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Abstract: We discuss chaos and its quality as measured through the 0-1 test for chaos. When the 0-1
test indicates deteriorating quality of chaos, because of the finite precision representations of real
numbers in digital implementations, then the process may eventually lead to a periodic sequence. A
simple method for improving the quality of a chaotic signal is to mix the signal with another signal by
using the XOR operation. In this paper, such mixing of weak chaotic signals is considered, yielding
new signals with improved quality (with K values from the 0-1 test close to 1). In some sense, such a
mixing of signals could be considered as a two-layer prevention strategy to maintain chaos. That
fact may be important in those applications when the hardware resources are limited. The 0-1 test
is used to show the improved chaotic behavior in the case when a continuous signal (for example,
from the Chua, Rössler or Lorenz system) intermingles with a discrete signal (for example, from the
logistic, Tinkerbell or Henon map). The analysis is presented for chaotic bit sequences. Our approach
can further lead to hardware applications, and possibly, to improvements in the design of chaotic bit
generators. Several illustrative examples are included.

Keywords: mixed-mode chaotic signals; the 0-1 test for chaos; XOR operation; quality of chaotic
bit sequences

1. Introduction

Most well-known chaotic-based bit generators use a single source (input), either a
continuous or a discrete one [1,2]. Due to a possible synchronization [3–6] or prediction
of a bit sequence because of a finite length representation [7–9], such sequences of bits
could be compromised. Those problems are based on the fact that, in the finite precision
arithmetic, the output of a single input discrete generator becomes periodic, and therefore
nonchaotic, even if the length of the output sequence is of order 106. For sequences with
lengths greater than 106, one can use the National Institute of Standards and Technology
(NIST) tests to check certain statistical properties (i.e., randomness) of the sequences of
bits. In this paper, we examine much shorter sequences (as short as 5000 bits), and we are
interested in improving the levels of chaotic behavior of such sequences. The 0-1 test for
chaos is the measurement tool applied to justify the improved quality of chaos.

In the quest to provide strong sequences of chaotic bits, we examine how two signals
of mixed nature (continuous and discrete) behave when XORed. We claim that the quality
of chaos is improved when various combinations of such signals are analyzed, as it is much
more difficult to predict the chaotic binary output of the resulting signal. The parameters
of the two (continuous and discrete) chaotic input systems can easily be modified each
time the XORed process is run. It is shown that in the case of a small number of bits
being represented, the proposed method works much better when compared with the
single-source chaotic bit generators. Our method prevents periodicity, and the obtained
sequence is truly chaotic, as evidenced by the results of the 0-1 test.
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Furthermore, the proposed XORing process with two segments, the discrete (logistic,
Henon, Tinkerbell or other map) and analog (Chua, Rössler, Lorenz or another system), can
be modeled and analyzed using the hardware description language VHDL-AMS, which
is an industry standard modeling language for mixed signal circuits [10,11]. In this paper,
however, we focus on analyzing the dynamical properties and features of the proposed
output signal rather than hardware implementations. The method described in this paper
is novel, and the XOR mixing of signals, while simple in nature, gives very good results,
as shown by our illustrative examples, whose results were confirmed by the 0-1 test for
chaos and the ent tests. A deterioration of the quality of chaotic signals, for example, due to
a failure in the chaotic system’s components or a Trojan insertion into the system, can be
avoided by applying the method presented in this paper.

2. The XOR Process of Mixed-Mode Signals

Figure 1 shows the structure of the proposed process of mixing two signals. The
continuous signal comes from any of the chaotic circuits of Chua, Rössler and Lorenz
(or another), and the discrete signal can be any of the logistic, Henon, Tinkerbell and
Baker maps (or another). As an example, Figure 2 shows the logistic map realization in a
finite precision number representation for the equation x(n + 1) = µx(n)[1− x(n)] with
1 < µ < 4 and 0 < x(0) < 1.

Continuous Chaotic System Threshold Unit

Clock Source

Discrete Chaotic Map Synchronizer

D0 D1 D2 D3 . . . C0 C1 C2 C3 . . .

N0 N1 N2 N3 . . .

0/1 Chaos Test

K=1

OUTPUT

XOR

NO

YES

1

Figure 1. Schematic diagram of the XORing process of two mixed-mode signals.

S X0j X1j . . . . Y0j Y1j Y2j Y3j . . .

x(n+1)

Delay Unit

x(n)

’1’

Bin Adder u

Bin Multiplier

D0j D1j D2j D3j . . .

Y0j

j(1:5000)

1

Figure 2. Digital fixed-point implementation of the logistic map.
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2.1. The XOR Mixing Process

The continuous input in Figure 1 is discretized and synchronized with the internal
clock of the discrete chaotic map. The two binary signals {Di} and {Cj} are mixed through
the XOR operation. As a result, a sequence of bits {Nk} is obtained. The 0-1 test is
then applied to the sequence {Nk} to check its chaotic nature. If the result of the test is
satisfactory (see the analysis below), the {Nk} sequence is used to form a new sequence of
chaotic bits. Otherwise, changes to the parameters of the discrete chaotic map should be
considered to yield a better test result. One can also consider a replacement of the discrete
chaotic system—for example, replacing the logistic map with a Tinkerbell, Henon, Baker or
other discrete map [12].

The choice of XORing for mixing two signals is due to two main reasons. First, the
operation is relatively simple, does not require complicated circuit realization and is widely
used to mix transmitted data with secret keys in typical secure electronic transmission
implementations. Furthermore, as demonstrated in this paper, the XOR operation signifi-
cantly improves the quality of the obtained chaotic sequence–see the sections below. The
mixing process gives a very good result, even with a small amount of bit representation.
An important factor is that the quality analysis of the resulting sequence is done through
a simple but reliable tool, namely, the 0-1 test, which can be implemented in a real time
monitoring system.

2.2. Generation of Chaotic Bits

The chaotic behavior of the logistic map occurs for a certain range of the parameter
µ. If the parameter value is chosen from that range, then for a chosen initial condition
0 < x(0) < 1, we obtain a sequence of real numbers in the interval (0, 1). Each of those real
numbers is represented as a fixed point number. Those numbers are implemented in the dig-
ital structure of the logistic map shown in Figure 2. The [S|X0j|X1j|...| · |Y0j|Y1j|Y2j|Y3j|...] is
a fixed point number representation. The j index is the iteration number of the logistic map
(or another implemented discrete map). The S denotes the sign bit. The sign is the same
in all iterations of the logistic map, because x(n) ∈ (0, 1) for all n = 0, 1, 2, . . . , but it may
change from iteration to iteration when other discrete maps are used. The Xij are the integer
part bits and the Yij are the fractional part bits in the jth iteration. The output chaotic bits
{Di} in Figure 2 are obtained in each iteration by using a bit at a selected position (fixed in
all iterations) in the sequence of consecutive fixed point numbers.

Chaotic bits from the continuous system in Figure 1 result from a threshold unit,
for example, in the form of a simple comparator [2]. A synchronization unit is used to
synchronize those bits with the occurrence of bits {Di}. The discrete map is iterated
to obtain x(n + 1) when a bit from the continuous chaotic system is received. The two
independent chaotic sequences {Di} and {Cj} in Figure 1 are mixed by the XOR operation.
As a result, a new sequence of bits {Nk} is obtained. This sequence is next tested by the
0-1 test for chaos [13–18].

3. Computational Results

We used sequences of 5000 numbers in all our numerical calculations, and 10,000 num-
bers in one visual experiment associated with the last figure in this paper. In addition,
ncut = 10 and Nc = 100 (see the description of the 0-1 test in Appendix A). Such values are
suggested, for example, in [15].

First, we used the above approach to analyze the logistic map only, without a con-
tinuous chaotic system. For µ = 3.50, the following two cases were considered. First, we
examined a sequence of real numbers from the logistic map. The q− p plot is shown in
Figure 3a. Then, in the second case, the sequence of real numbers from the previous case
was transformed to a respective fixed point representation. We selected a particular bit
position and tested a sequence of bits from the consecutive fixed-point numbers; i.e., from
each fixed-point number we selected a single bit of

{
Y0j
}

in Figure 2 (on the 7th position)
and formed a sequence of bits taken from that selected position. Choosing the 7th position
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has no particular significance, and any other position could also be used. However, using
a single bit position may have a significant impact and be an efficient implementation
method when hardware resources are limited, for example, in FPGA devices. In this paper,
the logistic map is used in a fixed point representation. Figure 3b shows the q− p plot
obtained in the second case. Since for µ = 3.50 the logistic map gives a nonchaotic signal,
in both cases, the obtained q− p graphs are of regular shape, as shown in Figure 3a,b. An
interesting result of our analysis is the fact that the nonchaotic nature of the sequence of real
numbers (the first case above) is transformed into a nonchaotic nature of the sequence of
bits {Di} (obtained from a selected single bit position as described in the second case above).
The K values from the 0-1 test in the two cases above are 0.0015 and 0.0025, respectively.
These numbers clearly indicate a periodic nature of the analyzed sequences.

The same two cases were analyzed for the logistic map with µ = 3.99, which resulted
in chaotic behavior. The corresponding q− p plots are shown in Figure 3c,d. The irregular
shapes (Brownian-like motion) in those figures indicate the chaotic nature of the sequences.
The corresponding K values from the 0-1 test are very close to 1 and equal 0.9982 and 0.9980,
respectively.
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Figure 3. The 0-1 test results. Variables q − p for: (a) logistic map only with µ = 3.50 yielded
K = 0.0015, (b) sequence of 7th bits from logistic map with µ = 3.50 yielded K = 0.0025, (c) logistic
map only with µ = 3.99 yielded K = 0.9982 and (d) sequence of 7th bits from logistic map with
µ = 3.99 yielded K = 0.9980.

Figure 4a,b shows the q− p results for the proposed mixing of signals when a continu-
ous chaotic output of the Chua circuit is XORed with the logistic map with a nonchaotic
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sequence (µ = 3.50, Figure 4a), and with a chaotic one (µ = 3.99, Figure 4b). The K values
are 0.9974 and 0.9984, respectively.
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Figure 4. The 0-1 test results. Variables q − p for: (a) a sequence of 7th bits of logistic map with
µ = 3.50 XORed with chaotic bits of the Chua (Matsumoto) circuit yield K = 0.9974; (b) as in part (a)
but for µ = 3.99, resulting in K = 0.9984.

The Chua (or another analog chaotic generator) can be realized as a hardware device
(with elements R, C and diodes together with op-amps) or as a software implementation of
the discretization of a solution of a system of differential equations [19].

Figure 5a shows the results of applying the 0-1 test when a sequence of 7th bits was
used for generated numbers with various lengths of sequence Y (between 8 and 32). Logistic
map with µ = 3.99 was used. It is clear from Figure 5a that the chaotic sequences (the K
values close to 1) are obtained for numbers of 22 or more bits. All numbers of 16 and fewer
bits indicate regular (nonchaotic) sequences formed of the 7th bits. If the sequences of 7th
bits (from logistic map) are XORed with the bits resulting from the continuous chaotic
Chua (Matsumoto) circuit [19], then all the new sequences show chaotic nature with K
values close to 1, as shown in Figure 5b. Moreover, we also fixed the length of numbers
obtained from the logistic map (with µ = 3.99) to 18 bits, and as shown in Figure 5a, we
obtained K = 0.2079 for the sequence of 7th bits. The corresponding q− p plot is shown in
Figure 6a. The q− p plot is fairly regular (as expected for K = 0.2079), and the sequence of
7th bits can, at best, be classified as weakly chaotic. The same sequence, when XORed with a
sequence obtained from continuous Chua (Matsumoto) circuit, gives K = 0.9874, and the
q− p plot is irregular, as shown in Figure 6b.

Figure 7a shows a result similar to that of Figure 6a, but it illustrates another interesting
fact about the 0-1 test. Notice that for a sequence with a 21 bit representation, we obtained
K = 0.6038, which is almost in the middle between 0 and 1. The q− p plot for this case is
shown in Figure 7b. The case can be classified as weak chaos with a fairly regular plot of
q− p.

We also examined a mixing process of chaotic bit sequences with various values of µ
(3.11 ≤ µ ≤ 3.99) and XOR operations with other continuous chaotic systems, such as the
Chua system with Kennedy diode, Rössler and Lorenz chaotic continuous systems. The K
values obtained in all such cases were all greater than 0.99, with differences in the third
and fourth decimal digits.

Figures 8 and 9 show the bit sequences {Di}, {Cj} and {Nk} for the Chua (Matsumoto)
system with a logistic map (µ = 3.99, Figure 8) and the Lorenz system with a logistic map
(µ = 3.99, Figure 9). The {Nk} sequences yielded K = 0.9981 and K = 0.9983 in Figure 8
and Figure 9, respectively. Figure 10 shows the result of using a logistic map for µ = 3.99
and 12-bit precision of {Y0j}. The value of µ = 3.99 should indicate chaotic dynamics.
However, due to the small number of bits used, we obtained a non-chaotic (or regular)
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sequence {Di}. The regular sequence {Di} and chaotic sequence {Cj} (Chua (Matsumoto)
circuit) were XORed to yield a new chaotic sequence {Nk}. The three sequences {Di},
{Cj} and {Nk} in Figure 10 are characterized by values of K of 0.0011, 0.9980 and 0.9950,
respectively. Thus, Figure 10 illustrates the case when one of the two input sources are
regular (non-chaotic sequence {Di}), and yet, thanks to the XOR operation with another
source sequence (with a relatively small number of precision bits), we obtain a strong
chaotic sequence {Nk}. Thus, the analog part of the mixing process (Chua circuit) assures
us that the overall performance is firmly chaotic (K = 0.9950), despite the fact that a regular
sequence (K = 0.0011) is obtained from the discrete part (logistic map) of the process. Each
of the three figures, Figures 8–10, shows the first 100 bits in the respective sequences of
5000 bits in length.
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Figure 5. The 0-1 test results (K values) for various numbers of bits between 8 and 32 (horizontal
axis): (a) sequence of 7th bits from the logistic map only with µ = 3.99, (b) same as in part (a) but the
sequence of 7th bits from the logistic map was XORed with the bits resulting from the continuous
Chua (Matsumoto) circuit.
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Figure 6. The 0-1 test results. Variables q− p without (a) and with (b) the XOR operation with the
chaotic bits from the Chua (Matsumoto) circuit. The logistic map with µ = 3.99 used in (a,b) for a
sequence of 7th bits with numbers of length 18 bits. The K = 0.2079 in (a) and K = 0.9874 in (b).
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Figure 7. The 0-1 test results: (a) K values for various numbers of bits of {Y0j} (see Figure 2) between
8 and 32 (horizontal axis) and the sequence of 7th bits from a logistic map with µ = 3.99; (b) variables
q− p for a sequence of 7th bits when the total length of each number is 21 bits. K = 0.6038 (see
Figure 6a for number of bits = 21).
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Figure 8. Sequences {Di}, {Cj} and {Nk} obtained from the Chua (Matsumoto) system and logistic
map with µ = 3.99. The first 100 bits are shown from each sequence of 5000 bits.
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Figure 9. Sequences {Di}, {Cj} and {Nk} obtained from the Lorenz system and logistic map with
µ = 3.99. The first 100 bits are shown from each sequence of 5000 bits.
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Figure 10. Sequences {Di}, {Cj} and {Nk} obtained from the Chua (Matsumoto) circuit and logistic
map with µ = 3.99 and a relatively small number of precision bits resulting in a nonchaotic sequence
{Di}. The first 100 bits are shown from each sequence of 5000 bits.

4. The XORed Sequences and Their Quality
4.1. The Nine Sequences and Their Visual Quality

Various chaotic bit sequences were created either from a single-source (generator) or
by using the XOR operation. We list these sequences in Table 1 and mark them as the
sequences s1, s2, . . . , s9. As a reference sequence, s1, we selected a sequence obtained from
a commercially available quantum generator QUANTIS manufactured by the Swiss firm ID
Quantique as a source of the high-entropy signals [20]. We used the model USB-4M with
the serial number 163109A410. Sequence s1, as the one with excellent quality parameters,
is a reference sequence to which we relate all other chaotic sequences obtained with the
XOR operation.

Table 1. Sources of bit sequences used in this paper.

Sequence Source

s1 QUANTIS (reference sequence of high entropy) [20,21]
s2 chaotic bits from Lorenz system
s3 chaotic bits from Chua circuit
s4 chaotic bits from logistic eqn. (32 bits {Y0j}, see Figure 2)
s5 chaotic bits from logistic eqn. (10 bits {Y0j}, see Figure 2)

s6 sequence s2 XOR sequence s4
s7 sequence s3 XOR sequence s4
s8 sequence s2 XOR sequence s5
s9 sequence s3 XOR sequence s5

Figure 11 shows examples of the scatter plots of s1–s9, each consisting of 10,000 bits
stacked in rows of 100 bits. A visual and rather subjective observation of the nine sequences
in Figure 11 indicates that the scatter plots of sequences s6 (s2 XOR s4) and s7 (s3 XOR s4)
are very close to that of the ideal sequence s1. The scatter plot obtained from the logistic
equation with 32 bit representation (sequence s4) also seems to be of good quality, but the
same logistic equation yielded a much worse scatter plot if only 10 bits were used (sequence
s5). The scatter plots of sequences s2 and s3 seem to be of low quality when compared
to the scatter plot of s1. Sequences s2 and s3 and their scatter plots depend heavily on
the threshold value of the threshold unit in Figure 1 and on the method of registering of
chaotic bits and the frequency of the internal clock. Those parameters should be adjusted
experimentally for various chaotic systems. The scatter plot of s9 (s3 XOR s5) confirms,
at least visually, that the low quality sequence s5 was improved after the XOR operation.
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The s4 sequence was generated by the system in Figure 2. There is a danger of having a
repeated, identical sequences s4, if the system uses the same initial seed value. Furthermore,
having a finite number of bits available to represent initial condition (seed value), there is a
danger of inserting the same seed value after many repeated cycles of using a single input
logistic map based output. Such a generator will output sequences that have already been
generated before. This and other related issues are discussed in [22].

4.2. The ent Test Results

The above visual observations of the scatter plots in Figure 11 were, to a large extent,
confirmed by the results of the six ent tests [23] (see Appendix B), which are analyzed below.
We used the ent tests because of a relatively short lengths of the analyzed bit sequences
s1–s9. The results shown in Table 2 for sequences s2 (Lorenz binary chaotic sequence) and
s3 (Chua binary chaotic sequence) indicate a relatively low entropy level, much lower than
the desired value of around 8 (see the sequence s1 in Table 1). This was caused by the bias
phenomenon—long intervals of the same bits. Thus, neither s2 nor s3 can be considered
a random sequence with high levels of entropy, and the von Neumann correction [24] is
certainly recommended for those individual sequences. The logistic chaotic bit sequence
s4 performed surprisingly well with a high entropy level (the length of data in

{
Yj
}

is
32 bits; see Figure 1), and much poorer if the length was only 10 bits (sequence s5 in Table 2).
In order to secure a much wider diversity in creating chaotic sequences with excellent
randomness features, we examined how the sequences obtained from our mixed-mode
XORing operations performed in the six tests. The sequences s6 and s7 (obtained with
the XOR operations) had very good test results, certainly comparable with the results
for sequence s1. One may argue that there was no significant improvement in the test
when considering s4 and s6 (or s7) sequences. However, even in this case, by using the
mixed-mode signals, we had the comfort of not having identical sequences that could be
obtained when only a logistic map is used with the same initial seed values. Clearly, if
we used the logistic map only with data of 10 bits (sequence s5), then such a single-source
generator would fail most of the tests, and s5 would be of a low entropy level. XORing
either s2 with s5 or s3 with s5 in our mixed-mode generator created sequences s8 and s9,
respectively. These sequences had better test results than s5 alone: the entropy level was
increased two-fold. The compression levels, AMV values and MC π percentages for s8
and s9 sequences were also improved when compared to the s5 sequence. Our results
of the MC π test were at the desired 1–2% level for s6 and s7. Such results are typically
obtained with much longer sequences [25]. The results of the χ2 test for s6 and s7 are also
much better than those of s2 and s3 (and even of s1). As described in [25], the χ2 values
of weakly random sequences are large, but are small for truly random sequences. This is
clearly shown in Table 2. Those results are also confirmed by the lower compression levels
for s6 and s7, which are in the range of 1–2%, comparable with the compression level for s1.
Furthermore, let us not forget that none of the sequences s6, s7, s8 and s9 underwent the
von Neumann correction. Overall, these sequences have good characteristics of random
sequences, often comparable with those obtained from the professional quantum random
number generators, such as the one used in this paper to generate sequence s1.
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Figure 11. Scatter plots of sequences s1–s9, each with 100× 100 bits.

Table 2. Results of the six ent tests performed on sequences s1–s9.

sn Entropy Comp. % χ2 Value; % AMV MC π % SCC

s1 7.869559 1 213.91; 95 127.4415 1.07 0.005292
s2 3.884870 51 36,200.14; 0.01 62.4149 21.87 0.119915
s3 1.829749 77 162,993.87; 0.01 39.1188 27.32 0.111901
s4 7.850575 1 263.07; 50 131.5946 4.81 0.051919
s5 2.845031 64 44,492.49; 0.01 181.7886 44.22 0.037565

s6 7.851689 1 251.59; 50 129.7392 2.06 0.013551
s7 7.837249 2 270.84; 25 131.6376 2.67 0.043232
s8 6.266494 21 5044.32; 0.01 155.7672 16.14 0.102282
s9 4.512645 43 22,535.47; 0.01 166.5360 32.67 0.073107

5. Conclusions

At the present time, the methods of designing chaotic bit generators lack protection
against problems involving finite lengths of bits in number representations, which may
result in low entropy levels for the generated chaotic signals. Furthermore, the possibility
of reusing of the same seed values (initial conditions) is not properly addressed [7–9]. To
deal with those serious problems, we have proposed a technique of mixing for chaotic bit
sequences that yields an increased level of chaotic quality (increased parameter K in the 0-1
test) and increased entropy levels. The improvement is due to mixing two independent
chaotic inputs (continuous and discrete). The performed computational analysis confirmed
the strong chaotic nature of the resulting output, as evidenced by the K values close to 1
and the irregularity of the q− p shapes in the 0-1 test.

The monitoring system built to check the real-time performance of the mixed-mode
generator (based on our XORing technique) can utilize a graphical result in the form of
a 2D q − p plot, supplemented by the easy to interpret number K from the 0-1 test. A
decrease in K would indicate worsening of the quality of chaotic output and could indicate
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improper work of such a generator, due to a failure of electronic circuits generating the
two input sequences. Another reason for decreasing the values of K could be unauthorized
hardware modifications defined as hardware attacks or hardware Trojans [26]. They
occur in the forms of parameter or circuit diagram changes, and have lately become a hot
research topic [27–30]. Similarly, the interdisciplinary research topic (physics-electronics)
of untrusted devices has become important in recent years, too [31].

Finally, the method presented in this paper can be applied to any chaotic signals,
irregardless on whether or not they come from a system with one or many chaotic attrac-
tors [32,33]. One area of research worth examining is to check how the 0-1 test for chaos
behaves when the number of chaotic attractors increases.
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draft preparation, reviewing, editing and supervision W.M. All authors have read and agreed to the
published version of the manuscript.
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Appendix A. The 0-1 Test (for Chaos)

The 0-1 test was developed by Gottwald and Melbourne [13–15]. Certain problems
with using the 0-1 test for continuous dynamical systems have been reported in [16]. Here
is a concise summary of the test.

The test results have two forms: a single real number 0 ≤ K ≤ 1, and a two-
dimensional graph of variables (pc(n), qc(n)) [13]. When a chaotic sequence is fed into
the test, the number K should be close to 1, whereas for regular sequences the number K
should be close to 0. There are two methods of computation K: regression or correlation.
For a time-series {Nk}, k = 0, . . . , N − 1, with the recommended value N = 5000, the pc
and qc are computed by

pc(n) =
n

∑
j=0

Njcos[(j + 1)c], qc(n)=
n

∑
j=0

Njsin[(j + 1)c] (A1)

with n = 0, . . . , N − 1 and a randomly chosen real number c ∈ (0, π). Then, the quantity
Mc(n), n = 0, 1, . . . , ncut, called the mean square displacement of pc(n) and qc(n), is
computed as follows:

Mc(n) = lim
N→∞

1
N − 1

N−1

∑
j=0

[pc(j + n)− pc(j)]2 + [qc(j + n)− qc(j)]2 (A2)

with the recommended value ncut ≈ (N − 1)/10. If the regression method is applied, then
the Kc value, the asymptotic growth rate of the mean square displacement, is computed
as follows:

Kc = lim
n→∞

log Mc(n)
log n

. (A3)

For the correlation method, we create two vectors:

ξ = (0, 1, 2, . . . , ncut)
∆ = (Mc(0), Mc(1), Mc(2), . . . , Mc(ncut)),

(A4)

and the correlation coefficient Kc is obtained as follows:

Kc = corr(ξ, ∆) ≡ cov(ξ, ∆)√
var(ξ)var(∆)

(A5)
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with the cov and var denoting their covariance and variance, respectively [13]. In both
the regression and correlation methods, the above steps are repeated for Nc values of c
chosen randomly from the interval (0, π). It is recommended that Nc = 100. Computing
the median of the Nc values of Kc yields the number K. All sequences tested in this paper
by the 0-1 test had a length of 5000 real values.

Appendix B. The ent Test (for Random Signals)

The binary sequences used in this paper were tested by the ent software and its
various tests for randomness [25]. A sequence of bits was first transformed by ent into
ASCII characters. Then the sequence of ASCII characters underwent six independent tests,
as follows.

1. Entropy level test. For a sequence of ASCII characters, we obtain randomness if the
entropy level is around the value of 8. The lower the entropy level, the more likely it
is to have a non-random sequence of ASCII characters.

2. Compression test. Random sequences should have their compression levels close
to 0%.

3. χ2 (chi-square) test. Randomness is confirmed in this test if a sequence falls into the
interval of 10% to 90%. As explained in [25], such an interval is achieved primarily
in cases of radioactive isotope decay. Furthermore, the chi-square distribution is
calculated for the stream of bytes in the sequence and expressed as two values (see
Table 2): an absolute number and a percentage which indicates how frequently a truly
random sequence should exceed the calculated value. For example, for sequence s1,
the χ2 distribution is 213.91, and randomly should exceed this value 95.00% of the
time.

4. Arithmetic mean value (AMV) test with the output value close to 127.5 for random
sequences. In this test all input bytes are summed up and divided by the total number
of bytes.

5. The Monte-Carlo π (MC π) test indicating a random sequence if the result is a single
percentage digit. For very long input streams this value will be close to 0, meaning an
accurate approximation of pi.

6. The serial correlation coefficient (SCC) test yielding the number close to 0.0 for random
sequences. This test checks the dependence of each byte on the previous one. If there
is no dependence between bytes, then the SCC value is close to 0.0

More details of the tests can be found in [25].
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