
����������
�������

Citation: Nan, J.; Jian, Z.; Ning, C.;

Dai, W. A Lightweight Learning

Method for Stochastic Configuration

Networks Using Non-Inverse

Solution. Electronics 2022, 11, 262.

https://doi.org/10.3390/

electronics11020262

Academic Editor: Luis Javier

García Villalba

Received: 1 November 2021

Accepted: 22 December 2021

Published: 14 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Lightweight Learning Method for Stochastic Configuration
Networks Using Non-Inverse Solution
Jing Nan 1, Zhonghua Jian 1, Chuanfeng Ning 1 and Wei Dai 1,2,*

1 School of Information and Control Engineering, China University of Mining and Technology,
Xuzhou 221116, China; ts18060091a31@cumt.edu.cn (J.N.); TS20060077A31@cumt.edu.cn (Z.J.);
TS20060090A31@cumt.edu.cn (C.N.)

2 Key Laboratory of Synthetical Automation for Process Industries, Northeastern University,
Shenyang 110819, China

* Correspondence: weidai@cumt.edu.cn

Abstract: Stochastic configuration networks (SCNs) face time-consuming issues when dealing with
complex modeling tasks that usually require a mass of hidden nodes to build an enormous network.
An important reason behind this issue is that SCNs always employ the Moore–Penrose generalized
inverse method with high complexity to update the output weights in each increment. To tackle this
problem, this paper proposes a lightweight SCNs, called L-SCNs. First, to avoid using the Moore–
Penrose generalized inverse method, a positive definite equation is proposed to replace the over-
determined equation, and the consistency of their solution is proved. Then, to reduce the complexity
of calculating the output weight, a low complexity method based on Cholesky decomposition is
proposed. The experimental results based on both the benchmark function approximation and
real-world problems including regression and classification applications show that L-SCNs are
sufficiently lightweight.

Keywords: stochastic configuration networks; Cholesky decomposition; lightweight

1. Introduction

Although the deep neural networks have proven to be a powerful learning tool, most
networks suffer from time-consuming training due to the massive hyperparameters and
complex structures. In many heterogeneous data analytics tasks, flattened networks can
achieve promising performance. In the flattened networks, single-hidden layer feedforward
neural networks (SLFNs) [1,2] have been widely applied because of their universal approx-
imation capability and simple construction. However, gradient-descent-based learning
algorithms are generally adopted for SLFNs training. Therefore, slow convergence and
trap in a local minimum are often-encountered problems [3].

The randomized learning method offers a different learning method for flattened net-
works training. Many randomized flattened networks have been shown to approximate
continuous functions on compact sets, and they also have the property of fast learning [4,5].
Stochastic configuration networks (SCNs) [6] provide a state-of-the-art randomized in-
cremental learning method for SLFNs. In comparison with the traditional randomized
incremental learning models, SCNs have some advantages: (1) SCNs randomly assign the
input weights and biases of the hidden nodes in dynamically adjustable scopes according
to the supervisory mechanism; (2) a more compact network structure. Therefore, SCNs
have been extensively studied and become a hot topic of neural computing.

For large-scale data analytics, an ensemble learning method for quickly disassociating
heterogeneous neurons was proposed is designed for SCNs by using a negative correlation
learning strategy [7]. To improve learning efficiency, SCNs with block increments and
variable increments are developed, which allow multiple hidden nodes to be added at
each iteration [8,9]. Then, point and block increments are integrated into the parallel SCNs

Electronics 2022, 11, 262. https://doi.org/10.3390/electronics11020262 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11020262
https://doi.org/10.3390/electronics11020262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11020262
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11020262?type=check_update&version=1


Electronics 2022, 11, 262 2 of 13

(PSCNs) [10]. To resolving the modeling tasks of uncertain data, robust SCN (RSCNs)
is proposed by using maximum correlation entropy criterion (MCC) and kernel density
estimation [10–12]. In order to further improve the expressiveness, SCNs with deep and
stacked structures are proposed [13–15]. In [16], a two-dimensional SCNs (2DSCNs) is
constructed for image data analytics. To address prediction interval estimation problems, the
corresponding deep, ensemble, robust, and sparse versions of SCNs were developed [17–19].
In addition to the above theoretical studies, SCNs have successful applications in many
fields, such as optical fiber pre-warning system [20], industrial process [21], concrete defect
recognition [22], and so on.

However, the SCNs construction process can be extremely time-consuming when
dealing with complex modeling tasks. The fundamental reason for this is that singu-
lar value decomposition (SVD) is needed to solve the output weights [23]. Concretely,
the number of rows of the hidden layer output matrix is always much larger than the
number of columns [24,25], which makes the hidden layer output matrix to become an
over-determined matrix with no inverse [26]. To obtain the output weights, it is necessary
to employ SVD to solve Moore–Penrose (M–P) generalized inverse in an over-determined
matrix. Theoretically, the complexity of SVD is related with third power of the number of
hidden nodes and the product of number of hidden nodes and input dimension. This makes
the modeling process of SCNs extremely time-consuming when dealing with complex tasks
that require a large network structure (a large number of hidden nodes) to enhance the
expressive power of the model.

This paper proposes a lightweight non-inverse solution method for the output weights
of SCNs (L-SCNs) by introducing normal equation theory [27] and Cholesky decomposi-
tion [28]. The main contributions of the paper are as follows:

1. To avoid adopting M–P generalized inverse with SVD, a positive definite equation for
solving output weights is established based on normal equation theory to replace the
over-determined equation;

2. The consistency of the solutions of the positive definite equation and the over-
determined equation in calculating the output weights is proved;

3. A low complexity method for solving the positive definite equations based on Cholesky
decomposition is proposed.

Experimental results on both the benchmark function approximation and real-world
problems including regression and classification applications show that, compared with
SCNs and IRVFLNs (an incremental variant of RVFLNs), the proposed L-SCNs have a
superior performance in lightweight aspect.

The remaining parts of the paper are organized as follows. In Section 2, the basic
principle of SCNs and some remarks are shown. The algorithm description of L-SCNs and
full proof of related theories are presented in Section 3. In Section 4, the experimental setup
is given and the performance of L-SCNs is fully discussed. Some conclusions are drawn in
Section 5.

2. Brief Review of SCNs

As a kind of flattened network, SCNs model includes an input layer, hidden layer and
output layer. Its hidden layer is constructed incrementally according to the supervisory
mechanism. The specific SCNs network structure is shown in Figure 1.



Electronics 2022, 11, 262 3 of 13

Figure 1. Network structure of SCNs. 1, 2, j, j + 1 represent the node 1, 2, j, j + 1 respectively. d
represents the dimension of the input data set and m represents the dimension of the output data.

The construction process of SCNs is briefly described as follows:
Given an input X = {x1, x2, . . . , xN}, xi ∈ Rd and its corresponding output

f = { f1, f2, . . . , fN}, fi ∈ Rm. Suppose that we have already built a SCNs with L−1
hidden nodes, i.e.,:

fL−1(x) =
L−1

∑
j=1

β jgj

(
wT

j x + bj

)
(1)

where β j =
[
β j,1, β j,2, . . . , β j,m

]T is the output weights vector of the j-th hidden node, wj is
the input weight vector of the j-th hidden node. bj is the threshold of the j-th hidden node.

gj

(
wT

j x + bj

)
is the hidden layer output vector of the j-th node, “T” represents a transpose

of the matrix.
The current residual error of SCNs is calculated by Equation (2):

eL−1 = f − fL−1 (2)

The acceptable tolerance error, denoted as ε. If eL−1 does not reach ε, continue to add
new nodes to the SCNs by the supervision configuration mechanism:

ξL =
m

∑
q=1

ξL,q ≥ 0 (3)

and

ξL,q =

〈
eT

L−1,q · hL

〉2

hT
L · hL

− (1− r− µL)
∥∥∥eT

L−1,q

∥∥∥2
, q = 1, 2, . . . , m (4)

where 0 < r < 1 indicates regularization parameter, {µL} is a nonnegative real number
sequence with µL ≤ 1− r and limL→∞µL = 0, hL =

[
gL
(
wT

Lx1 + bL
)
, . . . , gL

(
wT

LxN + bL
)]T.

The best hidden node parameters are determined by the maximum ξL. Then, the
output weights can be evaluated by Equation (5):

β∗ = H†
L f (5)

where β∗ =
[
β∗1, . . . , β∗L

]
. HL = [h1, . . . , hL] is the current hidden layer output matrix,

hp = gp, p = 1, . . . , L. H†
L is M–P generalized inverse matrix of HL.

The above process will be repeated until the residual error reach expected a tolerance
ε or hidden nodes reaches the maximum.



Electronics 2022, 11, 262 4 of 13

Remark 1. It can be seen that the hidden nodes of SCNs are built incrementally, and all output
weights need to be recalculated after each hidden node is added. Therefore, the complexity of the
modeling process depends on the evaluation method of the output weights.

Remark 2. It can be seen from the above analysis, HL is an over-determined matrix. Therefore,
M–P generalized inverse method is used to solve the over-determined equation HLβ = f . However,
the complexity of M–P generalized inverse method is related with third power of the number of
hidden nodes and the product of number of hidden nodes and input dimension due to the use of
singular value decomposition (SVD). Thus, the M–P method is very time-consuming, especially
when dealing with complex modeling tasks that require a large number of hidden nodes. In addition,
the M–P generalized inverse method can only obtain the approximate solution of the output weights,
which is difficult to make the model optimal.

3. L-SCNs Method

From the above analysis, it can be seen that the M–P generalized inverse method
involving SVD is the main reason for time-consuming nature of SCNs modeling. In order
to solve this problem, a positive definite equation based on normal equation is proposed
to replace the over-determined equation. Then, a low computational complexity method
based on Cholesky decomposition is proposed to solve the positive definite equation and
obtain the output weight, thereby reducing the modeling complexity of SCNs.

3.1. Positive Definite Equation

For the sake of brevity, this paper introduces H to replace HL. According to normal
equation theory, Hβ = f can be denoted by

HT Hβ = HT f (6)

Theorem 1 can guarantee the consistency of the solution of positive definite equation
and over-determined equation, and a strict proof is given.

Theorem 1. The necessary and sufficient condition for β* is the least square solution of Hβ = f :
β* is the solution of

(
HT H

)
β = HT f .

Proof. Sufficiency: Suppose an N-dimensional vector β* such that
(

HT H
)

β = HT f , given
any n-dimensional vector β, β 6= β∗. Let y = β− β∗, y 6= 0, so.

‖ f − Hβ‖2
2

= ‖ f − Hβ∗ − Hy‖2
2

= ( f − Hβ∗ − Hy, f − Hβ∗ − Hy)
= ( f − Hβ∗, f − Hβ∗)− 2(Hy, f − Hβ∗) + (Hy, Hy)
= ‖ f − Hβ∗‖2

2 + ‖Hy‖2
2

≥ ‖ f − Hβ∗‖2
2

(7)

Therefore, β∗ is a solution Hβ = f .
Necessity: Let r = f − Hβ, the i-th component of r can be written as

ri = fi −
n

∑
k=1

hikβk, (i = 1, 2, . . . , m) (8)

Let

J = J(β1, β2, . . . , βn) = ‖r‖2
2 =

m

∑
i=1

(
bi −

n

∑
k=1

hikβk

)2

(9)



Electronics 2022, 11, 262 5 of 13

From the necessary conditions of the extreme value of the multivariate function, it can
be obtained

∂J
∂β j

= −2
m

∑
i=1

(
bi −

n

∑
k=1

hikβk

)
hij = 0, (j = 1, 2, . . . , n) (10)

that is
n

∑
k=1

(
m

∑
i=1

hijhik

)
βk =

m

∑
i=1

hijyi, (j = 1, 2, . . . , n) (11)

Equation (11) can be transformed into matrix form:(
HT H

)
β = HT f (12)

Based on the above analysis, the solutions of the two equations are consistent in theory. �

3.2. SCNs with Cholesky Decomposition

In order to reduce the computational complexity of the model, this paper uses the
Cholesky decomposed method that does not involve the inversion operation to solve
Equation (12). However, using Cholesky decomposition has a premise that the decomposed
matrix must be a positive definite symmetric matrix. In addition, since H is not always
full rank in practical applications, HT H is not necessarily a positive definite matrix. In
this paper, we introduce a moderator factor I/C to make HT H a full rank matrix. I is the
identity matrix of the same type as HT H, and C is determined by cross verification. Thus,
Equation (6) can be denoted by

(
HT H + I/C

)
β = HT f . Let HT H + I/C = A, HT f = b,

we have
Aβ = b (13)

The transpose of A can be evaluated by Equation (14)

AT =
(

HT H + I/C
)T

= HT H + I/C (14)

therefore, A = AT. A is a symmetric matrix.
Given an arbitrary vector v 6= 0, then the quadratic form of A can be expressed as

vT Av = vT(HT H + I/C
)
v

= I/CvTv + (Hv)T Hv
> 0

(15)

Based on the results, it is easy to verify that A is a positive definite symmetric matrix.
The solving process of β* based on Cholesky decomposition is as follows:
First, A is decomposed by

A = SST (16)

Let S =


s11 0 · · · 0
s21 s22 · · · 0
...

...
. . .

...
sL−11 sL−12 · · · sL−1L−1

, A =


a11 a12 · · · a1L−1
a21 a22 · · · a2L−1
...

...
. . .

...
aL−11 aL−12 · · · aL−1L−1

.

Based on Equation (16), the element sij in S that is not 0 can be evaluated by

sij =


√

aii −
i−1
∑

n=1
s2

in i = j(
aij −

i−1
∑

n=1
sinsjn

)
/sjj i > j

(17)



Electronics 2022, 11, 262 6 of 13

where i, j = 1, 2, . . . , L− 1.
Bring Equation (16) into Equation (13), and multiply both sides of the formula by S−1,

then it can get
ST β = K (18)

where SK = b.
Therefore, Equation (18) can be denoted by SK = b. The element calculation method

in K is evaluated by:

ki =


bi/sii i = 1(

bi −
i−1
∑

n=1
snikn

)
/sii i > 1

(19)

To sum up, the output weights β∗i can be calculated by:

β∗i =


ki/sii i = L− 1(

ki −
L−1−i

∑
n=1

si+n,iβi+n

)
/sii i < L− 1

(20)

The pseudo code of L-SCNs is described in Algorithm 1:

Algorithm 1 L-SCNs

Inputs: X = {x1, x2, . . . , xN}, xi ∈ Rd

Outputs: f = { f1, f2, . . . , fN}, fi ∈ Rm

Initialization parameters: Tmax as the maximum times of random configuration, Lmax as the
maximum number of hidden nodes, ε as the error tolerance, γ = {λmin : 4λ : λmax}
1. Initialization: e0 = f , set 0 < r < 1 and Ω, W = [ ], L = 1
2. While L ≤ Lmax or ‖ e0‖ > ε, Do
(1). Hidden Node Parameters Configuration (3–20)
3. For λ ∈ γ, Do
4. For k = 1, 2, . . . , Tmax, Do
5. Randomly assign hidden nodes (wL, bL) from [−λ, λ]d and [−λ, λ], respectively,
6. Calculate hL based on hL = 1/

(
1 + exp

(
−wLxT

k − bL
))

, set µL = (1− r)/(L + 1) and
calculate ξL,q by Equation (3)
7. If min{ξL,1, . . . , ξL,2, . . . , ξL,m} ≥ 0
8. Save wL, bL in W, and ξL in Ω
9. Else
10. go to back to step 4
11. End If
12. End For (step4)
13. If W is not empty
14. Find w∗L, b∗L that maximize ξL in Ω
15. Set HL =

[
h1, h2, . . . , hL

]
16. Break (step 21)
17. Else
18. Randomly take τ ∈ (0, 1− r) and let r = r + τ

19. End If
20. End For (step 3)
(2). Evaluate the Output Weights (21–28)
21. Obtain HL =

[
h1, h2, . . . , hL

]
22. Calculate A by Equation (14)
23. Calculate S by Equation (16)
24. Calculate β∗ by Equations (18)–(20)
25. Calculate eL = f − HLβ∗

26. Update e0 = eL, L = L + 1
27. End While
28. Return β =

[
β∗1, . . . , β∗L

]
, w =

[
w∗1 , . . . , w∗L

]
, b =

[
b∗1 , . . . , b∗L

]



Electronics 2022, 11, 262 7 of 13

3.3. Computational Complexity Analysis

It can be seen from the above description that the difference between the two methods
lies in the calculation of the output weights β∗. SCNs obtains the output weights by the
product of M–P generalized inverse matrix and the output f , while L-SCNs evaluates the
output weights by positive definite equation and Cholesky decomposition, since the M–P
generalized inverse is calculated using the SVD method. Therefore, the computational
complexity of the output weights of SCNs is about O

(
L3 + LMd

)
. While L-SCNs only

involves simple addition, subtraction, multiplication, and division operations when calcu-
lating output weights, so the computational complexity is about O

(
L3/3 + LMd + L2M

)
.

Where M is the number of samples in the training set of classification, and d is the number
of categories (d = 1 in the regression problem). In summary, the method proposed in this
paper has obvious lightweight advantages when dealing with complex tasks that require a
large number of hidden nodes.

4. Experiments

In this section, the performance of L-SCNs is evaluated and compared with original
SCNs and IRVFLNs on some benchmark data sets. The sigmoid function is used as
activation function. All experiments on L-SCNs, SCNs and IRVFLNs are performed in
the MATLAB 2019b environment running on a Windows personal computer with Intel(R)
Xeon(R) E3-1225 v6 3.31GHz CPUs and RAM 32 GB.

4.1. Data Sets Description

Eight data sets have been used in experiments, including five real regression prob-
lems and three real classification problems, which were collected from KEEL and UCI
HAR. (Knowledge Extraction based on Evolutionary Learning (KEEL) [29] and UCI HAR
database [30]). These data sets specifically include winequality-white, California, delta_ail,
Compactiv, Abalone, Iris, Human Activity Recognition (HAR) and wine. In addition, there
is a highly nonlinear benchmark regression function data set [31,32], which is generated by
Equation (21). The detailed information of all the data sets are shown in Table 1.

f (x) = 0.2e−(10x−4)2
+ 0.5e−(80x−40)2

+ 0.3e−(80x−20)2
(21)

where input x ∈ [0, 1] and output f (x) are normalized to [−1, 1].

Table 1. Specifications of data sets.

Data Sets
No. of Sample

Attributes Classes
Training Data Test Data

Regression

nonlinear function 800 200 1 -
Abalone 2000 2177 7 -

Compactiv 6144 2048 21 -
winequality-white 3428 1470 12 -

delta_ail 4990 2139 5 -
california 14,448 6192 8 -

Classification
Iris 120 30 4 3

HAR 7352 2947 561 6
wine 142 36 13 3

4.2. Experimental Setup

In each trial, all samples were randomly divided into training and test data sets. All
the results in the paper are average of 30 trials on the data set. The specifications of the
experimental setup are shown in Table 2, in which ε is the expected error tolerance, Tmax
is the maximum times of random configuration, Lmax is the maximum number of hidden
nodes. γ is the assignment range of hidden layer node parameters. The moderator factor C
was obtained by cross validation.



Electronics 2022, 11, 262 8 of 13

Table 2. Specifications of the experimental setup.

Data Sets Expected Error Algorithms Parameters Lmax,γ,Tmax

IRVFLNs SCNs L-SCNs

nonlinear
function ε = 0.002 100, {1}, 1 100, {150:10:200}, 20 100, {150:10:200}, 20

Abalone ε = 0.16 100, {1}, 1 100, {150:10:200}, 20 100, {150:10:200}, 20
Compactiv ε = 0.15 200, {1}, 1 200, {10:1:20}, 20 200, {10:1:20}, 20

winequality-
white ε = 0.05 100, {1}, 1 100, {10:1:20}, 10 100, {10:1:20}, 10

delta_ail ε = 0.21 100, {0.5}, 1 50, {0.5:0.1:10}, 10 50, {0.5:0.1:10}, 10
california ε = 0.11 50, {1}, 1 50, {1:1:10}, 10 50, {1:1:10}, 10

Iris ε = 0.05 200, {10}, 1 100, {10:0.5:20}, 20 100, {10:0.5:20}, 20
HAR ε = 0.05 500, {50}, 1 500, {1:1:10}, 20 500, {1:1:10}, 20
wine ε = 0.05 200, {0.5}, 1 100, {0.5:0.5:10}, 20 100, {0.5:0.5:10}, 20

4.3. Performance Comparison

First of all, the convergence and function fitting performance of IRVFLNs, SCNs, and
L-SCNs are evaluated using a highly nonlinear benchmark regression function dataset. The
results shown in Table 3, includes training time, training error, testing error and the number
of hidden nodes, and the best experimental results are highlighted. It can be seen from
Table 3 that the modeling times of L-SCNs are 18.8% and 66.69% lower than that of SCNs
and IRVFLNs, respectively. The training error and testing error of L-SCNs have obvious
advantages, especially compared with IRVFLNs. In addition, compared with IRVFLNs, SCNs
and L-SCNs save 36.8% and 43.83% of hidden nodes, respectively. This is mainly because
the hidden node parameter selection function of the supervision mechanism improves the
compactness of the model while ensuring the high performance of the model. Since SCNs can
only obtain approximate solutions when using M–P generalized inverse to calculate output
weights, while L-SCNs output weight evaluation method can get real solutions. Therefore,
L-SCNs is superior to SCNs in compactness and model performance.

Table 3. Performance comparison of highly nonlinear function.

Models L t (s) Training Error Testing Error

IRVFLNs 100 0.3657 0.0720 0.0714
SCNs 63.20 0.1500 0.0016 0.0016

L-SCNs 56.17 0.1218 0.0015 0.0014

In addition, in order to analyze the convergence and fitting ability of IRVFLNs, SCNs
and L-SCNs, this paper draws a convergence curve and a fitting curve, as shown in Figure 2.
It can be seen from the convergence curve that IRVFLNs used up 100 preset hidden nodes,
but still did not meet the expected error tolerance. In particular, it is difficult to improve
the convergence of IRVFLNs by adding more nodes after the number of hidden nodes
reaches 51. The convergence of SCNs and L-SCNs meets the expected error tolerance, and
L-SCNs converges faster. It only uses 19 nodes to reduce the residual to 0.02, and only used
56.17 nodes to meet the expectations. Compared with SCNs, L-SCNs save 11.12% of nodes.
Therefore, it shows that L-SCNs modeling is faster, and the structure of the built model is
more compact. The fitting curve shows that among IRVFLNs, SCNs and L-SCNs, the data
fitting ability of the model built by IRVFLNs is the worst, while the models built by SCN
and L-SCN have similar fitting capabilities.



Electronics 2022, 11, 262 9 of 13

Figure 2. Training results of three algorithms. (a) Convergence Curve; (b) Fitting Curve.

IRVFLNs, SCNs and L-SCNs. The experimental results are presented Tables 4 and 5,
respectively. Tables 4 and 5 show the experimental results of the regression problem and
the classification problem, respectively. For each model, the best experimental results are
highlighted in Tables 4 and 5. Table 4 gives the number of hidden nodes, the training time,
the training error and the testing error. It can be seen from Table 4 that for Abalone data set,
the training error and test error of IRVFLNs are the worst, and 100 hidden nodes are used
up, which is also the main reason for the longest modeling time. L-SCNs and SCNs achieve
similar training error and testing error, but L-SCNs saves 73.18% and 25.77% of the number
of nodes and modeling time, respectively. On the Compactiv data set, IRVFLNs still used up
all hidden nodes, and achieved the worst training error and testing error. The experimental
results of L-SCNs and SCNs are also consistent with the results on the Abalone data set. By
comparing the experimental results of winequality-white, california and delta_ail, it can
be seen that: (1) When consuming the same hidden layer node, IRVFLNs modeling is the
fastest, but the model performance is the worst; (2) The number of hidden nodes required
for L-SCNs modeling is far less than that of the other two algorithms; (3) When the number
of hidden layer nodes is small, L-SCNs has no obvious advantage in lightness. In summary,
L-SCNs are superior to IRVFLN and SCNs in terms of model compactness and modeling
time when a large number of hidden layer nodes are needed.

Table 4. Performance comparison for regression data sets.

Data Sets Models L t (s) Training Error Testing Error

Abalone
IRVFLNs 100 0.2711 0.1895 0.1977

SCNs 32.33 0.1874 0.1599 0.1641
L-SCNs 8.67 0.1391 0.1590 0.1601

Compactiv
IRVFLNs 200 0.6385 0.1770 0.1862

SCNs 27 0.2216 0.1465 0.1541
L-SCNs 16.67 0.1856 0.1418 0.1501

winequality-
white

IRVFLNs 100 0.5604 0.2325 0.2472
SCNs 100 0.94 0.2276 0.2536

L-SCNs 100 0.89 0.2264 0.2487

california
IRVFLNs 23.57 0.12 0.1088 0.1101

SCNs 16.33 0.14 0.1178 0.1171
L-SCNs 10.33 0.14 0.1144 0.1155

delta_ail
IRVFLNs 27.67 0.09 0.2098 0.2163

SCNs 11.33 0.10 0.2095 0.2113
L-SCNs 9.33 0.12 0.2029 0.2107



Electronics 2022, 11, 262 10 of 13

Table 5. Performance comparison for classification data sets.

Data Sets Models L t (s) Training Error Testing Error

Iris
IRVFLNs 107.2 0.1947 0 0.1667

SCNs 74.33 0.1424 0 0.0667
L-SCNs 71.67 0.1237 0 0.0556

HAR
IRVFLNs 1000 59.36 0.0350 0.0763

SCNs 264.5 26.72 0.0322 0.0747
L-SCNs 251.5 16.02 0.0322 0.0658

wine
IRVFLNs 117.8 0.3871 0 0.1611

SCNs 97.33 0.2615 0 0.0695
L-SCNs 90.00 0.1722 0 0.0667

Table 5 shows the numbers of hidden node, training times, training errors and testing
errors of IRVFLNs, SCNs and L-SCNs on the three real classification data sets. As can be
seen from Table 5, for the Iris data set, the numbers of hidden nodes required by SCNs
and L-SCNs is much less than 107.2 of IRVFLNs. Therefore, SCNS and L-SCNs have lower
modeling times. The main reason behind this result is that the node parameter selection
function of the supervisory mechanism makes the node parameters quality better, so the
model can reach the expected value faster and perform better. Compared with SCNs, L-
SCNs saves 3.58% and 5.35% in the number of hidden nodes and training time, respectively.
At the same time, L-SCNs achieves the best test error. In particular, the training errors
of IRVFLNs, SCNs and L-SCNs on the Iris data set is the same. For the HAR data set,
compared to the other two algorithms, L-SCNs saves 74.85% and 4.91% in the number of
hidden nodes, while saving 73.01% and 40.04% in training time, respectively. In addition,
the number of hidden nodes of IRVFLNs reached the maximum value of 1000, but the
model performance was the worst. For the wine data set, L-SCNs and SCNs still have
obvious advantages in the number of hidden nodes, training time and test error. Compared
with the other two algorithms, L-SCNs constructs the best performance model with the
least 90 hidden nodes and the minimum 0.1722 s training time. In summary, L-SCNs
have obvious merits in training efficiency and model compactness for classification tasks.
Therefore, L-SCNs is a lightweight algorithm. Through the analysis of Tables 1 and 5, it can
be seen that HAR and wine data sets have higher sample numbers and features than Iris
data set, especially HAR data set. The experimental results also show that L-SCNs have
more obvious in lightweight on HAR and wine data sets. Therefore, L-SCNs are suitable
for dealing with large data problems.

In order to further verify the advantages of L-SCNs in terms of lightweight. In this
paper, while maintaining the same number of hidden nodes, the change process of modeling
time of SCNs and L-SCNs with the increase of the number of hidden nodes is drawn when
the experiment is performed on the HAR data set, as shown in Figure 3. It can be seen
that before the hidden nodes reach 100, the modeling time of SCNs and L-SCNs is the
same. However, after 100 hidden nodes, with the increase of hidden nodes, the advantage
of L-SCNs becomes more and more obvious in term of lightweight. When 500 nodes are
reached, the gap between SCNs and L-SCNs widened to 36.66%. It also shows that when
dealing with modeling tasks that require a large number of hidden nodes, the L-SCNs
proposed in this paper can effectively reduce the modeling complexity and improve the
lightweight of modeling.



Electronics 2022, 11, 262 11 of 13

Figure 3. Modeling time of SCNs and L-SCNs.

In addition, we have compared the Cholesky decomposition approach with other meth-
ods, including QR decomposition, LDL decomposition and SVD decomposition; the detailed
results of all these approaches are shown in Table 6. It can be found from Table 6 that Cholesky
decomposition is slightly better than QR decomposition and LDL decomposition. However, as
the number of nodes increases, compared with SVD decomposition, Cholesky decomposition
has more obvious advantages in terms of lightness. The main reason for this result is that
the computational complexity of QR and LDL decomposition is similar to that of Cholesky
decomposition. The computational complexity of SVD far exceeds these three methods. This
clearly demonstrates the lightness of Cholesky decomposition.

Table 6. Comparison of different decomposition methods.

Methods 100 200 300 400 500

SVD 6.33 s 16.61 s 35.47 s 64.79 s 107.78 s
LDL 5.78 s 14.00 s 30.96 s 49.54 s 76.22 s
QR 5.59 s 13.69 s 26.17 s 44.03 s 69.12 s

Cholesky 5.53 s 13.48 s 25.83 s 43.67 s 68.27 s

5. Conclusions

This work is motivated by the time-consuming calculation of output weights in each
addition of hidden nodes. Lightweight stochastic configuration networks (L-SCNs) are
developed by employing a non-inverse calculation method for problem solving. In L-SCNs,
a positive definite equation is firstly proposed based on normal equation theory to take
the place of the over-determined equation to avoid the use of M–P generalized inverse.
Secondly, the Cholesky decomposition method with low computational complexity is used
to calculate the positive definite equation and obtain the output weight. The proposed
L-SCNs have been evaluated on several benchmark data sets, and the experimental results
show that L-SCNs not only solve the high complexity problem of calculating output weights,
but also improve the compactness of the model structure. In addition, the comparison with
IRVFLNs and SCNs shows that L-SCNs have obvious advantages in lightweight. Therefore,
L-SCNs are particularly suitable for complex modeling tasks that usually require a mass of
hidden nodes to build an enormous network.

Author Contributions: Conceptualization, formal analysis, methodology, and writing-original draft,
J.N.; data curation, Z.J. and C.N. writing-review and editing, W.D. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 61973306, in part by the Nature Science Foundation of Jiangsu Province under Grant
BK20200086, in part by the Open Project Foundation of State Key Laboratory of Synthetical Automa-
tion for Process Industries under Grant 2020-KF-21-10.



Electronics 2022, 11, 262 12 of 13

Data Availability Statement: The data sets used in this paper are from UCI data sets (http://
archive.ics.uci.edu/ml/index.php (accessed on 21 December 2021)), KEEL (https://sci2s.ugr.es/
keel/category.php?cat=clas (accessed on 21 December 2021)) data sets, etc.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Han, F.; Jiang, I.; Ling, Q.H.; Su, B.H. A survey on metaheuristic optimization for random single-hidden layer feedforward neural

network. Neurocomputing 2019, 335, 261–273. [CrossRef]
2. Tamura, S.; Tateishi, M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Trans. Neural

Netw. 1997, 8, 251–255. [CrossRef] [PubMed]
3. Wu, X.; Rozycki, P.; Wilamowski, B.M. A Hybrid Constructive Algorithm for Single-Layer Feedforward Networks Learning. IEEE

Trans. Neural Netw. Learn. Syst. 2017, 26, 1659–1668. [CrossRef] [PubMed]
4. Igelnik, B.; Pao, Y.H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE

Trans. Neural Netw. 1995, 6, 1320–1329. [CrossRef] [PubMed]
5. Pao, Y.H.; Takefuji, Y. Functional-link net computing: Theory, system architecture, and functionalities. Computer 1992, 25, 76–79.

[CrossRef]
6. Wang, D.H.; Li, M. Stochastic Configuration Networks: Fundamentals and Algorithms. IEEE Trans. Cybern. 2017, 47, 3466–3479.

[CrossRef]
7. Wang, D.H.; Cui, C.H. Stochastic Configuration Networks Ensemble for Large-Scale Data Analytics. Inf. Sci. 2017, 417, 55–71.

[CrossRef]
8. Dai, W.; Li, D.P.; Zhou, P.; Chai, T.Y. Stochastic configuration networks with block increments for data modeling in process

industries. Inf. Sci. 2019, 484, 367–386. [CrossRef]
9. Tian, Q.; Yuan, S.J.; Qu, H.Q. Intrusion signal classification using stochastic configuration network with variable increments of

hidden nodes. Opt. Eng. 2019, 58, 026105.1–026105.8. [CrossRef]
10. Dai, W.; Zhou, X.Y.; Li, D.P.; Zhu, S.; Wang, X.S. Hybrid Parallel Stochastic Configuration Networks for Industrial Data Analytics; IEEE

Transactions on Industrial Informatics: Piscataway, NJ, USA, 2021. [CrossRef]
11. Wang, D.H.; Li, M. Robust Stochastic Configuration Networks with Kernel Density Estimation for Uncertain Data Regression. Inf.

Sci. 2017, 412, 210–222. [CrossRef]
12. Li, M.; Huang, C.Q.; Wang, D.H. Robust stochastic configuration networks with maximum correntropy criterion for uncertain

data regression. Inf. Sci. 2018, 473, 73–86. [CrossRef]
13. Wang, D.H.; Li, M. Deep Stochastic Configuration Networks: Universal Approximation and Learning Representation. In

Proceedings of the IEEE International Joint Conference on Neural Networks, Anchorage, AK, USA, 14–19 May 2017.
14. Pratama, M.; Wang, D.H. Deep Stacked Stochastic Configuration Networks for Non-Stationary Data Streams. Inf. Sci. 2018, 495,

150–174. [CrossRef]
15. Lu, J.; Ding, J.L. Construction of prediction intervals for carbon residual of crude oil based on deep stochastic configuration

networks. Inf. Sci. 2019, 486, 119–132. [CrossRef]
16. Li, M.; Wang, D.H. 2-D Stochastic Configuration Networks for Image Data Analytics. IEEE Trans. Cybern. 2021, 51, 359–372.

[CrossRef]
17. Lu, J.; Ding, J.L.; Dai, X.W.; Chai, T.Y. Ensemble Stochastic Configuration Networks for Estimating Prediction Intervals: A

Simultaneous Robust Training Algorithm and Its Application. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 5426–5440.
[CrossRef] [PubMed]

18. Lu, J.; Ding, J.L.; Liu, C.X.; Chai, T.Y. Hierarchical-Bayesianbased sparse stochastic configuration networks for construction of
prediction intervals. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–2. [CrossRef]

19. Lu, J.; Ding, J.L. Mixed-distribution-based robust stochastic configuration networks for prediction interval construction. IEEE
Trans. Ind. Inform. 2020, 16, 5099–5109. [CrossRef]

20. Sheng, Z.Y.; Zeng, Z.Q.; Qu, H.Q.; Zhang, Y. Optical fiber intrusion signal recognition method based on TSVD-SCN. Opt. Fiber
Technol. 2019, 48, 270–277. [CrossRef]

21. Xie, J.; Zhou, P. Robust Stochastic Configuration Network Multi-Output Modeling of Molten Iron Quality in Blast Furnace
Ironmaking. Neurocomputing 2020, 387, 139–149. [CrossRef]

22. Zhao, J.H.; Hu, T.Y.; Zheng, R.F.; Ba, P.H. Defect Recognition in Concrete Ultrasonic Detection Based on Wavelet Packet Transform
and Stochastic Configuration Networks. IEEE Access 2021, 99, 9284–9295. [CrossRef]

23. Salmerón, M.; Ortega, J.; Puntonet, C.G.; Prieto, A. Improved RAN sequential prediction using orthogonal techniques. Neurocom-
puting 2001, 41, 153–172. [CrossRef]

24. Qu, H.Q.; Feng, T.L.; Zhang, Y. Ensemble Learning with Stochastic Configuration Network for Noisy Optical Fiber Vibration
Signal Recognition. Sensors 2019, 19, 3293. [CrossRef]

25. Liu, J.; Hao, R.; Zhang, T.; Wang, X.Z. Vibration fault diagnosis based on stochastic configuration neural networks. Neurocomputing
2021, 434, 98–125. [CrossRef]

26. Krein, S.G. Overdetermined Equations; Birkhäuser: Basel, Switzerland, 1982.

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/category.php?cat=clas
https://sci2s.ugr.es/keel/category.php?cat=clas
http://doi.org/10.1016/j.neucom.2018.07.080
http://doi.org/10.1109/72.557662
http://www.ncbi.nlm.nih.gov/pubmed/18255629
http://doi.org/10.1109/TNNLS.2014.2350957
http://www.ncbi.nlm.nih.gov/pubmed/25216485
http://doi.org/10.1109/72.471375
http://www.ncbi.nlm.nih.gov/pubmed/18263425
http://doi.org/10.1109/2.144401
http://doi.org/10.1109/TCYB.2017.2734043
http://doi.org/10.1016/j.ins.2017.07.003
http://doi.org/10.1016/j.ins.2019.01.062
http://doi.org/10.1117/1.OE.58.2.026105
http://doi.org/10.1109/TII.2021.3096840
http://doi.org/10.1016/j.ins.2017.05.047
http://doi.org/10.1016/j.ins.2018.09.026
http://doi.org/10.1016/j.ins.2019.04.055
http://doi.org/10.1016/j.ins.2019.02.042
http://doi.org/10.1109/TCYB.2019.2925883
http://doi.org/10.1109/TNNLS.2020.2967816
http://www.ncbi.nlm.nih.gov/pubmed/32071006
http://doi.org/10.1109/TNNLS.2021.3053306
http://doi.org/10.1109/TII.2019.2954351
http://doi.org/10.1016/j.yofte.2019.01.023
http://doi.org/10.1016/j.neucom.2020.01.030
http://doi.org/10.1109/ACCESS.2021.3049448
http://doi.org/10.1016/S0925-2312(00)00363-5
http://doi.org/10.3390/s19153293
http://doi.org/10.1016/j.neucom.2020.12.080


Electronics 2022, 11, 262 13 of 13

27. Loboda, A.V. Determination of a Homogeneous Strictly Pseudoconvex Surface from the Coefficients of Its Normal Equation.
Math. Notes 2003, 73, 419–423. [CrossRef]

28. Roverato, A. Cholesky decomposition of a hyper inverse Wishart matrix. Biometrika 2000, 87, 99–112. [CrossRef]
29. Anguita, S.; Ghio, A.; Oneto, L.; Parra, X. Energy efficient smartphone-based activity recognition using fixed-point arithmetic. J.

Univers. Comput. 2013, 19, 1295–1314.
30. Fdez, J.A.; Fernandez, A.; Luengo, J.; Derrac, J.; Garacia, S.; Herrera, F. KEEL Data-Mining Software Tool: Data Set Repository,

Integration of Algorithms and Experimental Analysis Framework. J. Mult.-Valued Log. Soft Comput. 2011, 17, 255–287.
31. Tyukin, I.Y.; Prokhorov, D.V. Feasibility of random basis function approximators for modeling and control. In Proceedings of the

IEEE Control Applications, (CCA) & Intelligent Control, St. Petersburg, Russia, 8–10 July 2009; pp. 1391–1396.
32. Li, M.; Wang, D.H. Insights into randomized algorithms for neural networks: Practical issues and common pitfalls. Inf. Sci. 2017,

382, 170–178. [CrossRef]

http://doi.org/10.1023/A:1023278314518
http://doi.org/10.1093/biomet/87.1.99
http://doi.org/10.1016/j.ins.2016.12.007

	Introduction 
	Brief Review of SCNs 
	L-SCNs Method 
	Positive Definite Equation 
	SCNs with Cholesky Decomposition 
	Computational Complexity Analysis 

	Experiments 
	Data Sets Description 
	Experimental Setup 
	Performance Comparison 

	Conclusions 
	References

