based on the parameters provided by the manufacturers’
data sheets.

3.3.1. Environmental Factors That Affect the Performance of PV

Different factors can include pressure, temperature, and many more, but the most
critical factors that affect the performance of PV are:

- Solar radiation intensity and spectrum (since the last depends on air mass), effec-
tively received by the module (in W/m2), which is an environmental factor. This
effectively received solar radiation can be limited by dust, snow, or any other natural
or artificial shadowing;

- Ambient temperature;
- Rainfall;
- Accumulation of dust on the surface of the solar panel [38,39].

3.3.2. Single Diode Model of the PV Generator

It should be noted that this four-parameter model is only valid for mono polycrys-
talline PV cells. The PV module considered in our study” Sun module SW 250 mono” is
deduced from the manufacturer’s data. Table 1 summarizes the different characteristics of
this PV panel.

The four-parameter model is a model that considers the PV module as an irradiance-
dependent current source, connected in parallel with a diode and in series with a series
resistor as shown in Figure 7.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 25 
 

 

Surface: SPV 1.67 m² 

Efficiency: ηconst 14% 

The four-parameter model is a model that considers the PV module as an irradiance-

dependent current source, connected in parallel with a diode and in series with a series 

resistor as shown in Figure 7. 

 

Figure 7. Single-diode electrical model (four parameters) of a PV cell. 

The current source generated a current Iph proportional to the solar irradiation. The 

current Iph supplied by the PV cell is expressed by the following equation: 

𝐼𝑝 = 𝐼𝑝ℎ − 𝐼𝑑. (2) 

The diode current Id has a given exponential classical form expressed by: 

𝐼𝑑 = 𝐼𝑆 [exp (
𝑉𝑝+𝑅𝑠𝐼𝑝

𝑛.𝑉𝑇
) − 1]. (3) 

where 𝑉𝑇 =
𝑘.𝑇𝑐

𝑞
 is the thermodynamic potential (or thermal voltage), Tcisthe cell 

temperature, ISis the reverse saturation current of the diode, k is the Boltzmann constant 

(k = 1.38.10 – 23 J/K), q is the charge of the electron (1.6 × 10−19 C, and n is the ideality factor 

of the junction (n = 1 for an ideal diode and it is between 1 and 2 depending on the 

technology). Neglecting the effect of parallel resistance (Rsh), the PV cell current can then 

be written as: 

𝐼𝑝 = 𝐼𝑝ℎ − 𝐼𝑆 [exp (𝑞
𝑉𝑝+𝑅𝑠𝐼𝑝

𝑛.𝑘.𝑇𝑐
) − 1]. (4) 

With 

𝐼𝑆 = 𝐼𝑆𝑟𝑒𝑓. (
𝑇𝑐

𝑇𝑟𝑒𝑓
)

3

𝑛
exp (

𝑞.𝐸𝑔

𝑛.𝑘
. (

1

𝑇𝑟𝑒𝑓
−

1

𝑇𝑐
)), (5) 

where Egis the band energy (1.12 eV for Si), Tref is the temperature under reference 

conditions, and Tc is the cell temperature in Kelvin (K). 

The photo-current is linked to the illumination E, to the temperature Tc and to the 

photo-current measured under reference conditions by: 

𝐼𝑝ℎ(𝐸, 𝑇) = (
𝐸𝑐

𝐸𝑟𝑒𝑓
) (𝐼𝑝ℎ𝑟𝑒𝑓 + 𝐶𝑇𝐼𝑠𝑐

. (𝑇𝑐 − 𝑇𝑟𝑒𝑓)), (6) 

where E is the illumination in W/m2, Iphref is the photo-current under the reference 

conditions (to simplify the calculation of Iph, we often make the approximation that the 

current Iphref is equal to the short-circuit current ISC, ref of the module), and CTIsc is the 

coefficient of the temperature of the short-circuit current (A/K). 

The module temperature Tc varies according to the ambient temperature Tamb and 

the illumination according to the following relationship [34,35]. 

𝑇𝑐 = 𝑇𝑎𝑚𝑏 + (
𝑁𝑂𝐶𝑇−20

800
) 𝐸. (7) 

By dividing this equation by dIp, we will have: 

Rs

Vp

Id

Iph
Vd

Ip
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Table 1. Characteristics of the PV module.

Maximum power:Pmax 250 W
Maximum power point voltage: Umpp 31.1 V
Open circuit voltage: Voc 37.8 V
Maximum power point current: Impp 8.05 A
Short circuit current: Isc 8.28
Temperature coefficient of the short-circuit 47 ◦C
current: CTIsc 0.042%/◦C
Cells per module Ns 60
Surface: SPV 1.67 m2

Efficiency: ηconst 14%

The current source generated a current Iph proportional to the solar irradiation. The
current Iph supplied by the PV cell is expressed by the following equation:

Ip = Iph − Id. (2)

The diode current Id has a given exponential classical form expressed by:

Id = IS

[
exp

(
Vp + Rs Ip

n.VT

)
− 1
]

. (3)

where VT = k.Tc
q is the thermodynamic potential (or thermal voltage), Tc is the cell tem-

perature, IS is the reverse saturation current of the diode, k is the Boltzmann constant
(k = 1.38.10–23 J/K), q is the charge of the electron (1.6 × 10−19 C, and n is the ideality
factor of the junction (n = 1 for an ideal diode and it is between 1 and 2 depending on the
technology). Neglecting the effect of parallel resistance (Rsh), the PV cell current can then
be written as:

Ip = Iph − IS

[
exp

(
q

Vp + Rs Ip

n.k.Tc

)
− 1
]

. (4)

With

IS = ISre f .

(
Tc

Tre f

) 3
n

exp

(
q.Eg

n.k
.

(
1

Tre f
− 1

Tc

))
, (5)

where Eg is the band energy (1.12 eV for Si), Tref is the temperature under reference
conditions, and Tc is the cell temperature in Kelvin (K).

The photo-current is linked to the illumination E, to the temperature Tc and to the
photo-current measured under reference conditions by:

Iph(E, T) =

(
Ec

Ere f

)(
Iphre f + CTIsc .

(
Tc − Tre f

))
, (6)

where E is the illumination in W/m2, Iphref is the photo-current under the reference condi-
tions (to simplify the calculation of Iph, we often make the approximation that the current
Iphref is equal to the short-circuit current ISC, ref of the module), and CTIsc is the coefficient
of the temperature of the short-circuit current (A/K).

The module temperature Tc varies according to the ambient temperature Tamb and the
illumination according to the following relationship [34,35].

Tc = Tamb +

(
NOCT − 20

800

)
E. (7)
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By dividing this equation by dIp, we will have:

Rs = −
dVp

dIp
− n.k.T

q.IS. exp
(

q Vp+Rs Ip
n.k.T

) , (8)

Rs = −
dVp

dIp

∣∣∣∣
Vc0

− n.k.T

q.IS. exp
(

q VC0
n.k.T

) . (9)

Through the fine modeling of the photovoltaic cell, we determine the four parameters
of the electrical circuit.

The validation of the fine modeling is illustrated by the following figures.
Figure 8 shows the variations of power and current as a function of voltage for

different levels of solar irradiation at a temperature kept constant (T = 25 ◦C), for the PV
panel with maximum power Pppm = 250 W measured under standard test conditions
(Est = 1000 W/m2, Tst = 25 ◦C). We note that when the sunshine increases, the intensity
of the current increases, with the increasing allowing the module to produce a greater
electrical power.
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Figure 8. Electrical characteristics of the Sun module SW 250 mono panel for different solar irradiations.

Figure 9 shows the effect of temperature change at constant solar irradiation
G = 1000 W/m2, for the same PV panel. The evolution of the I (V) characteristic as a
function of temperature shows that the current increases very rapidly when the temperature
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rises, with the same occurring for the P (V) characteristic, as the voltage increases when the
temperature rises.
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Figure 9. Electrical characteristics of the Sun module SW 250 mono panel for different temperatures.

3.4. Energetic PV Modules

Previously, we detailed how the fine modeling precisely predicts the behavior of PV
panels. However, this modeling is very expensive in terms of time of the digital processor
calculation when an optimization process is carried out. In our study, reducing the cost of
time is a priority. For that reason, the use of an energy modeling that takes into account that
the maximum power regions depending on solar irradiation and temperature is inevitable.
In our work, we assume that the PV system is equipped a MPPT device to extract the
maximum power.

Therefore, we can model the PV generation of a PV panel by the following simplified model:

Pv = SPV.ηPV.Es. (10)

where SPV is the PV panel surface in m2 and ηPV is the PV panel and PV conversion system
(choppers with MPPT) efficiency, which is equal to 10% in this study.

Figure 10 represents the power of PV panels given every half hour for (sampling time
Ts) a typical site in Tunisia over a whole year.
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Figure 10. Power of the PV panels (w).

3.5. Hydraulic Storage Model

In the literature, the two most important variables for sizing the pumping system are
the elevated head of the tank and the sea (Hm), and the volume of the water reservoir (V).
We consider these variables in the optimization sizing of our system.

In hydraulic storage, we have two phases. The first phase is in the case of excess power
of the generator source. This phase is a pumping phase. It can be modulated by:

Qpump = PIM/(ρ ∗ g ∗Hm ∗ ηp), (11)

where the useful power is PIM, delivered on the output shaft of the engine as the electro-
magnetic power efficiency ηIM, which is taken as 95%: and the efficiency of the pump ηp,
which is considered equal to 80%.

The second phase is when we have a lack of energy at the load demand. The discharge
of the tank operates the turbine to meet the needs of the load. They can be modulated by:

Ptur = ηT∗ρ∗g∗Hm∗QT. (12)

3.6. Battery Model

Our choice was to use lead batteries, given their relatively low cost compared to
other technologies. Our modeling is based on a Yuasa NP 38-12I (38A.h 12 V) reference
battery. One of the important parameters for the continuation of the study is the value of
the capacity for a discharge of 3 h: C3 = 30.3 A.h, as well as the coefficient of Peukert, in
which one deduces from the various measurements of the discharge: n = 1.28.

The battery is built by assembling elementary cells, in series and/or in parallel. The
equivalent diagram of the battery, shown in the figure below, is then deduced from the
assembly of the elementary cells using Thévenin’s theorem. The current in a cell, used to
calculate the state of charge, depends on the type of association made, and is expressed by:

Icel =
Ibat

Ncel_p
. (13)

The parameters e0 and rcel are the functions of the level of energy available in the
battery, of the current delivered, and of the temperature of the accumulator.

In its electrical model Figure 11, the resistance rcel and the voltage e0 both vary
depending on the state of charge SOC of the battery. Figure 12 shows the evolution of rcel
and e0 depending on the state of charge of a cell.
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Factors Influencing the Aging of the Battery

The main factors influencing the aging of a battery are:

- The number of cycles (charge/discharge);
- Temperature, one of the most influencing factors on battery life. Usage at high

temperature will accelerate aging due to an increased parasitic reaction. Many studies
show that the aging of a battery is divided by 2 to 3 between a usage at 25 ◦C and the
same usage at 45 ◦C [40].

We suppose in our work that the influence of thermal and aging is not considered in
this model for reasons of simplification.
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The expression of the voltage DC is:

UDC = Ncel_s.e0(SOC) +
Ncel_s
Ncel_p

rcel(SOC).Ibat . (14)

where Ibat = IDC − Iconso, where Iconso designates the consumption current.
Knowledge of the state of charge of a cell SOC is a determining element in relation

to the behavior of the complete system. One must be able to evaluate it to check if the
conversion chain can carry out its mission.

A cell is, from an energy point of view, characterized by its capacity Ccel. This is the
quantity of electricity, indicated in A.h, that it is able to restore after a full charge, and
when discharged with a current kept constant. This capacity varies according to several
factors such as the intensity of the discharge, the temperature, and the concentration of
the electrolyte. Thus, the maximum quantity of electricity available, under a discharge
current I, is lower than the theoretical capacity of the accumulator, defined for a discharge
at infinitesimal current. The quantity of electricity accessible for a discharge in i hours at
constant current Ii is deduced from the maximum capacity by the empirical relationship of
Peukert, which is written as:

Ci = C3

(
Ii
I3

)1−n
. (15)

For a discharge at constant current Icel, we express the state of charge SOC of an
elementary cell of the accumulator as follows:

SOC(t) = 1− Icel
Ci
× t. (16)

For our application, the current is constantly variable over time. We then discredited
the previous equation by considering the constant current between two calculation steps.
We can thus determine the expression of the variation of the state of charge ∆SOCk of the
cell at time k.∆t:

∆SOCk =
Icelk
Ci

∆t =
Icelk
C3

(
Icelk
I3

)n−1

∆t. (17)

This approach also makes it possible to take into account the battery recharging phases.
Indeed, if the current in the cell becomes negative, its state of charge increases. In the end,
the state of charge of the cell is expressed by:

SOCk = SOCk−1 + ∆SOCk. (18)

For optimal operation, management of the state of charge of the battery is consid-
ered for limit values of the state of charge of the battery such as SOCbatmin ≥ 20% and
SOCbatmax ≤ 95% [41–43].

4. Formulation of the Optimization Problem

Optimization consists in finding the minimum of an optimization criterion (an ob-
jective function to find according to a vector x = (x1, x2, . . . , xn)

T, representing the input
variables of the optimal solution of f [44–47].

4.1. Input Variables

The five input variables associated with the system sizing model are chosen as param-
eters to be optimized. These variables are given by the following Table 2, where their range
of variation is also specified.



Electronics 2022, 11, 3261 13 of 24

Table 2. Input variables.

Input Variable: x Minimum Value xmin Maximum Value xmax

Number of batteries: Nbat 1 100
Number of wind turbines:
Nwt 1 30

Number of PV panels: Npv 1 100
Elevating head: Hm 1 40
Water reservoir
volume: V 1 100

4.2. Design Constraints

To ensure the efficiency of the system, when the design parameters x vary over the
whole exploration domain, it is necessary to introduce some constraints gi, which can
generally be translated into inequalities of the form:

gi(x) ≤ 0,

where x denotes the vector associated with the input variables.
In our study, the chosen constraints are related to the state of charge of the battery

(SOCbat) and the tank (SOCres).
For the reservoir, it is crucial to ensure that SOCres does not reach the tolerable limit

value, which is equal to SOCresmax = 1 (full tank) and does not fall below to SOCresmin = 0,
so that the pump does not work in a vacuum and avoids related problems:

SOCresmin − SOCres ≤ 0 and SOCres − SOCresmax ≤ 0.

In addition, it necessary to make sure that the battery does not operate in deep
discharge and stays in safe state-of-charge zones.

SOCbatmin − SOCbat ≤ 0 and SOCbat − SOCbatmax ≤ 0.

4.3. Optimization Criteria

The criteria to be optimized can have constraints on their variables through inequalities
and vector functions g and h. mathematically, the optimization problem can be formulated
as follows: 

min f(x)
xmin ≤ x ≤ xmax, x ∈ Rn

g(x) ≤ 0 et h(x) = 0, g ∈ Rket h ∈ Rl
. (19)

In our study, the optimization problem has two contradictory objectives; the first
objective is to minimize the satisfaction of the electrical load demand, known as LPSP (loss
of power supply probability). The second objective is to minimize the cost of the Costsys
system over a life cycle of 25 years. Thus, we have a bi-objective optimization problem [48].

4.4. System Cost Modeling

In our study, we estimate the cost of energy (cost per Khw) produced by our system
through the costs of PV panels, wind turbines, converters, installation, maintenance, and
replacement of components over a cycle of life (Tcycle) equal to 25 years. Cost modeling is
done through an energy model that relates the cost of each element to its average power.

For the battery cost and for an operating time Tcycle of 25 years and a tank cycle time
T of 356 days, the approximate cost of the battery pack over 25 years is expressed by the
following relationship:

Cotbat[k€] = Ncel_s · Ncel_p · C0 × 10−3 · .Nτ
cy ·

τexp

τ
. (20)
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where C0 is the cost of a battery cycle estimated at EUR0.1 (additional batteries). A YUASA
12V battery costs Cbat = EUR108.A 2 V cell costs Célé = 108 EUR/6. We have 180 deep
cycles. One deep cycle on a cell costs Célé/180 = EUR 0.1. For the turbine system, the cost
is estimated at EUR 50/kW (Costtur). For the pumping system, the cost is estimated at
240EUR/kW(Cost pump). The cost, combining the PV panels, converters, cables, sensors,
and control circuits, is estimated at EUR 2000/kW(CostPV). For the cost of the wind turbine,
the approximate cost model is given by the following equation [8–11]:

Costwt(KEUR€) = 1.7 × Pwt + 6

where Pwt is the average power of a wind turbine.
Finally, the cost model of the Costsys system can be expressed as follows:

Costsys = CostPV + Costtur + Costbat + CostWT + Cost pump. (21)

4.5. Satisfying the Electrical Load LPSP (Loss of Power Supply Probability) Criteria

LPSP is the sum of the energy deficits supplied to the load (Loss of Power Supply LPS),
encountered during a period T (T = 1 year) and reduced to the annual energy supplied to
the annual load (ELoad) [49].

LPSP =
∑T

t=1 LPS(T)
ELoadyear

. (22)

LPS represents the difference between the energy demanded by the load Eload and the
available energy supplied by the generation system and the storage system
(Eren(t) = EPV(t) + EWT(t) + EBat(t) + ETank (t)), where EPV is the available photovoltaic
energy, EWT is the available wind energy, EBat is the useful energy stored and available
in the batteries, and Etank is the useful energy stored in the reservoir, described by the
relationship below:

LPS(t) =
{

ELoad(t)− Eren(t) ∀ ELoad(t) < Eren(t)
0 ∀ ELoad(t) ≥ Eren(t)

. (23)

4.6. Optimization Process

Dimension optimization has become a standard approach for the design systems [50–52].
In our study we seek to adapt the five design parameters Npv, Nwt, Nbat, Hm, and

V through technical and economic criteria to satisfy the need of the load demand at any
time. We used the NSGAII algorithm to adapt these parameters. In several works, NSGAII
has shown its efficiency in solving the multi-objective optimization problem. This is why
we chose it. The optimization process integrating the NSGA-II algorithm as well as the
simulation model of the system is illustrated by the synoptic of the following Figure 13.

The discrete variables NPV, NWT, Nbat, Hm, and V are decoded using the integer
function. The typical values of the NSGAII regulation parameters used for the system
optimization considered are summarized in Table 3.

Table 3. Parameters regulation for NSGAII.

Settings Values
Number of generations 100
Number of individuals 100
Number of executions 3
Variable mutation rate 0.35
Crossover gene mutation rate 0.04

The evolution of the population as the genetic algorithm is executed is presented in
Figure 14, according to the different steps of the NSGA-II algorithm described below.
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Figure 14. Evolution of the population of individuals during the execution of the NSGA-II
genetic algorithm.
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An initial population of Nind individuals is first randomly created, in order to be used
for the 1st generation; each generation evaluates the performances of the 2Nind individuals:
the parent Nind from the previous generation, to which Nind children resulting from the
application of genetic operators are added. These operators bring a diversification of the
individuals at each generation, in order to explore the space of the solutions. Two types
of genetic operators (also called evolution operators) are applied to the best performing
individuals of the parent population (selection phase).The first genetic operator is crossover.
Here the chromosomes of two individuals (two parents) are exchanged so as to create two
new individuals (two children), i.e., two new sizes. The second genetic operator is mutation.
Here, one of the chromosomes of an individual is modified, resulting in a new dimension.
A selection of Nind individuals is then made among the 2Nind individuals according to the
Pareto dominance: the dominant individuals are kept (the elitist approach).The population
is then completed if necessary with the best remaining individuals in order to obtain a new
population of Nind individuals used in the next generation. Thus, the best individuals are
never lost from one generation to another [53].

To verify the reproducibility of the results obtained, we carried out three executions of
the algorithm with MATLAB R2013a.The numbers of individuals and generations consid-
ered result in a computing time of approximately 6 h on an Intel Core i7 processor.

5. Results and Discussion

In this part, we present the optimization design process. Our objective is to extract the
optimal sizing choice of the system.

Figure 15 presents the pareto front of the two optimization criteria of our problem
(cost-LPSP).This front is obtained after three executions. The zone of good compromise
circled by blue dots on the optimal front presents the best solutions of our study. By moving
outside to this zone, the solutions become insignificant given the dominance of one criterion
over another.
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Figure 15. Pareto front of optimal system configurations.

The path of the input variables along the optimal front according to the two criteria
is illustrated in Figure 16. These results explain how trends of increasing values of input
variables are in the direction of inflating the cost of the system. On the other hand, these
tendencies are reversed if the increase becomes the direction of LPSP aggravation.
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Figure 16. Evolution of design parameters along the optimal front as a function of system cost and as
a function of LPSP.

To decide on an optimal configuration among this panoply of solutions on the optimal
front, it is fundamental to analyze the characteristics of at least three different configurations
(Optimum1, Optimum2, and Optimum3) extracted from the optimal front, positioned in
the zone of good compromise mentioned above, and whose positions have been articulated
in Figure 17.
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The characteristics of these configurations are summarized in Table 4.

Table 4. The characteristics of the selected configurations.

Configurations Optimum1 Optimum2 Optimum3
Nbat 10 20 50
NWT 15 20 28
NPV 60 25 20
Am 22 25 30
V 60 50 40
Cost system (f 1)
kEUR 7.1 9.2 11.1

LPSP (f 2) 0.4 0.2 0.5

The cost of the system presents remarkable differences. Between the first configuration
and the second there is a gain about EUR 2000 in terms of system cost, while the LPSP is
40% for the first configuration encountered, and 20% for the second. When we compare the
second configuration and the third, there is a notable difference in the cost of the system of
about EUR 4000, but the LPSP is 15%. The state of the charge of the battery is represented
in Figure 18.If we compare the first configuration and the second one, we note that for
the second configuration the battery does not undergo a deep discharge throughout the
year SOCbat > 80%, while for the first configuration it decreases up to 30%.As a final point,
these interpretations will then be a good marker to choose the correct and the performed
configuration of our site.

The results of the simulation for the preferred configuration (Optimum 2) are presented
below. We choose two typical days: one in summer and the other in winter.

The objective of this illustration is to demonstrate the complementarity between the
different elements of our system to satisfy the load demand at all times.

Figure 19 represents respectively the powers evolution for two typical days: one in
summer and the other in winter. In summer, the power delivered by the photovoltaic
panels Ppv is important; it reaches 1100 w, which exceeds the need for our site. The surplus
of energy therefore goes in the direction of charging the batteries and pumping water into
the reservoirs. In winter, Ppv does not exceed 6000 w, which causes the discharging of the
turbines and battery t and ensuring the continuity of supply to our site.
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Figure 19. Power evolution for two typical days: one in summer and the other in winter. Figure 19. Power evolution for two typical days: one in summer and the other in winter.

In the nocturnal days and when the wind is strong, it is very clear that the supply of
the load is assured by the wind turbine and the discharge of the storage system.

Finally, the state of the charge of the tank is illustrated in Figure 20. We notice
that the reservoir is charged and discharged with a SOC varying between 100% and
50%.Thisrespects the optimization constraints that we have set.
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6. Conclusions

This paper studies a hybrid wind–photovoltaic system associated with an electrochem-
ical and hydraulic storage system. The objective of this system is to produce electricity to
satisfy the demand of a consumer on a remote island in Tunisia at any time. From there, we
presented the components of the studied system and their principles of operation. Then
we gave their mathematical models. For the photovoltaic production chain, we presented
two types of modeling of the PV panels: a fine modeling that faithfully reproduces the
behaviors of these panels and a simplified energy modeling that will be integrated in the
optimization process. Concerning the wind generation chain, we created a wind profile
using the probability function of the wind speed (the Weibull distribution) for every half
hour for one year. Then, we modeled the wind power under different wind speeds. For
the electrochemical and hydraulic storage system, based on the electrical model and its
equations, we determined the different parameters that characterize the battery and the
reservoir and that allow us to determine the power and the states of charge of the battery
(SOCbat) and reservoir (SOCres).

The bi-objective optimization methodology (LPSP-Cost), using an evolutionary al-
gorithm NSGAII, was used to size the optimal system size, i.e., to find the (NPV, NWT,
Nbat, V, and Hm), which satisfies the consumer demand and minimizes the cost of the
system, while ensuring an honorable lifetime for the batteries. Results from multi-objective
optimization using the NSGAII genetic algorithm were presented and discussed. We select
three optimal configurations to analyze. The results show the effectiveness and robustness
of our synthesis approach to ensure the continued electrification of the remote island.

To finish, several perspectives can be considered in order to complete the experimental
validation, such as the use of weather forecasts based on intelligent algorithms. In addition
to wind and photovoltaic, the use of an energy source (such as the fuel cell) is very
interesting to make the system more efficient during the worst periods of the year.
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Nomenclature

Pload Load power (w)
PPV Photovoltaic power (w)
PWT Electrical wind turbine output powe(W)
Hm Head height (m)
P Water density (1000 kg/m3)
Q Electron charge (C)
Rcel Internal resistance of a cell(Ω)
Ppump Pumping power (W)
Ptur Turbine power (W)
Q Electron charge (C)
Q Water volumetric flow (m3/s)
Ccel Cell capacity (A.h)
Cp Power coefficient
Eg Band gap energy (ev)
G Real solar irradiation (W/m2)
Ibat Battery current (A)
Icel Cell current (A)
Id Diode current (A)
Iph Photo-current (A)
Is Diode saturation current (A)
K Boltzmann’s constant (J/K)
N Diode ideality factor
Np Number of PV modules in parallel
Ns Number of PV cells in series
Pbat Battery power (w)
Rs Series resistance (Ω)
Rsh Parallel resistance (Ω)
SOC State of charge of the reservoir
SPV PV panel surface (m2)
Tc Cell temperature (K)
Ts Sampling time (hours)
V Wind speed (m/s)
Vcel Voltage at cell terminals (V)
VT Thermodynamic potential (V)
U Voltage of cell (V)
ηinv Inverter efficiency
ηPV PV system efficiency
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