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Abstract: In this paper, an experimental investigation study was conducted to show the effect
of enhancing the evaporation and condensation processes inside a modified solar still by placing
ultrasonic humidifiers inside a cotton mesh tent in the basin water and by installing a cooling chamber
with thermoelectric elements on top of the solar still. Various parameters were recorded every hour,
such as temperatures at different points within the solar still, the weather conditions (e.g., solar
irradiance intensity, ambient air temperature, and wind speed), the yield of distilled water, and
thermal efficiency on 29 July 2021 at the Ural Federal University (Russia). The production cost
of distilled water from modified and traditional solar stills was also estimated. The experimental
results showed that the productivity of the modified solar still increased by 124% compared with the
traditional solar still, and the highest thermal efficiency was recorded at 2:00 p.m. (approximately
95.8% and 35.6% for modified and traditional solar stills, respectively). Finally, the productivity cost
of distillate water (1 L) was approximately 0.040 and 0.042 $/L for the modified and traditional solar
stills, respectively. The current work has contributed to increasing solar still productivity by applying
simple and new technologies with the lowest possible capital and operational costs.

Keywords: evaporation and condensation process; ultrasound cotton tent; thermoelectric cooling
chamber; single modified solar still; distilled water; ultrasonic humidifiers

1. Introduction

Solar photovoltaic (PV) energy is a part of the family of clean, free, and renewable
energy sources, and it can produce electrical and thermal energy. The PV system is a
topology that is mostly used to generate electrical power globally with low mechanical
installations compared with other renewable sources [1,2]. Although the PV system is a
widely used source, it has several disadvantages, such as nonlinear characteristics; that is, it
is dependent on solar irradiance and the ambient temperature [3–5]. PV panels can generate
the required electrical power with only 10–15% global irradiance [6,7]. The increase in
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the PV panel temperature can consequently lead to a decrease in the efficiency of the PV
panel [8–10]. Therefore, several appropriate cooling mechanisms are used to remove the
head partially in PV panels [11,12].

Water is essential for sustaining life. Although water covers 71% of the globe’s surface,
97% of this is saltwater. Many countries suffer from a lack of potable water [13–15], as
river water is not easily accessible. Several problems are also related to hygiene. Many
countries (especially in the Middle East and Africa) suffer from a scarcity of potable water.
Numerous attempts have been made to solve this deficit by extracting salt from seawater
to obtain potable water.

In recent years, several researchers have used various techniques to solve drinking
water shortages, such as reverse osmosis, vapor pressure, and electrolysis. The most
recently applied methods are considered economical and do not have environmental side
effects [16–19]. Solar PV energy is one of the easiest and most cost-effective sources for
drinking water production and thermal applications such as water heating, cooling, and
drying. Solar distillation systems for saline and untreated water are considered essential for
reducing energy consumption [15]. However, the main disadvantage of solar water stills is
low productivity. Therefore, several researchers have tried to use different methods and
designs to increase productivity and thermal efficiency [16]. The modifications proposed
are classified into passive and active methods. In passive solar stills, evaporation occurs
without using additional external energy to heat the basin water and vice versa for active
solar stills [17].

S. Nazari et al. [18] proposed enhancing solar still productivity by installing a single
solar still on a parabolic dish and placing paraffin wax cells in the basin water. The results
showed that the suggested improvement increased productivity during summer and winter
by 65% and 45%, respectively. N.T. Alwan et al. [19,20] investigated the effect of changing
the depth of the basin water from 1 cm to 3 cm on the performance and productivity of
a single-slope solar still. The results showed that the heat transfer coefficients increased
as the water depth decreased. The highest productivity was recorded at a depth of 1 cm,
approximately 1.6 L/m2, and 1.35 at 2 cm. The lowest productivity was recorded at 3 cm
and approximately 1.05 L/m2·day. A.S. Abdullah et al. [21] designed and constructed a
modified piece of technology by installing a vertically rotating wick in a single-slope solar
still and adding nanofluid to the basin water. This modification with and without nanofluid
enhanced productivity by approximately 315% and 300%, respectively.

N.T. Alwan et al. [22] combined a solar still based on a single slope with a rotating
hollow drum and integrated an external solar water collector into the modified system.
This set-up enhanced the yield of distillate water by approximately 280% and 400% in
summer and winter, respectively, compared with a conventional solar still. N.T. Alwan
et al. [23] proposed a new combination to enhance evaporation and condensation inside a
single-slope solar still. A diffusion absorption refrigerator was used so that the still ran day
and night. The refrigerator’s condenser was immersed in the basin water to increase its
temperature, while the evaporator was placed on top of the solar still under a glass cover in
a special box to enhance condensation. Compared with a traditional solar still, productivity
improved by 251% and 469% during the day and night, respectively.

N.T. Alwan et al. [24] raised the productivity of a single-slope solar still by immersing
three ultrasonic humidifiers in the water basin inside a cotton tent (wick) to improve
evaporation. They demonstrated that the suggested modification improved the daily yield
by 68% compared with a traditional solar still. N.T. Alwan et al. [25] proposed a practical
validation based on a rectangular basin solar distillation. This study was based on a single
slope using paraffin wax (PCM) cells. Moreover, a parabolic dish integrated with a central
process unit-type solar water heater presented with a new biaxial tracking system was
proposed [26]. In this system, the water temperatures at the outlet heater differed by about
20%, which means that the proposed system enhanced the temperature of the water for the
central processing unit-type heat exchanger.



Electronics 2022, 11, 284 3 of 16

Sadeghi G. and Nazari S. [27] presented the purification of water using a hybrid
nanomaterial and the application of the magnetic property to increase the rate of heat
transfer. This study included two types of a solar still, one of which was conventional. The
other was modified by using a cooling duct with four thermoelectric elements combined
with an external evacuated tube-type solar collector. The results showed an improvement
in the productivity of the modified solar still of about 218% and a 117% improvement in
energy efficiency compared with a conventional solar still. S. Nazari et al. [28] conducted
an experimental study to improve the evaporation efficiency of the solar distiller basin
water using a copper oxide nanofluid (Cu2O) and to increase the condensation efficiency
by integrating the modified solar distiller with a cooling duct, on which four thermoelectric
cooling units were installed. The results showed that the productivity and the energy
efficiency of the modified solar still improved compared with a conventional solar distiller
by approximately 81% and 112.5%, respectively. B. Mehdi. et al. [29] developed a predictive
model for the efficiency of a solar still using a fuzzy neural heuristic system, improving the
thermal conductivity of the aquarium water by adding nanoparticles (Cu2O) and enhancing
the condensation mechanism using a cooling duct with thermoelectric elements. The data
were used as input for training AI methods. The results showed that the application of
particle swarm optimization (PSO) remarkably improved the prediction performance over
the rest of the proposed models.

It is therefore possible to state that the temperature differences between the evaporation
and condensation surfaces inside the solar still have proven to be key in improving the
productivity of the solar stills. It is for this reason that the studies reviewed above proposed
different mechanisms to enhance the evaporation and condensation processes inside solar
stills. It is, however, important to state that most of these mechanisms are bulky to construct
and quite expensive, and hence new ways of enhancing the evaporation and condensation
processes devoid of these negatives ought to be proposed. It is for that reason that the
current study assesses the use of ultrasonic humidifiers and the thermoelectric cooling
“Peltier cooler” technique to improve the yields of solar stills.

The main contribution of this paper is to improve the evaporation and condensation
processes by using ultrasonic humidifiers in the basin water inside a cotton mesh cloth
(wick) and to enhance condensation by installing a cooling chamber with thermoelectric
coolers in Yekaterinburg, Russia. Moreover, high productivity at a relatively low cost
is achieved. The cost of producing distilled water (1 L) with this modified solar still is
analyzed in detail, and a comparison with previous studies in the same environmental
conditions is provided.

The proposed paper is organized as follows. Section 2 presents the materials and
methods. Section 3 analyzes the production cost. Section 4 highlights the experimentation
and the performance analysis. Section 5 concludes the paper with the future scope.

2. Materials and Methods

This section describes the composition of the items used in building the test rig.
The experiment took into consideration two models of solar stills: one known as the
modified solar still module and the other known as the referenced module. Three ultrasonic
humidifier elements are instilled inside the basin water solar still, and the cooling chamber
module is integrated with the thermoelectric cooler elements, while the referenced module
has no modifications.

2.1. Scheme of a Solar Distiller System

Figures 1 and 2 show a schematic diagram and a photographic view of the experimen-
tal installation. The traditional and modified solar distillers were made of 1.8 cm wooden
MDF. Both distillers had the same dimensions (103.6 cm long, 53.6 cm wide, 61.8 cm on the
long side, and 26.6 cm on the short side). The dimensions of the black galvanized water
basin were as follows: 100 cm long, 50 cm wide, 10 cm deep, and 0.1 cm thick. The solar
distillers were covered with plexiglass inclined at 35◦ degrees and with the following dimen-
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sions: 103.6 cm long, 53.6 cm wide, 50 cm on the long side, 14.8 cm on the short side, and
0.3 cm thick. Aluminum channels were used to attach the plexiglass cover onto the body of
the solar still. After the water vapor condensed on the inner surface of the plexiglass cover
and the aluminum plate of the cooling chamber, the distilled water flowed through the
aluminum channels to the graduated vessel beneath the solar still. Silicone glue was used to
fix all the parts together [17]. A polycrystalline photoelectric panel of 18.60 V DC and 5.92 A
and a peak power of 110 W was selected, with dimensions L = 101.5 cm, W = 66.8 cm, and
H = 3 cm. The PV panel was tilted at an angle of 35◦ by a mechanism consisting of a base
of four mild steel irons moving at different angles (supporting structure).
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Figure 1. Schematic diagram of modified and traditional solar stills: 1 = plexiglass cover,
2 = MDF wooden panel, 3 = mechanical floater, 4 = basin, 5 = water, 6 = water tank, 7 = globe valve,
8 = ultrasonic humidifier elements, 9 = cotton tent, 10 = cooling chamber, and 11 = thermoelectric
cooling elements.
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2.1.1. Working Principle for Ultrasonic Humidifiers

Ultrasonic humidifiers use a metal diaphragm to convert a high-frequency electronic
signal into a high-frequency mechanical oscillation that disperses the water layers into
mist droplets. To increase the interfacial surface and the basin water evaporation efficiency
inside the modified solar still, three ultrasonic humidifiers were placed in the basin water
inside a polycarbonate frame covered by a black cotton mesh (wick). The proposed hybrid
technology led to reducing the distance between the evaporation and condensation surfaces
(water and glass cover), thus increasing the rate of heat and mass transfer within the
modified solar still as well as reducing the depth of the basin water to a filmy layer which
quickly evaporated from the surface of the cotton tent, which was constantly renewed by
ultrasonic humidifiers compared with the depth of the basin water in a conventional solar
still, as shown in Figure 3.
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2.1.2. Working Principle for Thermoelectric Coolers

The direct conversion of temperature differences into an electric voltage and, con-
versely, converting the electric voltage into a temperature difference is known as the
thermoelectric effect. A thermoelectric cooler (TEC), which is also known as a “Peltier
cooler”, employs the Peltier effect for heat exchange. A TEC is made up of P- and N-type
semi-conductor couples [30,31]. The cold part of the TEC is fixed at the rear side of the alu-
minum plate, while the heat sink is instilled on the hot part of the TEC. The heat generated
from the TEC by the forced convection is transferred to the ambient air with the help of a
12-V DC fan. In this case, the aluminum plate (cooling chamber) would be cooled by the
TEC as depicted in Figure 4. The working principle of the TEC is presented in Figure 5.
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The thermoelectric module (TEM) uses the Peltier effect to provide a cooling or heating
effect. The Peltier cooler elements enable heat transfer from one part to another part of the
Peltier module based on the direction of the current. The principle behind its work is to
generate a heat flux between the P-N junction, depending on the voltage difference between
the two of these parts. Therefore, a voltage is applied across the device to make one of
the sides hot while the other becomes cold (side A and side B). The rate of heat generated
.

Q can be expressed as indicated in Equation (1) [32]. The properties and parameters of
the TEC are presented in Table 1. A cooling chamber made of an aluminum plate (0.1 cm
thick) was installed on top of the solar still. Four thermoelectric cooling elements (Peltier
elements) were installed to improve condensation, as shown in Figure 4:

.
Q = (ΠA − ΠB)× I (1)

where ΠA and ΠB are the Peltier coefficients of conductors A and B, respectively, and I is
the electric current from A to B.
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Table 1. Description of the thermoelectric cooler (TEC) and DC fan.

Description Feature

Model AV-F9025MS
Name DC12V BRUSHLESS FAN

Rated Voltage 12 V DC
Operation Voltage DC 6.8–12.8 V

Consuming Current 0.20 A
Consuming Power 1.2 W

Rated Speed 3000 R.P.M.
Max. Air Flow 32.28 CFM

Size 80 × 80 × 25 mm
Weight 40 g

2.2. Experimental Procedure

The study was conducted at the Ural Federal University in Yekaterinburg, Russia
(56.8◦ N and 60.6◦ E) in July 2021 from 8:00 a.m. to 8:00 p.m. At the start of each test, the
depth of the basin water was kept constant at 5 cm, which was suitable for the immersion
of the ultrasonic humidifiers. A k-type thermocouple with an 88598-type four-socket data
logger was used to measure the temperatures of the basin liner, basin water, surface of
the cotton mesh, plexiglass cover, and inner surface of the cooling chamber. A TM-207
radiation intensity meter was used to measure the intensity of the solar radiation, and a UT
363 BT anemometer was used to measure the wind speed.

To measure the hourly production of distillate water from the cooling chamber and
the plexiglass cover, two graduated cylinders with a capacity of 1 L were used. To study
the properties of the water before and after solar distillation, E-1 TDS and EC meters were
used to measure the total dissolved solids and electrical conductivity. A PH-05 pH meter
was used to measure the water’s hydrogen potential. Four thermoelectric cooling elements
(Peltier elements) were used to cool the external condensing chamber. The thermoelectric
cold side was installed on the aluminum plate (condenser), and the thermoelectric hot side
was installed on the finned heat sink and cooling fan with special thermal silicon. The rest
of the cooling chamber was tightly sealed.

2.3. Uncertainty Analysis

The accuracy of each device used in the experimental measurement was calculated
to determine the uncertainty values accurately [25]. Table 2 includes data on the accuracy
of each device used as well as the error range, according to the equations mentioned in
previous studies [26,33,34].

Table 2. Results of experimental device uncertainty analysis.

Device Accuracy Value Measuring Range Error Ratio % Measuring
Units

Temperature
data recorder 1 ◦C from −200 to 1370 0.3% ◦C

K-type
thermocouple 0.1 ◦C from −100 to 200 0.3% ◦C

TM-207
radiation

intensity meter
0.1% 0–2000 0.1% W/m2

UT 363 BT
anemometer 0.05 0–30 3% m/s
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2.4. Thermal Efficiency

The thermal efficiency of the modified solar still was calculated based on the follow-
ing equation:

ηth =

.
mev ∗ Abp ∗ hfg

[I(t) ∗ Abp + nPE ∗ PPE + nfan ∗ Pfan + nUM + PUM] ∗ 3600
100% (2)

hfg = 100 × [2501.9 − 2.407 × Tw +
1.1922 × T2

w
103 − 1.586 × T3

w
105 ] (3)

where ηth is the thermal efficiency,
.

mev is the hourly yield of distillate water (L/m2/h), hfg
is the latent heat of the basin water at an average temperature (J/Kg), Abp is the surface
area of the water basin (m2), I(t) is the intensity of the solar radiation (W/m2), nPE, nfan, and
nUM are the number of Peltier elements, fans, and ultrasonic humidifiers, respectively, and
PPE, Pfan, and PUM are the power consumption of the Peltier elements, fans, and ultrasonic
humidifiers, respectively.

3. Production Cost Analysis

In water desalination systems, several goals must be met during design and implemen-
tation. The most important one is the quality of the structural materials and the production
cost per liter of distilled water (PCD) in $/L·m2, which is calculated as follows [22]:

PCD =
TCY

.
mev(year)

(4)

.
mev(year) =

i=180

∑
i=1

.
mev(day) (5)

where TCY is the total cost per year ($/L·year),
.

mev(year) is the average freshwater produc-
tivity per year (L/m2·year), and

.
mev(day) is the average freshwater productivity per day

(L/m2·day). This work assumes that Yekaterinburg has 180 sunny days [22]. Thus, the
total cost per year is calculated as follows [22]:

TCY = FCY + MCY − SVY (6)

FCY = FCR × C (7)

FCR = i(i + 1)n × [(i + 1)n−1]
−1

(8)

MCY = 15% × FCY (9)

SVY = FSF × SV (10)

FSF = i × [(i + 1)n−1]
−1

(11)

SV = 20% × C (12)

where FCY is the fixed cost per year, MCY is the maintenance cost per year, SVY is the
salvage value of the solar distiller per year, FCR is the factor of capital recovery, C is the
capital cost of the solar distiller, i is the interest rate per year (12%), n is the average life
expectancy of the solar still (10 years), FSF is the factor of a sinking fund, and SV is the
salvage value.

The estimated capital cost of the components is shown in Table 3. The estimates
amounted to $82 and $178 for traditional and modified solar stills, respectively. Table 4
includes a detailed distillate water productivity cost analysis (1 L) from conventional and
modified solar stills, which amounted to $0.042 and $0.040, respectively. The current work
suggests that the solar distiller model operates 180 days per year (i.e., the average number
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of sunny days per year in Yekaterinburg, Russia), whereas other studies (other people’s
works) suggested 365 days a year with various weather conditions. Compared with
previous studies, the cost of producing modified solar distillers in this work is comparable
(acceptable) to that recorded in previous studies, as shown in Table 5.

Table 3. The capital cost of solar still components.

Components Traditional Solar Still Modified Solar Still

Wooden board 14 14
Plexiglass cover 15 15

Galvanized stainless steel 11 11
Solar panel - 60

Peltier element - 20
Ultrasonic elements - 15

Cotton mesh - 1
Various materials and

accessories 42 42

Total cost ($) 82 178

Table 4. Distillate water productivity cost analysis ($).

Expression Traditional Solar Still Modified Solar Still

C ($) 82 178
FCR 0.1769 0.1769
FSF 0.0569 0.0569
FCY 14.505 31.48
MCY 2.175 4.72

SV 16.4 35.6
SVY 0.93 2.02
TCY 15.747 34.17

.
mev(day) 2.095 4.7
.

mev(year) 377.1 846
PCD 0.042 0.040

Table 5. Comparison of production costs with previous studies in the same environmental conditions.

Study Type of Single-Slope Solar Still
Enhancement Study Location Daily Yield of Distillate

Water (L/m2·day)
Cost of Productivity

($/L)

[17] Solar still with external solar collector Russia 5.5 0.047

[19] Solar still at different water depths Russia 1.6 at 1 cm 0.033

[22] Solar still integrated with hollow
drum Russia 12.5 0.026

[23] Solar still combined with diffusion
absorption cooling Russia 5.180 0.046

[24] Solar still combined with ultrasonic
humidifiers Russia 4.2 0.0259

[35] Single-slope solar distiller Pakistan 3.2 0.062

[36]
Single-slope solar still combined with
ultrasonic humidifier and integrated

with solar water heater
Egypt 7.4 0.037

[37] Single-slope solar still integrated with
rotating drum Saudi Arabia 11 0.039

[38] Hybrid (PV/T) active single-slope
solar stills India 1.90 0.14
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Table 5. Cont.

Study Type of Single-Slope Solar Still
Enhancement Study Location Daily Yield of Distillate

Water (L/m2·day)
Cost of Productivity

($/L)

[25] Single-slope solar distiller combined
with thermal storage materials (PCM) Iraq 2.35 0.035

[39] Single-basin single-slope with a solar
collector Jordan 4.78 0.115

[40] Single-basin single-slope with a
separate condenser Turkey 6 0.06

Current
study

Solar still combined with ultrasonic
cotton mesh and Peltier cooling

chamber
Russia 4.7 0.040

4. Experimentation and Performance Analysis

This section describes the effect of the two technologies that have been used to improve
the productivity of a solar still. The interface and the evaporation efficiency inside the solar
still were increased by using ultrasonic humidifiers in the basin water inside a mesh tent
(wick). The temperature in the condensing area in the upper part of the solar still was
reduced by installing an aluminum channel cooled by the thermoelectric elements. Thus,
the effect of environmental parameters such as the solar radiation, ambient temperature,
and wind speed along with the effect of the design parameters (e.g., ultrasonic humidifier
cotton tent and thermoelectric cooling chamber) on the performance and the productivity
of solar stills were discussed. The performance of the solar distillers on rainy or cloudy
days was not considered, because the highest productivity was recorded for a sunny day
(typical day), and solar distiller productivity depends on the intensity of solar radiation
and the ambient air temperature [34]. Therefore, the tests were conducted hourly from
8:00 a.m. to 8:00 p.m. (12 tests) on 29 July 2021, a typical sunny day.

Figure 6 shows the weather conditions (intensity of solar radiation, ambient air tem-
perature, and wind speed) for the test day. The solar radiation I(t) and ambient temperature
(Ta) were relatively low in the early hours and then gradually increased until the period
from 12:00 p.m. to 2:00 p.m., reaching approximately 923 W/m2. The solar radiation and
ambient temperature then decreased until sunset. Solar radiation reaching the Earth’s
surface needs time to transfer its heat energy to nearby surfaces, such that the maximum
ambient air temperature was achieved at around 4:00 p.m., reaching approximately 34.3 ◦C.
The wind speed (Va) was uneven, and the highest value was recorded in the afternoon.

Figure 7 shows the hourly temperature differences of the basin liner (Tbp), basin
water (Tbw), plexiglass cover (Tg), mesh cloth (Tcloth), inner surface of the cooling chamber
(Tcooler), and intensity of solar radiation I(t) of the modified and traditional solar stills for
29 July 2021. The temperature of the plexiglass cover and the basin water in the traditional
solar still were close during the morning hours. Over time, the difference between the
temperatures increased, as the heat capacity of water is higher than that of plexiglass. The
highest basin water temperature was found at 2:00 p.m., the time of peak solar radiation
intensity. For the modified solar still, the temperature of the mesh cloth (wick), which
was moistened by a water film (aerosol) providing flowing water from the ultrasonic
humidifiers, was always higher than that of the basin water in the traditional solar still due
to the thinness of the wick’s water layer; that is, this needed a small amount of time to raise
its temperature compared with the depth of basin water (5 cm) in the traditional solar still.
This figure also shows that the temperature of the inner surface of the cooling chamber
was lower than that of the plexiglass in the modified and traditional solar stills because of
the thermoelectric elements, which decreased the temperature of the cooling chamber’s
condensing surface. Therefore, the low temperature of the cooled aluminum plate of the
cooling chamber, which decreased by about 7–11 ◦C compared with the plexiglass cover,
indicates the positive effect of the proposed cooling mechanism, as shown in Figure 7.
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In solar distillers, two conditions must be achieved to increase productivity, namely a
high evaporation rate for the basin water and a high condensation rate for the generated
water vapor, thus increasing the temperature difference between the evaporating and
condensing surfaces (increasing the rate of heat and mass transfer). An increase in the
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rate of heat and mass transfer is a result of an improvement in the convective heat transfer
coefficient (hc) and evaporative heat transfer coefficient (hev) [20].

Figure 8 represents the hourly change in distillate water output from the modified
and traditional solar stills and the intensity of the solar radiation. The distillate water
yield was directly proportional to the intensity of the solar radiation during the day. Thus,
the behavior of the yield curves for both stills was approximately the same as that of the
solar radiation intensity. Therefore, the highest rate of productivity per hour was recorded
at 2:00 p.m. at the highest value of solar radiation, being approximately 775 mL/m2/h
for the modified solar still and 420 mL/m2/h for the conventional solar still. These
results show an improvement of 84% because of the ultrasonic humidifiers continuously
moistening the cotton wick, thus increasing the rate of basin water evaporation. The cooling
chamber also played a role in accelerating the condensation of water vapor on its surface.
Therefore, productivity was enhanced by increasing the temperature difference between
the evaporation and condensation surfaces (increasing the value of the evaporative heat
transfer coefficient by increasing the heat transfer rate via natural convection).
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Figure 9 shows that the cumulative production of distillate water from 8:00 a.m. to
8:00 p.m. for the modified solar still was more than that of the traditional solar still by
approximately 124% (4.7 and 2.095 L/m2·day from the modified and traditional solar stills,
respectively) due to the high condensation rate (effect of ultrasonic humidifiers inside the
mesh tent) and the ability of the cooling chamber to condense more water vapor on its
inner walls.
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Figure 10 shows the hourly change in the thermal efficiency of both solar stills. The
thermal efficiency of the modified solar still was always greater than that of the traditional
solar still, as shown in Equation (1) [19].

Electronics 2022, 11, x FOR PEER REVIEW 14 of 17 
 

 

Figure 10 shows the hourly change in the thermal efficiency of both solar stills. The 
thermal efficiency of the modified solar still was always greater than that of the traditional 
solar still, as shown in Equation (1) [19]. 

 
Figure 10. Hourly thermal efficiency of modified and traditional solar stills for 29 July 2021. 

Additionally, the present experimental work included an examination of the distilled 
water samples, including the value of the total dissolved solids (TDS), which ranged be-
tween 13 and 26 ppm. 

5. Conclusions 
In this paper, an experimental investigation was conducted to show the effect of en-

hancing the evaporation and condensation processes inside a single modified solar still 
by placing ultrasonic humidifiers inside a cotton mesh tent in the basin water and by in-
stalling a cooling chamber with thermoelectric elements on top of the still. The result’s 
highlights can be summarized as follows: 
(1) The production of distilled water in the cooling chamber was enhanced by installing 

thermoelectric Peltier cooling elements on its walls. This set-up increased the con-
densation of water vapor in the channel of the cooling chamber. Productivity was 
also improved by placing ultrasonic humidifiers inside a cotton mesh tent in the ba-
sin water. The productivity of the modified solar still increased by 124% compared 
with the traditional solar still. 

(2) The thermal efficiency of the modified solar still was always higher than that of the 
traditional solar still over 12 h due to the increase in productivity, which itself was a 
result of improving the evaporation and condensation processes. 

(3) The low temperature of the cooled aluminum plate of the cooling chamber, which 
decreased by about 7–11 °C, compared with the plexiglass cover indicates the posi-
tive effect of the proposed cooling mechanism. 

(4) The productivity cost of distillate water (1 L) was approximately 0.040 and 0.042 $/L 
for the modified and traditional solar stills, respectively. The economic analysis 

Figure 10. Hourly thermal efficiency of modified and traditional solar stills for 29 July 2021.



Electronics 2022, 11, 284 14 of 16

Additionally, the present experimental work included an examination of the distilled
water samples, including the value of the total dissolved solids (TDS), which ranged
between 13 and 26 ppm.

5. Conclusions

In this paper, an experimental investigation was conducted to show the effect of
enhancing the evaporation and condensation processes inside a single modified solar still
by placing ultrasonic humidifiers inside a cotton mesh tent in the basin water and by
installing a cooling chamber with thermoelectric elements on top of the still. The result’s
highlights can be summarized as follows:

(1) The production of distilled water in the cooling chamber was enhanced by installing
thermoelectric Peltier cooling elements on its walls. This set-up increased the con-
densation of water vapor in the channel of the cooling chamber. Productivity was
also improved by placing ultrasonic humidifiers inside a cotton mesh tent in the basin
water. The productivity of the modified solar still increased by 124% compared with
the traditional solar still.

(2) The thermal efficiency of the modified solar still was always higher than that of the
traditional solar still over 12 h due to the increase in productivity, which itself was a
result of improving the evaporation and condensation processes.

(3) The low temperature of the cooled aluminum plate of the cooling chamber, which
decreased by about 7–11 ◦C, compared with the plexiglass cover indicates the positive
effect of the proposed cooling mechanism.

(4) The productivity cost of distillate water (1 L) was approximately 0.040 and 0.042 $/L
for the modified and traditional solar stills, respectively. The economic analysis shows
that the proposed modification agreed with previous studies in the environmental
conditions of Yekaterinburg, Russia in terms of the cost of producing distilled water.

(5) Therefore, it can be concluded that the ultrasonic humidifiers and thermoelectric
cooling elements were effective, considering the parameters assessed, and could be
used to enhance the productivity of the solar stills in hot climatic areas where water
is scarce.

(6) The results showed that the temperature of the basin water in the modified solar
still was lower than that of the conventional solar still. Therefore, to overcome this
problem, it is recommended in the future to combine the modified still with an external
solar collector to increase the temperature of the basin water under the cotton tent.
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