
����������
�������

Citation: Zhang, X.; Han, Y.;

Królczyk, G.; Rydel, M.; Stanislawski,

R.; Li, Z. Rescheduling of Distributed

Manufacturing System with Machine

Breakdowns. Electronics 2022, 11, 249.

https://doi.org/10.3390/

electronics11020249

Academic Editors: Darius Andriukaitis

and Peter Brida

Received: 5 December 2021

Accepted: 10 January 2022

Published: 13 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Rescheduling of Distributed Manufacturing System with
Machine Breakdowns
Xiaohui Zhang 1 , Yuyan Han 2, Grzegorz Królczyk 3 , Marek Rydel 4 , Rafal Stanislawski 4

and Zhixiong Li 3,*

1 School of Electrical and Control Engineering, Xuzhou University of Technology, Xuzhou 221018, China;
xh_zhang@xzit.edu.cn

2 School of Computer Science, Liaocheng University, Liaocheng 252000, China; hanyuyan@lcu-cs.com
3 Department of Manufacturing Engineering and Automation Products, Opole University of Technology,

45-758 Opole, Poland; g.krolczyk@po.opole.pl
4 Department of Electrical, Control and Computer Engineering, Opole University of Technology,

45-758 Opole, Poland; m.rydel@po.opole.pl (M.R.); r.stanislawski@po.edu.pl (R.S.)
* Correspondence: z.li@po.edu.pl

Abstract: This study attempts to explore the dynamic scheduling problem from the perspective of
operational research optimization. The goal is to propose a rescheduling framework for solving
distributed manufacturing systems that consider random machine breakdowns as the production
disruption. We establish a mathematical model that can better describe the scheduling of the dis-
tributed blocking flowshop. To realize the dynamic scheduling, we adopt an “event-driven” policy
and propose a two-stage “predictive-reactive” method consisting of two steps: initial solution pre-
generation and rescheduling. In the first stage, a global initial schedule is generated and considers
only the deterministic problem, i.e., optimizing the maximum completion time of static distributed
blocking flowshop scheduling problems. In the second stage, that is, after the breakdown occurs, the
rescheduling mechanism is triggered to seek a new schedule so that both maximum completion time
and the stability measure of the system can be optimized. At the breakdown node, the operations of
each job are classified and a hybrid rescheduling strategy consisting of “right-shift repair + local re-
order” is performed. For local reorder, we designed a discrete memetic algorithm, which embeds the
differential evolution concept in its search framework. To test the effectiveness of DMA, comparisons
with mainstream algorithms are conducted on instances with different scales. The statistical results
show that the ARPDs obtained from DMA are improved by 88%.

Keywords: distributed manufacturing; rescheduling; memetic algorithm

1. Introduction

With the advancement of economic globalization and the intensification of mergers
between enterprises, the emergence of large-scale or concurrent production makes the pat-
tern of distributed manufacturing necessary [1,2]. Distributed manufacturing decentralizes
tasks into factories or workshops from different geographical locations. This pattern can
help the manufacturers raise productivity, reduce cost, control risks, and adjust marketing
policies more flexibly [3]. As an important part of distributed manufacturing, scheduling
directly affects the efficiency and competitiveness of enterprises. Generally speaking, to
solve such problems, a problem-specific model with production constraints should be first
established to describe the scheduling problem considered. Then, optimization methods
(e.g., mathematical programming, intelligent optimization, etc.) of operational research
are developed to search for an optimal solution. For systems with large-scale and high
complexity, mathematical programming such as integer programming, branch and bound,
dynamic programming, or cut plane can rarely find an optimal solution (ranking) in the

Electronics 2022, 11, 249. https://doi.org/10.3390/electronics11020249 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11020249
https://doi.org/10.3390/electronics11020249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4551-0659
https://orcid.org/0000-0002-2967-1719
https://orcid.org/0000-0002-7753-0558
https://orcid.org/0000-0002-6014-3682
https://doi.org/10.3390/electronics11020249
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11020249?type=check_update&version=2

Electronics 2022, 11, 249 2 of 25

target space due to enumeration concept, but the efficiency decreases with the increment of
the number of jobs/tasks to be scheduled.

At present, most studies use intelligent optimization algorithms to approximate the
optimal solution for scheduling problems. The intelligent optimization algorithm, also
called the evolutionary optimization algorithm, or metaheuristic, reveals the design princi-
ple of optimization algorithm through the understanding of relevant behavior, function,
rules, and action mechanism in biological, physical, chemical, social, artistic, and other
systems or fields. It refines the corresponding feature model under the guidance of the
characteristics of specific problems and designs an intelligent iterative search process. That
is, these kinds of algorithms do not rely on the characteristics of problems, but obtain
near-optimal solutions through continuous iterations of global and local search. When an
intelligent algorithm is applied for scheduling problems, it can express the schedule as a
permutation model in the form of coding, and further compress the solution space into a
very flat space, so that a large number of different permutations (schedules) correspond to
the same target. Hence, the permutation model-based algorithm can search more different
schedules in the target space range in tens of milliseconds to tens of seconds, so as to obtain
a solution better than the traditional mathematical programming method.

The object of this study is related to the distributed blocking flowshop scheduling
problem (DBFSP) [4]. Figure 1 illustrates DBFSP, which considers f parallel factories that
contain the same machine configurations and technological processes [5]. The jobs can
be assigned to any factories and each job follows the same blocking manufacturing pro-
cedure [6]. Although the machines configured in each distributed factory are the same,
the processing time of each operation of each job is assumed to be different, thereby
the processing tasks assigned to each distributed factory and their completion time are
also different. The idea of solving DBFSP is to reasonably allocate the jobs to the fac-
tory through optimization algorithms, and then sequence the jobs in each distributed
factory, to optimize the manufacturing objectives of the whole work order. Currently,
researchers have made great efforts on solving DBFSP in a static environment, the existing
researches mainly focused on the construction of mathematical models and the design
of optimization algorithms. Zhang et al. [7] have established two different mathematical
models using forward and reverse recursion approaches. A hybrid discrete differential
evolution (DDE) algorithm was proposed to minimize the maximum completion time
(makespan). Zhang et al. [8] constructed the mixed-integer model for DBFSP and devel-
oped a discrete fruit fly algorithm (DFOA) with a speed-up mechanism to minimize the
global makespan. Additionally, Shao et al. [9] proposed a hybrid enhanced discrete fruit
fly optimization algorithm (HEDFOA) to optimize the makespan. A new assignment rule
and an insertion-based improvement procedure were developed to initialize the common
central location of different fruit fly swarms. Li et al. [10] investigated a special case of
DBFSP, in which a transport robot was embedded in each factory. The loading and un-
loading times are considered and different for all of the jobs conducted by the robot. An
improved iterated greedy (IIG) algorithm was proposed to improve productivity. Moreover,
Zhao et al. [11] proposed an ensemble discrete differential evolution (EDE) algorithm, in
which three initialization heuristics that consider the front delay, blocking time, and idle
time were designed. The mutation, crossover, and selection operators are redesigned to
assist the EDE algorithm to execute in the discrete domain.

The above researches on DBFSP have formed a certain system, but they assumed
that no explicit disruptions occur during the manufacturing process. In fact, a series of
uncertainties often happened during the manufacturing process [12]. These uncertainties,
which are sudden and uncontrollable, can change the state of the system strongly and affect
the scheduling activities continuously [13]. As a result, the original static schedules are
no longer suitable for real-time scheduling. To eliminate the impact of sudden uncertain-
ties, rescheduling operations are generally performed in response to disruptions [14,15].
Rescheduling refers to the procedure of modifying the existing schedule to obtain a new
feasible one after uncertain events occur [16]. One of the most important rescheduling

Electronics 2022, 11, 249 3 of 25

strategies for traditional flowshop is “predictive-reactive” scheduling [17]. “predictive-
reactive” scheduling defines a two-stage “event-driven” scheduling operation: the first
stage generates an initial schedule that provides a baseline reference for other manufac-
tural activities such as procurement and distribution of raw materials [18]. Influenced
by the disruptions, the second stage explicitly quantifies the disruptions, constructs the
management model with the disruption information gathered by the cyber-physical smart
manufacturing technology [19–21], adjusts the initial schedule, and makes an effective
trade-off between the initial optimization objective and the disturbance objective [22].
Since little literature is on the rescheduling of DBFSP, we review only the rescheduling
strategies and algorithms developed for traditional and single flowshop. To realize the
rescheduling, a suitable strategy should be determined in advance according to the scenario.
Framinan et al. [23] discussed the problem of high system tension caused by continuous
rescheduling of multi-stage flow production. A rescheduling strategy was described by
estimating the availability of the machines after disruptions and a reordering algorithm
based on the critical path was proposed. Katragjini et al. [24] analyzed eight types of
uncertainties and designed rescheduling strategies through the classification of job status,
which considers the completed, in processed and unprocessed operations. Iris et al. [25]
designed a recoverable strategy taking the uncertainty of crane arrival to the ship and the
fluctuation of loading and unloading speeds into account. The rescheduling strategy used
a proactive baseline with reactive costs as the objective. Ma et al. [26] took the overmatch
time (difference between real manufacturing time and the estimated time of the initial
schedule) as one of the objectives in the rescheduling model to handle production emergen-
cies in parallel flowshops. Li et al. [27] discussed both machine breakdown and processing
change interruptions for a hybrid flowshop. The authors have proposed a hybrid fruit fly
optimization algorithm (HFOA) with processing-delay, cast-break erasing, and right-shift
strategy to minimize different rescheduling objectives in a steelmaking-foundry system.
Li et al. [28] also considered five types of interruption events in the flowshop, namely ma-
chine breakdown, new jobs arrival, jobs cancellation, job processing change, and job release
time change. A rescheduling strategy based on job status was designed for each event. A
discrete teaching and learning optimization (DTLO) algorithm was proposed to optimize
the makespan and stability. Valledor et al. [29] applied the Pareto optimum to solve the
multi-objective flowshop rescheduling problem with makespan, total weighted tardiness,
and steadiness as objectives. Three classes of disruptions (appearance of new jobs, machine
faults, and changes in operational times) were discussed and an event management model
was constructed. A restarted iterated Pareto greedy (RIPG) metaheuristic is used to find
the optimal Pareto front.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 28

Figure 1. An example of DBFSP with the Gantt chart.

The above researches on DBFSP have formed a certain system, but they assumed that
no explicit disruptions occur during the manufacturing process. In fact, a series of uncer-
tainties often happened during the manufacturing process [12]. These uncertainties,
which are sudden and uncontrollable, can change the state of the system strongly and
affect the scheduling activities continuously [13]. As a result, the original static schedules
are no longer suitable for real-time scheduling. To eliminate the impact of sudden uncer-
tainties, rescheduling operations are generally performed in response to disruptions
[14,15]. Rescheduling refers to the procedure of modifying the existing schedule to obtain
a new feasible one after uncertain events occur [16]. One of the most important resched-
uling strategies for traditional flowshop is “predictive-reactive” scheduling [17]. “predic-
tive-reactive” scheduling defines a two-stage “event-driven” scheduling operation: the
first stage generates an initial schedule that provides a baseline reference for other manu-
factural activities such as procurement and distribution of raw materials [18]. Influenced
by the disruptions, the second stage explicitly quantifies the disruptions, constructs the
management model with the disruption information gathered by the cyber-physical smart
manufacturing technology [19–21], adjusts the initial schedule, and makes an effective
trade-off between the initial optimization objective and the disturbance objective [22].
Since little literature is on the rescheduling of DBFSP, we review only the rescheduling
strategies and algorithms developed for traditional and single flowshop. To realize the
rescheduling, a suitable strategy should be determined in advance according to the sce-
nario. Framinan et al. [23] discussed the problem of high system tension caused by con-
tinuous rescheduling of multi-stage flow production. A rescheduling strategy was de-
scribed by estimating the availability of the machines after disruptions and a reordering
algorithm based on the critical path was proposed. Katragjini et al. [24] analyzed eight
types of uncertainties and designed rescheduling strategies through the classification of
job status, which considers the completed, in processed and unprocessed operations. Iris
et al. [25] designed a recoverable strategy taking the uncertainty of crane arrival to the
ship and the fluctuation of loading and unloading speeds into account. The rescheduling
strategy used a proactive baseline with reactive costs as the objective. Ma et al. [26] took
the overmatch time (difference between real manufacturing time and the estimated time
of the initial schedule) as one of the objectives in the rescheduling model to handle pro-
duction emergencies in parallel flowshops. Li et al. [27] discussed both machine break-
down and processing change interruptions for a hybrid flowshop. The authors have pro-
posed a hybrid fruit fly optimization algorithm (HFOA) with processing-delay, cast-break
erasing, and right-shift strategy to minimize different rescheduling objectives in a
steelmaking-foundry system. Li et al. [28] also considered five types of interruption events

Figure 1. An example of DBFSP with the Gantt chart.

Electronics 2022, 11, 249 4 of 25

From the above review, it can be concluded that current researches focused mostly
on the rescheduling of a single flowshop with various constraints. Little literature has
considered rescheduling from the distributed manufacturing perspective. Though the
Industry 4.0 wireless networks [30,31] have quickly developed in recent years, they are
involved more in distributed information interconnection rather than decision making in
scheduling fields. Likewise, the big data-driven technology [32,33] may provide real-time
decisions or schedule rules for small-scale manufacturing, but has not formed a sound
system. Moreover, big data technology relies strongly on a large amount of historical data,
it is difficult to apply to new products due to the highly discrete, stochastic, and distributed
properties of scheduling problems. Therefore, with the in-depth application of distributed
manufacturing, distributed rescheduling strategies and approaches need to be formulated
prudently so that effective references could be provided for modern decision-makers.

On the other hand, the objects of job shop scheduling are usually individual jobs, prod-
ucts, or other resources in the manufacturing process. Such resources have typical discrete
characteristics, which need to be marked and expressed through special information carri-
ers, and then obtain new combinations (ranking) by constantly updating the information
carriers. These optimization characteristics are similar to the optimization process of the
intelligent algorithm based on the permutation model. Therefore, the intelligent algorithm
based on the evolution concept is more suitable for solving scheduling problems.

According to the above analysis and good applicability of the intelligent algorithm,
we use an intelligent algorithm to reschedule the distributed blocking flowshop schedul-
ing problem in a dynamic environment (DDBFSP). In the last decade, the application of
intelligent algorithms for solving scheduling problems has been extensively investigated.
Memetic algorithm (MA), also called the Lamarckian evolutionary algorithm, is attracting
increasing concern. The concept of “meme” refers to contagious information patterns
proposed by Dawkins in 1976 [34]. “Memes” are similar to genes in GA, but there are
differences: Memetic evolution is characterized by Lamarckism, while genetic evolution
is characterized by Darwinism. Meanwhile, neural system-based memetic information
is more malleable than genetic information, so memes are more likely to change and
spread more quickly than genes. In evolutionary computing, MA can combine various
global and local strategies to construct different search frameworks, which possess the
characteristics of GA but with stronger merit-seeking ability. MA was widely applied in
many engineering problems, such as vehicle path planning [35], home care routing [36],
bin packing problem [37], broadcast resource allocation [38], and production scheduling
optimization [39–41]. Until now, MA has not been applied to solve DBFSP in a dynamic
environment(DDBFSP), it will be of significance to extend MA as a solver for DDBFSP.

In summary, this paper aims to optimize DDBFSP with both makespan and stability
measures as the objectives. The machine breakdown is defined as the disruption and
assumed to happen stochastically in any distributed factories. To handle such dynamic
events, a problem-specific disruption management model is constructed. A reschedul-
ing framework that includes a job status-oriented classification strategy and a reordering
algorithm-discrete Memetic algorithm (DMA) is proposed. For DMA, the differential evolu-
tion (DE) operators have been embedded to execute the neighborhood search. A simulated
annealing (SA)-based reference local search framework is designed to help the algorithm
escape from local optimums. Finally, the effectiveness of DMA is validated through compar-
ative experiments. It is expected that the effect after rescheduling is to highly maintain the
level of optimization of the original manufacturing objective (makespan) while ensuring
the stability of the newly generated schedules.

The remainder of the paper is organized as follows. Section 2 states DDBFSP and
constructs the mathematical model and objective function for DDBFSP. Section 3 designs
the corresponding rescheduling framework. Section 4 elaborates the details of the DMA
reordering algorithm. Section 5 verifies the performance of DMA and analyzes the results;
Section 6 summarizes the research content of this paper.

Electronics 2022, 11, 249 5 of 25

2. Method

In this section, the mathematical models for DBFSP with optimization objectives in
both static and dynamic environments are proposed. The classifications of job status after
breakdown events are also introduced.

2.1. Statement of DBFSP in Static Environment

As can be seen in Figure 1, DBFSP not only needs to consider the correlation between
processing task characteristics and blocking constraints but also needs to consider the
coupling of global scheduling and local scheduling of each distributed factory, the solving
process is more complex. As illustrated in Figure 1, a set of jobs J =

{
Jj|1, 2, . . . , n

}
will

be assigned to a set of factories F = {Fk|k =1, 2, . . . , f } , each of which contains a set of
machines M = {Mi|1, 2, . . . , m}. The blocking constraint determines that no buffers are
allowed between two adjacent machines. Therefore, the job can only be released to the next
operation when the subsequent machine is free; otherwise, the job must be blocked on the
current machine. We assume the processing time for each job is stochastic and different.
After a job is assigned to a processing plant, it is not allowed to move to other factories.

Assume nk(nk ≤ n) jobs are assigned to factory k, and the job sequence in this factory
is denoted as πk, where πk(l) represents the l-th job in πk. The operation Oπk(l),i has a
processing time Pπk(l),i. Assume Sπk(l),0 is the start time of πk(l) on the first machine of
factory k, and dπk(l),i is defined as the departure time of operation Oπk(l),i on machine i. The
recursive formulas of DBFSP can be derived as follows:

Sπk(1),0 = 0 (1)

Dπk(1),i = Dπk(1),i−1 + Pπk(1),i, i = 2, 3, . . . , m (2)

Sπk(l),0 = Dπk(l−1),1, i = 2, . . . , nk (3)

Dπk(l),i = max
{

Dπk(l),i−1 + pπk(l),i, Dπk(l−1),i+1

}
, l = 2, 3, . . . , nk i = 1, 2, . . . , m− 1 (4)

Dπk(l),m = Dπk(l),m−1 + Pπk(l),m, l = 2, 3, . . . , nk (5)

In the above equations, Equations (1) and (2) calculate the start and departure time
of the first job πk from machine 1 to the last machine m in factory k. Equations (3) and (4)
calculate the start and departure time of job πk(l) from machine 1 to machine m − 1.
Equation (5) gives the departure time of πk(l) on machine m. If we take makespan C(πk) as
the optimization objective, C(πk) of factory k can be expressed as:

C(πk) = Dπk(nk),m (6)

As a result, the global makespan for DBFSP is defined through the comparison between
C(πk) of all distributed factories:

Cmax(Π) = max f
k=1(C(πk)) (7)

The detailed recursive process and example refer to our previous group work [8] for
solving DBFSP.

2.2. Statement of DDBFSP

When characterizing the machine breakdown event of DBFSP in a dynamic and
stochastic environment, the following questions should be marked: (1) Which factory has
happened the breakdown event and when (the probability of breakdown)? (2) Which
machine in that factory breaks (the distributivity of the breakdown)? (3) When will the
machine resume?

In fact, machine breakdowns are difficult to simulate since the probabilistic model of
breakdown occurrence could hardly cover the real manufacturing situation. Moreover, the
recovery time is mostly predicted based on a priori knowledge, which cannot guarantee

Electronics 2022, 11, 249 6 of 25

accuracy. With consideration of randomness and distribution, this paper triggers machine
breakdowns in a randomly selected distributed factory at time t. The breakdown time is
defined to follow a discrete uniform distribution function which is expressed as follows:

E(Bk,i) = rand()%P(Ti) + pπk(l) × i, i = 1, 2, 3 . . . , m, k = 1, 2, . . . , f , l = 1, 2, . . . , nk (8)

where rand() represents the random function between [0, ω] and ω denotes the maximum
constant of the system; “%” is the remainder operator; P(Ti) represents the total processing
time of all jobs on machine i. Equation (8) defines the time range of the breakdown in the
factory k during the processing time of all jobs, i.e., [Pπk(l),i, Cπk(l),i].

To maintain the distribution of breakdowns and the convenience of experimental
statistics, this study assumes that each distributed factory occurs β times random break-
downs during manufacturing. Additionally, to maintain the randomness of breakdown
occurrence, each machine has the same probability to break down. To ensure a stochastic
dynamic environment, the duration of breakdowns are generated randomly and uniformly
following the interval [0, ω] and are determined immediately after the event. Moreover,
other constraints for the breakdown event in DDBFSP are defined as follows:

(1) All machines exist three statuses during manufacturing: idle, processing and blocked,
a breakdown event occurs in the processing period.

(2) The system triggers one machine breakdown each time, and the process stops imme-
diately when the breakdown occurs.

(3) After the machine is recovered, the affected process can continue with the remaining
processing without re-processing.

2.3. Optimization Objectives of DDBFSP

In DBFSP, it is generally necessary to consider the production efficiency-related ob-
jective, e.g., makespan. While in a dynamic environment, from the decision point of view,
stability becomes one importantly practical metric for manufacturing systems. If reschedul-
ing optimization is performed only considering the production efficiency-related indicators,
it may generate new schedules that deviate significantly from the initial plan, which in turn
affects other planning activities, such as material management and manpower planning.
Therefore, in the rescheduling phase, in addition to makespan, the stability of the new
schedules should be considered. In this study, the initial schedule of one distributed factory
before a breakdown occurs is denoted by B (Baseline), and the schedule after rescheduling
is denoted by B∗. The goal of rescheduling is to optimize both the makespan and the
stability of the distributed factory at each breakdown node. The first objective (makespan)
of the DDBFSP is expressed as follows:

f1 = Cmax(B∗) (9)

The second objective (stability) of the DDBFSP is derived as follows.

f2 = min{
m

∑
i=1

nk

∑
l=1

Zπk(l),i}, k = 1, 2, . . . , f , nk = 1, 2, . . . , n (10)

where the decision variable Zπk(l),i indicates whether the relative position of the job B and
B∗ has changed. Zπk(l),i = 1 represents that the position of job πk(l) on machine i in factory
k has changed in the new schedule B∗ and vice versa Zπk(l),i = 0.

To simplify the optimization process and avoid redundant calculations, a weighting
mechanism is applied to combine both objective functions:

f (B∗) = w1 ∗ f1 + w2 ∗ f2 (11)

In Equation (11), w1 and w2 represent the weight coefficients of f1 and f2, respectively.
Since f1 and f2 have different distribution ranges of dimensions, to avoid the results being
dominated by the data with larger or smaller distribution ranges, the normalization method

Electronics 2022, 11, 249 7 of 25

proposed in [24] is applied so that the value range of each objective falls in the interval.
The normalization function is defined as follows:

f (B∗) = w1 ∗ N(f1) + w2 ∗ N(f2) (12)

where:

N(f1) =
f1(B∗)− low(f1)

up(f1)− low(f1)
(13)

N(f2) =
f2(B∗)− low(f2)

up(f2)− low(f2)
(14)

In Equations (13) and (14), up(.) and low(.) represent the upper and lower bounds of
f1 and f2 for the two extreme rankings of the jobs at the breakdown node, respectively. The
specific calculation procedure refers to [24].

2.4. Statement of Job Status after Breakdown Event

After a machine breaks down, the jobs are categorized to construct the event manage-
ment model:

C∗πk(l),i
− S∗πk(l),i

− P∗πk(l),i
+ (1− yπk(l),i,1)ω ≥ 0 (15)

C∗πk(l),i
− S∗πk(l),i

− P∗πk(l),i
− (1− yπk(l),i,1)ω ≤ 0 (16)

C∗πk(l),i
− S∗πk(l),i

− P∗πk(l),i
− Be,i + Bs,i + (1− yπk(l),i,2)ω ≥ 0 (17)

C∗πk(l),i
− S∗πk(l),i

− P∗πk(l),i
− Be,i + Bs,i − (1− yπk(l),i,2)ω ≤ 0 (18)

C∗πk(l),i
−max

{
S∗πk(l),i

, Be,i

}
− P∗πk(l),i

+ (1− yπk(l),i,3)ω ≥ 0 (19)

C∗πk(l),i
−max

{
S∗πk(l),i

, Be,i

}
− P∗πk(l),i

− (1− yπk(l),i,3)ω ≤ 0 (20)

3

∑
g=1

Yπk(l),i,g = 1, i = {1, 2, . . . , m}, k = {1, 2, . . . , f }, g = {1, 2, 3} (21)

Yπk(l),i,g= {0, 1}, i = {1, 2, . . . , m}, k = {1, 2, . . . , f }, g = {1, 2, 3} (22)

In the above equations, C∗
πk(l),i

denotes the completion time of job πk(l) on the machine
i in B∗. S∗

πk(l),i
and P∗

πk(l),i
represent the corresponding start time and processing time of

C∗
πk(l),i

, respectively. Be,i and Bs,i denote the occurrence time and completion time of the
breakdown on the machine i. Equation (15) to Equation (20) defines three statuses in which
an operation of a job is in when a breakdown occurs: Equations (15) and (16) determine that
the operation was completed before the breakdown occurs; Equations (17) and (18) deter-
mine that the operation is being processed when the breakdown occurs; Equations (19) and (20)
determine that the operation was originally scheduled to start after the machine is recov-
ered. Equation (21) represents that the job can only be in a state in case a breakdown occurs.
Equation (22) is a binary decision variable set for three cases: (1) Yπk(l),i,1 = 1 means the
operation is completed before the breakdown occurs; (2) Yπk(l),i,2 = 1 denotes the operation
overlaps with the machine breakdown node; (3) Yπk(l),i,3 = 1 means the operation begins
after the machine is resumed.

For a better understanding, an example is presented in Figure 2 to illustrate the
classification of the operation status at the moment that a machine breaks down. In case 1 of
Figure 2, machine 2 of factory k breaks down at time 55, at which time the operations Oπk(1),1,
Oπk(1),2 and Oπk(2),1 have already completed processing. Their start and completion times
are not affected and do not need to be adjusted in the rescheduling phase. In case 2 of
Figure 2, machine 1 breaks down at node 55 and operation Oπk(3),1 is being processed at
this time. The breakdown divides Oπk(3),1 into two parts: the finished and the remaining
part, the remaining part is completed after the machine is recovered. Hence, the start time
Oπk(3),1 remains unchanged in the rescheduling phase, but its finish time is affected by both

Electronics 2022, 11, 249 8 of 25

the breakdown time and the recovery time. In case 3 of Figure 2, machine 1 breaks down at
node 38 which is before the startup of job J3 and J4. Therefore, the start and finish times of
J3 and J4 are affected by both the breakdown time and the recovery time.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 28

In the above equations, *
(),k l i

Cπ denotes the completion time of job ()k lπ on the ma-

chine i in *B . *
(),k l i

Sπ and *
(),k l i

Pπ represent the corresponding start time and processing

time of *
(),k l i

Cπ , respectively. ,e iB and ,s iB denote the occurrence time and completion
time of the breakdown on the machine i . Equation (15) to Equation (20) defines three
statuses in which an operation of a job is in when a breakdown occurs: Equations (15) and
(16) determine that the operation was completed before the breakdown occurs; Equations
(17) and (18) determine that the operation is being processed when the breakdown occurs;
Equations (19) and (20) determine that the operation was originally scheduled to start af-
ter the machine is recovered. Equation (21) represents that the job can only be in a state in
case a breakdown occurs. Equation (22) is a binary decision variable set for three cases: (1)

(), ,1 1=
k l i
Yπ means the operation is completed before the breakdown occurs; (2) (), ,2 1=

k l i
Yπ

denotes the operation overlaps with the machine breakdown node; (3) (), ,3 1=
k l i
Yπ means

the operation begins after the machine is resumed.
For a better understanding, an example is presented in Figure 2 to illustrate the clas-

sification of the operation status at the moment that a machine breaks down. In case 1 of
Figure 2, machine 2 of factory k breaks down at time 55, at which time the operations

(1),1k
Oπ , (1),2k

Oπ and (2),1k
Oπ have already completed processing. Their start and comple-

tion times are not affected and do not need to be adjusted in the rescheduling phase. In
case 2 of Figure 2, machine 1 breaks down at node 55 and operation (3),1k

Oπ is being pro-

cessed at this time. The breakdown divides (3),1k
Oπ into two parts: the finished and the

remaining part, the remaining part is completed after the machine is recovered. Hence,
the start time (3),1k

Oπ remains unchanged in the rescheduling phase, but its finish time is
affected by both the breakdown time and the recovery time. In case 3 of Figure 2, machine
1 breaks down at node 38 which is before the startup of job 3J and 4J . Therefore, the

start and finish times of 3J and 4J are affected by both the breakdown time and the
recovery time.

Figure 2. Classification of job status at machine breakdowns. Figure 2. Classification of job status at machine breakdowns.

3. Rescheduling Framework for DDBFSP

Since the breakdowns occur during the manufacturing procedure, on which each job
has already been fixed in a certain factory for processing, a change of jobs between different
factories is unrealistic. Hence, the individual factory is defined as the decision subject in
response to the events.

3.1. Rescheduling Strategy

We envision a stochastic and dynamic distributed scheduling environment. A two-
stage “predictive-reactive” method is proposed for DDBFSP: initial solution pre-generation
and rescheduling. In the first stage, the initial schedule for DDBFSP is generated by
considering a static environment without machine breakdowns. After the breakdown
occurs, the initial schedule may no longer be optimal. Therefore, in the second stage, the
“event-driven” rescheduling is triggered to evaluate the breakdown, and a new schedule is
provided in response to the events. Since the new schedule will be executed until the next
breakdown occurs, the rescheduling strategy proposed in this study should have a dual
objective: on one hand, to adapt and minimize the impact of the event; on the other hand,
to generate a schedule that gives a good tradeoff between scheduling quality and stability
when the event is resumed.

3.2. Rescheduling Method

According to the classification of operation status in Section 2.3, we propose a hybrid
rescheduling method: “right-shift repair + local reorder”. At the breakdown node, no
adjustment is made to the completed operations; for the directly affected operations, the

Electronics 2022, 11, 249 9 of 25

right-shift strategy is adopted for a local repair; for the jobs that have not yet started their
processing, the reordering algorithm is performed to seek a better partial schedule. The
proposed “right-shift repair + local reorder” method is described as follows:

First, determine the jobs that are to be rescheduled. According to the constraint
limitation of the flowshop manufacturing, once the processing sequence of the jobs on the
first machine is determined, their sequence on other machines must be the same. Therefore,
we mark the jobs πk(l) at the breakdown node by using the first machine as the reference.
Suppose that there is a breakdown event at time Bs,i when job πk(l) is processed on machine
i, then the jobs in this factory of which the first operation has been started are counted in
the set Nc; relatively, the jobs of which the first operation has not been started are counted
in the set of unprocessed jobs Nn.

Subsequently, the jobs Nc are further divided by taking πk(l) as the midpoint: the
jobs sequencing before πk(l) are included in the set Nc,c = {πk(1), . . . , πk(l − 1)}; the
remaining jobs Nc are included in the set Nc,n. The rescheduling system maintains the same
order and time points for the operations of jobs Nc,c. For the operations of jobs in Nc,n, the
unaffected operations remain unchanged; the affected and other unprocessed operations
are adjusted using the right-shift repair method [42], which shifts the start time to right by
certain matching time units. The right-shift repair is essentially a FIFO-based heuristic.

At the breakdown node, all jobs Nn have not been started processing. Their initial order
may be no longer optimal after the recovery. Thus, we propose an improved algorithm to
reorder the jobs. Eventually, the new schedule is merged into the global schedule and is
executed as the baseline until the next breakdown occurs.

To describe the proposed “right-shift repair + local reorder” method more clearly,
Figure 3 shows a comparative example with different rescheduling methods at the time
of breakdown in one distributed factory. As shown in Figure 3a, the initial schedule of
the factory has a desired makespan of 36. During manufacturing, Machine 2 breaks down
at time Bs,i = 8 and is assumed to be recovered at Be,i = 11. At this point, the jobs that
have already been processed on machine 1 are J2 and J1 (marked in gray), and these
two jobs are counted in the set Nc. In contrast, jobs J3, J4 and J5 are counted in Nn. The
framework adjusts the affected operations in Nc based on the breakdown information and
reorders the jobs in Nn. As seen in Figure 3b, the right-shift method is implemented on
partial operations of the jobs (marked in yellow), the process order remains the same as
J2 → J1 → J5 → J3 → J4 and the makespan is delayed to 41. In Figure 3c while using the

“right-shift repair + local reorder” method, job J3, J4 and J5 (marked in green) is reordered
using the reordering algorithm. The process order changes to J2 → J1 → J3 → J4 → J5 and
the makespan is 37, which absorbs 4 units of the recovery time. This example proves that
the proposed rescheduling method is more efficient and flexible than the single rule-based
(right-shift repair) heuristics.

3.3. Rescheduling Procedure

We illustrate the proposed optimization procedure for DDBFSP in Figure 4. First, with
makespan as the optimization objective, a global schedule for DBFSP in a static environ-
ment is generated using DFOA [8]; then, each distributed factory executes manufacturing
tasks according to their initial schedules; the breakdowns are triggered following the dis-
crete generation mechanism proposed in Section 2.2. Each time the breakdown happens,
rescheduling is implemented by the single distributed factory, with makespan and stability
as optimization objectives. According to process status at the breakdown node, the jobs are
classified and different methods (right-shift repair or reordering algorithm) are performed.
The rescheduling results of different job sets are integrated, and the updated schedule
under a single breakdown is provided as the initial schedule before the next event occurs.
The above procedure is repeated until the termination condition of the breakdown trigger
is met, and the final schedule is output.

Electronics 2022, 11, 249 10 of 25

Electronics 2022, 11, x FOR PEER REVIEW 10 of 28

time , 8=s iB and is assumed to be recovered at , 11=e iB . At this point, the jobs that have

already been processed on machine 1 are 2J and 1J (marked in gray), and these two jobs

are counted in the set cN . In contrast, jobs 3J , 4J and 5J are counted in nN . The frame-

work adjusts the affected operations in cN based on the breakdown information and re-

orders the jobs in nN . As seen in Figure 3b, the right-shift method is implemented on
partial operations of the jobs (marked in yellow), the process order remains the same as

2 1 5 3 4→ → → →J J J J J and the makespan is delayed to 41. While using the “right-shift

repair + local reorder” method, job 3J , 4J and 5J (marked in green) is reordered using

the reordering algorithm. The process order changes to 2 1 3 4 5→ → → →J J J J J and the
makespan is 37, which absorbs 4 units of the recovery time. This example proves that the
proposed rescheduling method is more efficient and flexible than the single rule-based
(right-shift repair) heuristics.

Figure 3. Comparison of different rescheduling strategies.

3.3. Rescheduling Procedure
We illustrate the proposed optimization procedure for DDBFSP in Figure 4. First,

with makespan as the optimization objective, a global schedule for DBFSP in a static en-
vironment is generated using DFOA [8]; then, each distributed factory executes manufac-
turing tasks according to their initial schedules; the breakdowns are triggered following
the discrete generation mechanism proposed in Section 2.2. Each time the breakdown hap-
pens, rescheduling is implemented by the single distributed factory, with makespan and
stability as optimization objectives. According to process status at the breakdown node,
the jobs are classified and different methods (right-shift repair or reordering algorithm)
are performed. The rescheduling results of different job sets are integrated, and the up-
dated schedule under a single breakdown is provided as the initial schedule before the
next event occurs. The above procedure is repeated until the termination condition of the
breakdown trigger is met, and the final schedule is output.

Figure 3. Comparison of different rescheduling strategies.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 28

Figure 4. Proposed rescheduling procedure for DDBFSP.

4. Reordering Algorithm-DMA
Since the “right-shift repair” is introduced in [42], this section introduces the pro-

posed reordering algorithm-DMA for the jobs in the set nN .

4.1. Introduction of Standard MA
MA was initially defined as an improvement of GA, it can combine different global

and local strategies to construct various search frameworks, which has stronger flexibility,
and merit-seeking ability than GA. The flow diagram of the basic MA is shown in Figure
5. MA starts from initializing the population, operates on memes with evolutionary
thought, generates new individuals using generating functions (e.g., crossover and varia-
tion operators, etc.), and finally forms new populations using updating functions (e.g.,
selection operators, etc.).

Figure 5. Flow diagram of standard MA.

Although standard MA has a strong optimization-seeking capability, it also encoun-
ters problems such as insufficient global exploration capability [43]. On the other hand,
DE has proven its powerful search capability since being proposed. Inspired by this, we
embed the DE operators into MA and proposed a discrete MA (DMA). DMA mainly con-
tains the following parts: population initialization, DE (mutation and crossover), and local
search.

Figure 4. Proposed rescheduling procedure for DDBFSP.

4. Reordering Algorithm-DMA

Since the “right-shift repair” is introduced in [42], this section introduces the proposed
reordering algorithm-DMA for the jobs in the set Nn.

4.1. Introduction of Standard MA

MA was initially defined as an improvement of GA, it can combine different global
and local strategies to construct various search frameworks, which has stronger flexibility,
and merit-seeking ability than GA. The flow diagram of the basic MA is shown in Figure 5.
MA starts from initializing the population, operates on memes with evolutionary thought,
generates new individuals using generating functions (e.g., crossover and variation oper-

Electronics 2022, 11, 249 11 of 25

ators, etc.), and finally forms new populations using updating functions (e.g., selection
operators, etc.).

Electronics 2022, 11, x FOR PEER REVIEW 11 of 28

Figure 4. Proposed rescheduling procedure for DDBFSP.

4. Reordering Algorithm-DMA
Since the “right-shift repair” is introduced in [42], this section introduces the pro-

posed reordering algorithm-DMA for the jobs in the set nN .

4.1. Introduction of Standard MA
MA was initially defined as an improvement of GA, it can combine different global

and local strategies to construct various search frameworks, which has stronger flexibility,
and merit-seeking ability than GA. The flow diagram of the basic MA is shown in Figure
5. MA starts from initializing the population, operates on memes with evolutionary
thought, generates new individuals using generating functions (e.g., crossover and varia-
tion operators, etc.), and finally forms new populations using updating functions (e.g.,
selection operators, etc.).

Figure 5. Flow diagram of standard MA.

Although standard MA has a strong optimization-seeking capability, it also encoun-
ters problems such as insufficient global exploration capability [43]. On the other hand,
DE has proven its powerful search capability since being proposed. Inspired by this, we
embed the DE operators into MA and proposed a discrete MA (DMA). DMA mainly con-
tains the following parts: population initialization, DE (mutation and crossover), and local
search.

Figure 5. Flow diagram of standard MA.

Although standard MA has a strong optimization-seeking capability, it also encounters
problems such as insufficient global exploration capability [43]. On the other hand, DE has
proven its powerful search capability since being proposed. Inspired by this, we embed
the DE operators into MA and proposed a discrete MA (DMA). DMA mainly contains the
following parts: population initialization, DE (mutation and crossover), and local search.

4.2. Population Initialization

In the initialization phase, we use the well-known job sequence-based method [9]
to encode. The position of each job in the sequence represents its processing order on
corresponding machines. An initialization method WPNEH (Weighted position NEH
method, WPNEH) considering the weighted position of the job is proposed under the
premise of determining the reordering jobs.

Step 1: Using the PFT_NEH(x) heuristic [9] and the initial schedule to generate two
seeds πP and πB. The total weighted position of a single job is defined as follows:

φj = χ1 × ϕj(π
P) + χ2 × ϕj(π

B) (23)

In Equation (23), ϕj(π
P) and ϕj(π

B) represent the absolute positions of job j in two
seeds. χ1 and χ2 represent the weight coefficients occupied by two seeds. The values of χ1
and χ2 are defined adaptively by the population size Ps and the order l (l = 1, 2, . . . , Ps) of
the newly generated individuals in the whole population:

χ1 =
l

Ps− 1
(24)

χ2 = 1− l
Ps− 1

(25)

Step 2: Arrange all jobs in decreasing order of the total weighted positions φj to obtain
a sequence π0.

Step 3: Create a new empty sequence πemp. The jobs in π0 are inserted into each
position πemp in turn. The solutions obtained from each insertion are evaluated based on
Equations (11) and (12) to determine the optimal order. Continue the operations until all
jobs finish insertion.

Step 4: Let l = l + 1, and continue steps 1–3 until all Ps individuals are generated.
The initialization procedure of WPNEH is shown as Algorithm 1.

Electronics 2022, 11, 249 12 of 25

Algorithm 1 WPNEH initialization

Input: job set Nn, population size Ps, initial schedule B of a distributed factory
Output: initial population POP
01: Define the order of jobs in Nn, generate seed πB

02: Apply PFT_NEH(x) method to rearrange the jobs in Nn, generate seed πP

03: While l ≤ Ps do
04: Set the coefficient χ1 = l/Ps− 1 and χ2 = 1− l/(Ps− 1)
05: Calculate φj for each job according to Equation (22)
06: Generate a new sequence π0 by arranging all jobs in descending order based on their φj
07: Execute the NEH insertion procedure, evaluate the solutions obtained, find the
best order
08: Finish insertions of all jobs, obtain a new sequence πc, count in POP
09: l = l + 1
10: End While

4.3. DE Operation

DE [44] drives the search directions through the mutual synergistic and competitive
behaviors among individuals of the population. Its overall structure is similar to GA, but
the evolution principle is quite different. DE generates new individuals through perturbing
the difference vectors of two or more individuals. It can obtain more operation space and
enhance the global search capability when the individuals are significantly different from
each other in the early stage of the search. In DMA, two key operators of DE (mutation and
crossover) are embedded to perform the global search.

4.3.1. Mutation

The weighted difference vector of two individuals is first selected. Then, the weighted
difference is summed with another individual vector. Hence, three individuals are ran-
domly selected from the population POP, the optimal one is defined as πa, and the other
two are defined as πb and πc. The mutation operator can be expressed as:

Va = πa ⊕ κ ⊗ (πb − πc) (26)

where κ is the mutation scaling factor used to control the magnitude of the differences. “⊗”
represent the weighted differences between πb and πc:

πa − πb = ∆⇔ δ(j) =
{

πb(j), if πb(j) 6= πc(j)
0, otherwise

j = 1, 2, . . . , n (27)

κ ⊗ ∆ = Φ⇔ ϕ(j) =
{

δ(j), if rand() < κ
0, otherwise

(28)

In Equations (27) and (28), ∆ = [δ(1), δ(2), . . . , δ(n)] and Φ = [ϕ(1), ϕ(2), . . . , ϕ(n)]
are the two temporary vectors used for the calculation. “⊕” means the mutation individual
πV is obtained through adding Φ with the target individual πbest:

πV = πbest ⊕Φ (29)

The generation process of πV is described as follows.
Step 1: Select πa, set j = 1.
Step 2: If ϕ(j) = 0, set j = j + 1, go to step 3; otherwise, generate a random number

between (0, 1). If rand() < κ, update πa by swapping the job πa(j) and ϕ(j); else, insert the
job πa(j) into all different positions of ϕ(j), take the optimal solution and update πa. Let
j = j + 1.

Step 3: If j ≤ n, return to step 2; otherwise, return πV = πa.
The mutation procedure of DMA is sketched in Algorithm 2.

Electronics 2022, 11, 249 13 of 25

Algorithm 2 Mutation Operation

Input: population POP, job number n, population size Ps, mutation factor κ,
temporary set ∆ and Φ
Output: mutation individual πV
01: Select 3 individuals (πa, πb and πc) from POP randomly
02: For j = 1 to n do
03: Calculate the vector difference δ(j) between two individuals and save in ∆
04: Generate rand() between (0,1), calculate the mutation difference ϕ(j) and save in Φ
05: End For
06: Output Φ
07: For j = 1 to n do
08: If ϕ(j) = 0
09: j = j + 1
10: Else
11: generate rand() between (0, 1)
12: If rand() < κ

13: exchange job πa(j) and ϕ(j) in πa
14: Else insert ϕ(j) from πa into all positions of after πa(j), take the
optimal solution
15: End If
16: return the πa
17: End If
18: End For
19: Let πV = πa, output πV

4.3.2. Crossover

When solving discrete scheduling problems based on job sequence, the probability
factor is mainly used to determine the crossed jobs [38]. In this study, we improved the
determination method of the crossed jobs by eliminating the crossover probability factor
and proposed a random crossover operator: First, select two jobs randomly from the
mutated individual πV ; second, put these two jobs and jobs between them in a temporary
set Ntemp; third, determine the positions in πd of all jobs from Ntemp, remove all jobs from
Ntemp and keep their positions. Finally, insert the jobs in πd with original order to obtain a
new sequence π′. The crossover process for πd is the same. When the crossover operation
of the two parents is completed, the new individual obtained is evaluated and the best one
is retained. The crossover operation is sketched in Algorithm 3.

Algorithm 3 Crossover Operation

Input: mutation individual πV , target individual πd, temporary job set Ntemp
Output: new individual πnew
01: # Crossover operation on πd
02: Select two jobs from πV randomly, put the jobs between them in Ntemp in turn
03: Remove the jobs belonging to Ntemp from πd, keep the vacant position unchanged
04: Insert the jobs in Ntemp into the free positions of πd to obtain the new solution π′

05: # Crossover operation on πV
06: Ensure πd has the job j ∈ Ntemp, clear Ntemp, put j in Ntemp orderly
07: Remove jobs belonging to Ntemp from πV , keep the vacant position unchanged
08: Insert the jobs in Ntemp into the free positions of πd to obtain the new solution π′′

09: Evaluate new solutions:
10: If f (π′′) < f (π′)
11: Let πnew = π′′ , return πnew
12: Else
13: Let πnew = π′, return πnew
14: End If

Electronics 2022, 11, 249 14 of 25

To facilitate understanding, Example 4-1 presents the procedure of DE operation
in detail.

Example 4-1
Mutation: Three individuals are randomly selected from the initial population:

πa = [J6, J3, J2, J4, J1, J5], πb = [J1, J4, J6, J2, J5, J3] and πc = [J3, J4, J2, J1, J5, J6]. With
Equation (26) it yields ∆ = πb − πc = [J1, 0, J6, J2, 0, J3]. A set of random numbers
[0.7, 0.6, 0.9, 0.4, 0.1, 0.3] are generated according to Equation (27), so that the mutation
scaling factor is κ = 0.5, then obtain Φ = [0, 0, 0, J2, 0, J3]. It can be deduced that when j = 4
and j = 6, there are ϕ(4) = J2 and ϕ(6) = J3. For j = 4, a random number 0.2 (<0.5) is
generated between the interval (0,1) satisfying the uniform distribution. Then, two jobs
πa(4) = J4 and ϕ(4) = J2 in πa are swapped and a new solution πa = [J6, J3, J4, J2, J1, J5] is
obtained; for j = 6, a random number 0.7 (>0.5) is also generated, the job ϕ(6) = J3 in πa is
inserted into the latter position of πa(6) = J5 and a new solution πa = [J6, J4, J2, J1, J5, J3]
is obtained.

Crossover: The mutation individual πV = [J6, J4, J2, J1, J5, J3] and the target individual
πd = [J5, J3, J2, J4, J6, J1] are crossed as parents. First, two jobs J2 and J5 are randomly se-
lected from πV , and set Ntemp = [J2, J1, J5]. For πd, remove the same jobs from Ntemp, obtain
πd = [X, J3, X, J4, J6, X]. The new solution is obtained by reinserting Ntemp = [J2, J1, J5]
into πd. The derivation of the new solution for πV is the same as πd, and the result is
πV = [J6, J4, J5, J2, J1, J3].

4.4. Job Block-Based Random Reference Local Search

As mentioned above, the two key operations of DE can improve the individuals con-
cerning the vector difference of the population. Along with the iteration of an algorithm, the
difference between individuals becomes smaller, which tends to lead the algorithm to local
optimum easily. Therefore, DMA needs to equip with a local search framework to enhance
its exploitation capability. For a long time, reference local search (RLS) has proved to be an
effective local search algorithm and is often used to enhance the exploitation of metaheuris-
tics [9]. RLS firstly generates a random reference sequence πr = [πr(1), πr(2), . . . , πr(z)],
and uses it as a reference to guide the direction of the local search; subsequently, the jobs
πr(j) are sequentially removed and inserted into all remaining positions of πr to obtain new
solutions. The optimal solution is compared with the incumbent solutions of the population,
and if it is better, it is replaced with the population. The insertion process is repeated until
all the jobs are traversed. Though RLS has a strong local exploitation capability, it still has
some problems. On one hand, RLS uses a single job insertion operation, which may destroy
the good information of incumbent solutions and cause the loss of other good solutions.
On the other hand, the fixed order of the reference sequence and the fixed insertion process
of the jobs will result in a fixed path of local search. If πr(j) is constant for a long time, it
will cause a large number of repeated searches, which directly affects the search efficiency
of the algorithm.

Boejko et al. [45] have pointed out that in job sorting scheduling problems, compound
moves (insertion and swap) based on the job block can retain excellent sequence information
during the evolution of an algorithm. It thus expands the neighborhood structure and
search space, which is better than single job insertion and swap operations. Inspired by
this idea, we hybridize RLS and compound moves of job block, and propose a random
reference local search based on job block (BRRLS): firstly, generate a reference sequence
πr = [πr(1), πr(2), . . . , πr(z)] randomly, where nr represents the number of jobs to be
rescheduled; secondly, select two jobs Ja and Jb randomly, construct the job block (including
Ja and Jb) and take out all jobs in the individual πblock that needs local search; then, insert
the job block into all possible positions of π, evaluate the generated solutions, and select
the optimal one. Repeat the above procedure (each time select two unselected jobs) until all
jobs are traversed. The BRRLS process is sketched in Algorithm 4.

Electronics 2022, 11, 249 15 of 25

Algorithm 4 BRRLS Procedure

Input: job set Nn, individual π, temporary set Ntemp, temporary set Λ
Output: new individual πnew
01: Randomly sort the jobs in Nn to generate a reference sequence πr
02: Randomly select two jobs Ja and Jb from Nn
03: Determine the block πblock between Ja and Jb in πr (including Ja and Jb), save πblock
in Ntemp
04: Remove all jobs belonging to Ntemp from π

05: Insert πblock in all positions of π, evaluate and select the optimal solution, save in Λ
06: Clear Ntemp, delete Ja and Jb from Nn
07: Repeat the above operation (Line 03–07) until len(Nn) ≤ 1
08: Evaluate the individuals in Λ, return the optimal solution to πnew

To further improve the algorithmic performance, a simulated annealing-like (SA)
mechanism [46] is introduced as an acceptance criterion for BRRLS, which guides DMA
to receive a certain percentage of poor solutions during the search to avoid being trapped
in local optimums. The idea of SA is to compare the neighborhood solution π′ obtained
by BRRLS with the incumbent solution π. If f (π′) is better than f (π), SA replaces π with
π′, otherwise, the decision of whether to accept π′ is based on a reception probability µ:
A random number rand() satisfying a uniform distribution is generated between (0, 1); if
rand() < µ, π is replaced by the worse neighborhood solution obtained by the search. µ is
expressed as follows:

µ = e−(f (π′)− f (π))/Temp (30)

where Temp represents the temperature constant:

Temp = T0

nk
∑

j=1

m
∑

i=1
Pπk(l),i

10×m× n
, k ∈ {1, 2, . . . , f } (31)

In Equation (31), T0 is the temperature adjustment parameter preset by SA. It can be
seen from Equation (31) that the closer f (π′) is to f (π), the closer the value µ is to 1 and
π′ will be accepted with a higher probability. Conversely, if f (π′) is much worse than
f (π), the value µ will be close to 0, and the solution π′ will be dropped with a higher
probability. Hence, the SA-based reception mechanism ensures that the population does not
deviate from the current search position, but can additionally absorb a certain percentage
of non-quality solutions to avoid the algorithm from falling into local optimums.

4.5. Update Strategy of the Population

To maintain the diversity of individuals, the following strategy is applied to update the
population: first, a new individual is generated using the mutation and crossover operators;
subsequently, a local search is performed on these individuals, and the individuals are
updated. finally, the incumbent solutions are replaced by the newly generated solutions,
and the uniqueness of these new solutions is ensured to complete a single iteration of the
whole population.

4.6. Flowchart of DMA

According to previous descriptions, Algorithm 5 presents the flowchart of DMA.
The flow diagram of DMA is sketched in Figure 6. In general, DMA contains popula-

tion initialization, DE operation, and local search. In the initialization phase, the population
is generated using the WPNEH method; in the DE phase, the discrete differential mutation
and crossover operators are executed to obtain the child individuals; in the local search
phase, BRRLS is performed, and the simulated annealing mechanism is adopted as the
reception criterion. Finally, the population is updated and the optimal solution is output.

Electronics 2022, 11, 249 16 of 25

Algorithm 5 Flowchart of DMA

Input: population size Ps, mutation scaling factor κ, reordered job number n
Output: best solution π

01: While termination condition not met do
02: # Initialization (Section 4.2)
03: Use WPNEH method to create new individuals
04: Construct POP, evaluate the individuals
05: # DE (Section 4.3)
06: Perform DE according to κ, generate Ps/2 individuals
07: Perform random crossover operation on mutated individuals, and evaluate
08: # BRRLS (Section 4.4)
09: Implement the SA-based BRRLS procedure on the Ps/2 individuals
10: Replace the incumbent solutions using solutions obtained by local search
11: Update the population (Section 4.5)
12: End While

Electronics 2022, 11, x FOR PEER REVIEW 18 of 28

Algorithm 5 Flowchart of DMA

Input: population size Ps, mutation scaling factor κ , reordered job number n

Output: best solution π
01: While termination condition not met do
02: # Initialization (Section 4.2)
03: Use WPNEH method to create new individuals
04: Construct POP, evaluate the individuals
05: # DE (Section 4.3)
06: Perform DE according to κ , generate / 2Ps individuals
07: Perform random crossover operation on mutated individuals, and evaluate
08: # BRRLS (Section 4.4)
09: Implement the SA-based BRRLS procedure on the / 2Ps individuals
10: Replace the incumbent solutions using solutions obtained by local search
11: Update the population (Section 4.5)
12: End While

The flow diagram of DMA is sketched in Figure 6. In general, DMA contains popu-
lation initialization, DE operation, and local search. In the initialization phase, the popu-
lation is generated using the WPNEH method; in the DE phase, the discrete differential
mutation and crossover operators are executed to obtain the child individuals; in the local
search phase, BRRLS is performed, and the simulated annealing mechanism is adopted as
the reception criterion. Finally, the population is updated and the optimal solution is out-
put.

Figure 6. Flow diagram of DMA.

Figure 6. Flow diagram of DMA.

5. Experimental Comparison and Analysis
5.1. Experimental Settings

Since few pieces of literature and public benchmarks have been developed for DDBFSP,
we apply DFOA on its benchmark [8] to obtain test instances. These test instances are used
as the initial schedules for each distributed factory. To fulfill different experimental require-
ments, the range of variable intervals of the DPFSP benchmark is set as n ∈ {50, 100, 200},
m ∈ {5, 10, 20} and f ∈ {2, 3, 4}. There are 27 combinations of different parame-
ters, each containing 10 instances. The termination criterion of the algorithm is set to
Tmax = 90× n×m milliseconds.

The breakdown events are simulated according to the mechanism introduced in
Section 2.2. When an event occurs on machine i, the trigger node is firstly limited to the
interval [Pπk(l),i, Cπk(l),i] to ensure the timeliness of the breakdown. Since DMA performs
only on partial jobs which have not started processing, we compress the breakdown
interval to [Pπk(l),i, Cπk(nk−2),1], i.e., the start time of processing to the completion time of
the penultimate job at the first machine, to ensure a feasible execution space for DMA.

Electronics 2022, 11, 249 17 of 25

The experiments are conducted on a PC with Intel(R) Core(TM) i7-8700 CPU and 16G
RAM configuration, and the involved programs are compiled by Python. To balance the
objective functions (makespan and stability), both weight coefficients w1 and w2 are set
to 0.5. The algorithm is repeated 10 times for each breakdown in each factory, and the
experiments use the average relative percent deviation (ARPD) as the metric to evaluate
the mean quality of the obtained solutions. Since DMA is implemented for each distributed
factory, the sum of ARPDs of all factories is firstly calculated, and the mean value is defined
as the ARPD value for a single case of DDBFSP. The experiments will be conducted in the
following three perspectives:

(1) Key parameter calibration;
(2) Effectiveness of the proposed optimization strategy;
(3) Comparison with other intelligent algorithms.

5.2. Parameter Calibration

DMA contains three key parameters: population size Ps, mutation scaling factor κ,
and temperature adjustment parameter T0. The design of the experiment (DOE) [9] method
is used for parameter calibrations, and in total 36 sets of initial schedules with factory
number f = 3 were generated. The number of random breakdowns for each distributed
factory is set to 2. The key parameters and ARPD values are defined as the control factors
and response variables, respectively. The candidate values of the above parameters are
set as: Ps = {30, 50, 80, 100}, κ = {0.4, 0.7, 0.9} and T0 = {0.1, 0.2, 0.3, 0.4}, which generate
48 configuration combinations. We use the “Analysis of Variance” (ANOVA) method to
analyze the statistical results, as shown in Table 1.

Table 1. ANOVA results of DMA parameter combinations.

Source Sum of Squares Degree of Freedom Mean Square F-Ratio p-Value

Ps 38.4 3 12.8 134.4 0.007
κ 144.3 2 72.2 382.4 0.000
T0 6.8 3 2.3 17.6 0.012

Ps× κ 17.29 6 2.9 8.8 0.354
Ps× T0 4.8 9 0.5 0.55 0.492
κ × T0 0.5 6 0.1 2.46 0.087

As can be seen in Table 1, the p-values of Ps, κ and T0 are all less than 0.05 confidence
level, which means all the parameters have important impacts on the performance of
DMA. Among them, the corresponding F-ratio value of κ is the largest, which indicates
that κ has the greatest impact on DMA. Moreover, Table 1 shows that the p-values of
the interactions between every two parameters are greater than 0.05, which means the
parameter interactions do not have a significant effect on DMA, and the parameter can be
selected directly from the main effects plot in Figure 7.

Electronics 2022, 11, x FOR PEER REVIEW 20 of 28

As can be seen in Table 1, the p-values of Ps , κ and 0T are all less than 0.05 confi-
dence level, which means all the parameters have important impacts on the performance
of DMA. Among them, the corresponding F-ratio value of κ is the largest, which indi-
cates that κ has the greatest impact on DMA. Moreover, Table 1 shows that the p-values
of the interactions between every two parameters are greater than 0.05, which means the
parameter interactions do not have a significant effect on DMA, and the parameter can be
selected directly from the main effects plot in Figure 7.

Figure 7. Main effects plot of the parameters for DMA.

From Figure 7, it can be observed that the performance of DMA decreases with the
increment of κ , and DMA obtains the best results when 0.4=κ . A relatively overlarge
mutation scaling factor increases the randomness of search and leads to degradation of
the mutation. The effect of Ps ranks second, the performance of DMA first increases as
the number of Ps increases, it starts to decrease after reaching the optimum. This indi-
cates that increasing Ps appropriately will enhance the diversity of the population.
However, an overlarge Ps consumes too much running time of a single iteration, which
in turn compresses the number of iterations and leads to a decrease in the probability of
obtaining the optimal solution. The effect of 0T on the algorithmic performance ranked
the 3rd, and the main effect plot shows that the performance fluctuates with the growth
of 0T , DMA obtained the best results when 0 0.4=T . Based on the above analysis, the
parameter combinations of DMA are set as: =80Ps , 0.4=κ , 0 0.4=T .

5.3. Effectiveness of the Proposed Algorithmic Component
DMA contains three important components: WPNEH initialization, DE operators,

and BRRLS. To verify their effectiveness, we mask one corresponding part of DMA each
time, and generate three types of variant algorithms from DMA: (1) DMA_RI: random
initialization, which is used to verify the effectiveness of WPNEH initialization; (2)
DMA_ND: without neighborhood search, which is used to verify the effectiveness of DE
operators; (3) DMA_NL: without BRRLS, which is used to verify the effectiveness of
BRRLS. The parameter settings and instances used in Section 5.2 were adopted. As the
randomness of breakdown has a large impact on the results, to ensure the fairness of the
comparison, only one complete set of breakdowns is simulated, and all variant algorithms
are tested under this scenario. Table 2 shows the comparison results.

Figure 7. Main effects plot of the parameters for DMA.

From Figure 7, it can be observed that the performance of DMA decreases with the
increment of κ, and DMA obtains the best results when κ = 0.4. A relatively overlarge

Electronics 2022, 11, 249 18 of 25

mutation scaling factor increases the randomness of search and leads to degradation of
the mutation. The effect of Ps ranks second, the performance of DMA first increases as the
number of Ps increases, it starts to decrease after reaching the optimum. This indicates
that increasing Ps appropriately will enhance the diversity of the population. However,
an overlarge Ps consumes too much running time of a single iteration, which in turn
compresses the number of iterations and leads to a decrease in the probability of obtaining
the optimal solution. The effect of T0 on the algorithmic performance ranked the 3rd, and
the main effect plot shows that the performance fluctuates with the growth of T0, DMA
obtained the best results when T0 = 0.4. Based on the above analysis, the parameter
combinations of DMA are set as: Ps = 80, κ = 0.4, T0 = 0.4.

5.3. Effectiveness of the Proposed Algorithmic Component

DMA contains three important components: WPNEH initialization, DE operators, and
BRRLS. To verify their effectiveness, we mask one corresponding part of DMA each time,
and generate three types of variant algorithms from DMA: (1) DMA_RI: random initial-
ization, which is used to verify the effectiveness of WPNEH initialization; (2) DMA_ND:
without neighborhood search, which is used to verify the effectiveness of DE operators;
(3) DMA_NL: without BRRLS, which is used to verify the effectiveness of BRRLS. The
parameter settings and instances used in Section 5.2 were adopted. As the randomness of
breakdown has a large impact on the results, to ensure the fairness of the comparison, only
one complete set of breakdowns is simulated, and all variant algorithms are tested under
this scenario. Table 2 shows the comparison results.

Table 2. Comparison results between DMA and its variant algorithms.

Instance ARPD

n × m × f DMA_RI DMA_ND DMA-NL DMA

50 × 5 × 3 0.56 1.24 0.92 0.54
50 × 10 × 3 0.61 1.55 0.98 0.36
50 × 20 × 3 1.17 1.73 1.12 0.48
100 × 5 × 3 1.33 2.26 2.60 0.18

100 × 10 × 3 2.05 2.44 2.38 0.11
100 × 20 × 3 2.84 3.23 3.15 0.05
200 × 5 × 3 3.97 5.58 4.19 0.00

200 × 10 × 3 4.63 6.67 5.49 0.00
200 × 20 × 3 4.17 6.04 5.32 0.00

From Table 2, we can observe that the performance of DMA outperforms the other
variants in all scenarios. In specific analysis, DMA outperforms DMA_RI, representing that
the WPNEH initialization strategy can provide a better search starting point for DMA; DMA
outperforms DMA_ND, indicating that the DE operators can improve the performance of
DMA effectively. The results of DMA_NL are inferior to those of DMA, which means that
the proposed BRRLS and SA-based reception criterion have an important influence on the
optimization. BRRLS has retained the “greedy search” idea from RLS but improved the
selection of jobs in the reference sequence. It ensures the inconsistency of local search step
length through random selection of job blocks strategy, which makes the solutions obtained
by local search more diverse and helps DMA to jump out of the local optimum. On the
other hand, it can be observed from Table 2 that the differences between the compared
algorithms are not significant when the scale of the instance is relatively small (e.g., n = 50).
If the processing tasks (number of jobs) assigned to a distributed factory are small, the
corresponding reorder execution space is also smaller, and the comparison algorithms are
more likely to obtain optimal or suboptimal solutions in a given time. With the gradual
increase in the problem size, the differences between algorithms start to manifest. The
performance of each variant algorithm decreases more on the large-scale instances, while
DMA remains relatively more stable.

Electronics 2022, 11, 249 19 of 25

To verify whether the differences were significant, we conducted a significance test
from a statistical point of view. Each algorithm and ARPD value were chosen as the
control variable and the response variable. Figure 8 demonstrates the mean plot of the 95%
confidence interval. As can be seen, the ARPD values of each algorithm are ranked from
top to bottom as DMA_ND, DMA_RI, DMA_NL, and DMA. The confidence intervals of
each two algorithms do not overlap, which indicates that DMA is significantly better than
its variants. The experimental results reveal that the proposed optimization strategies for
each search phase jointly ensure the performance of DMA.

Electronics 2022, 11, x FOR PEER REVIEW 21 of 28

Table 2. Comparison results between DMA and its variant algorithms.

Instance ARPD
n × m × f DMA_RI DMA_ND DMA-NL DMA
50 × 5 × 3 0.56 1.24 0.92 0.54
50 × 10 × 3 0.61 1.55 0.98 0.36
50 × 20 × 3 1.17 1.73 1.12 0.48
100 × 5 × 3 1.33 2.26 2.60 0.18

100 × 10 × 3 2.05 2.44 2.38 0.11
100 × 20 × 3 2.84 3.23 3.15 0.05
200 × 5 × 3 3.97 5.58 4.19 0.00

200 × 10 × 3 4.63 6.67 5.49 0.00
200 × 20 × 3 4.17 6.04 5.32 0.00

From Table 2, we can observe that the performance of DMA outperforms the other
variants in all scenarios. In specific analysis, DMA outperforms DMA_RI, representing
that the WPNEH initialization strategy can provide a better search starting point for DMA;
DMA outperforms DMA_ND, indicating that the DE operators can improve the perfor-
mance of DMA effectively. The results of DMA_NL are inferior to those of DMA, which
means that the proposed BRRLS and SA-based reception criterion have an important in-
fluence on the optimization. BRRLS has retained the “greedy search” idea from RLS but
improved the selection of jobs in the reference sequence. It ensures the inconsistency of
local search step length through random selection of job blocks strategy, which makes the
solutions obtained by local search more diverse and helps DMA to jump out of the local
optimum. On the other hand, it can be observed from Table 2 that the differences between
the compared algorithms are not significant when the scale of the instance is relatively
small (e.g., 50=n). If the processing tasks (number of jobs) assigned to a distributed fac-
tory are small, the corresponding reorder execution space is also smaller, and the compar-
ison algorithms are more likely to obtain optimal or suboptimal solutions in a given time.
With the gradual increase in the problem size, the differences between algorithms start to
manifest. The performance of each variant algorithm decreases more on the large-scale
instances, while DMA remains relatively more stable.

To verify whether the differences were significant, we conducted a significance test
from a statistical point of view. Each algorithm and ARPD value were chosen as the con-
trol variable and the response variable. Figure 8 demonstrates the mean plot of the 95%
confidence interval. As can be seen, the ARPD values of each algorithm are ranked from
top to bottom as DMA_ND, DMA_RI, DMA_NL, and DMA. The confidence intervals of
each two algorithms do not overlap, which indicates that DMA is significantly better than
its variants. The experimental results reveal that the proposed optimization strategies for
each search phase jointly ensure the performance of DMA.

Figure 8. Mean plots with 95% confidence intervals for DMA and its variant algorithms. Figure 8. Mean plots with 95% confidence intervals for DMA and its variant algorithms.

5.4. Comparison with Other Intelligent Algorithms

In this section, DMA is compared with the algorithms for solving traditional flow shop
rescheduling problems. The compared algorithms are (1) Iterative Local Insertion Search
(ILS) [25]; (2) Iterative Greedy Algorithm (IG) [25]; (3) Improved Migratory Bird Algorithm
(IMBO) [47]; (4) Discrete Teaching and Learning Optimization (DTLO) Algorithm [29]. We
follow strictly the literature to compile all the comparison algorithms, which share the
same data structure, objective function, and termination criterion. To ensure comparison
fairness, we apply the same rescheduling process, i.e., the comparison algorithms share the
same initial schedules, the same time node distribution of breakdown events, and the same
rescheduling strategy. The algorithms are only used to reorder unprocessed jobs as a way
to test their optimization efficiencies. The calculation of ARPD is consistent with previous
sections. The parameter combinations of the comparison algorithm were pre-adjusted
and the specific settings are shown in Table 3. According to [25], as a single local search
algorithm, ILS stops immediately after obtaining a local optimum, so no special parameters
or termination conditions need to be set for ILS.

Table 3. Parameter determination of the compared algorithms.

Algorithm Parameters

ILS --
IG Job numbers of destruction 4

IMBO
Population size 50; Neighborhood set size 7; Migratory birds pass
on the number of solutions 3; Number of lead bird iterations 20;

Number of population iteration 100; weighted factor 0.8
DTLO Population size 50; learning factor of teacher 1

Table 4 shows the statistical results of different instances under single breakdown
(β = 1), the optimal values were bolded. It can be seen that DMA outperforms other
algorithms in all instances of distributed scenarios. DTLO, IG, IMBO, and ILS obtain re-
sults in 2nd, 3rd, 4th and 5th place. It indicates that DMA is more suitable as a reordering
algorithm. Specifically, ILS is an algorithm containing only a local insertion search frame-
work, which lacks key structures such as population initialization and neighborhood search.
It is difficult for ILS to balance exploration and exploitation, and therefore has the worst

Electronics 2022, 11, 249 20 of 25

performance. As metaheuristics, DTLO, IG, and IMBO are more competitive in terms of
performance on small-scale instances. For example, when the number of the distributed
factory is set as f = 4, and the total number of jobs is n = 50, the results of other algorithms
do not differ from DMA. The main reason is that when the size of the initial schedule is
small, fewer processing tasks are assigned to each distributed factory. The search space
for the solution becomes smaller, so the efficiency of each algorithm in finding the best
solutions in a given time becomes high, thus reducing the variability of the comparison
results. The same phenomenon is reflected in the scenarios of β = 2 and β = 3, as shown
in Tables 5 and 6. DMA also performs the best among all comparison algorithms. As the
number of breakdowns increases, the performances of the compared algorithms are not
affected too much by small-scale instances. The performances on large-scale instances
(n = 200) showed different degrees of degradation. The errors of single rescheduling
accumulate with the increment of breakdowns, which causes a deterioration effect, and
thus decreases the algorithmic performances relatively. In comparison, the statistical results
of DMA under different breakdown scenarios are less different, which also reveals that
DMA is more stable and robust on both small- and large-scale instances.

Table 4. Comparison results of different algorithms by β = 1.

Initial Instance ARPD

n × m × f ILS IG IMBO DTLO DMA

50 × 5 × 2 2.40 1.46 1.43 1.06 1.02
50 × 5 × 3 2.18 0.55 0.85 0.51 0.39
50 × 5 × 4 0.00 0.00 0.00 0.00 0.00
50 × 10 × 2 2.93 1.77 1.48 1.13 1.08
50 × 10 × 3 2.46 0.72 0.83 0.66 0.28
50 × 10 × 4 0.14 0.00 0.00 0.00 0.00
50 × 20 × 2 3.17 1.04 1.47 1.19 1.05
50 × 20 × 3 2.89 0.85 1.04 0.69 0.34
50 × 20 × 4 1.74 0.31 0.49 0.00 0.00
100 × 5 × 2 4.23 2.53 2.28 2.24 0.53
100 × 5 × 3 3.44 1.56 1.71 1.47 0.17
100 × 5 × 4 2.56 1.42 1.38 1.25 0.08

100 × 10 × 2 4.49 2.06 2.33 2.09 0.58
100 × 10 × 3 3.23 1.60 1.63 1.71 0.22
100 × 10 × 4 2.91 1.53 1.24 1.39 0.13
100 × 20 × 2 5.44 2.55 2.70 2.31 0.32
100 × 20 × 3 3.69 1.97 1.80 1.88 0.04
100 × 20 × 4 3.28 1.11 1.31 1.78 0.37
200 × 5 × 2 5.78 2.88 3.53 2.90 0.00
200 × 5 × 3 4.95 2.19 2.61 2.13 0.12
200 × 5 × 4 4.16 2.28 2.39 2.11 0.08

200 × 10 × 2 5.57 3.54 3.72 3.02 0.06
200 × 10 × 3 5.11 2.05 2.47 2.00 0.00
200 × 10 × 4 4.39 2.29 2.45 2.03 0.00
200 × 20 × 2 6.06 2.98 3.84 3.23 0.00
200 × 20 × 3 6.08 2.57 2.79 1.97 0.00
200 × 20 × 4 4.47 2.56 2.94 2.19 0.00

Ave. 3.62 1.71 1.87 1.59 0.25

To further verify the superiority of DMA, the differences between the compared
algorithms are observed through statistical tests. ANOVA is used to describe the mean plot
with a 95% confidence interval of the results obtained by the algorithms for different f, as
shown in Figure 9.

It can be observed that the ARPD of DMA falls below that of other algorithms, and
none of the confidence intervals overlap. It indicates again that the optimization perfor-
mance of DMA is significantly better than its comparators. Moreover, it can be seen from
Figure 9 that the performance of each algorithm gradually becomes better as f increases.

Electronics 2022, 11, 249 21 of 25

This is mainly because the reordering algorithm does not focus on the assignment of jobs
to plants in the initial schedule, rather on the reordering within the distributed factories.
An increase in f leads to a decrease in assigned jobs and a corresponding decrease in their
computational complexity and, therefore, an increase in the optimization-seeking efficiency
of an algorithm.

Moreover, we compared and analyzed the performances under different numbers
of breakdowns (β) based on the statistical results. Figure 10 shows the performance
curves of the comparative algorithms. It can be seen that ARPD values increase as β
gradually increases, representing that all the algorithms are affected by the frequency of
breakdowns. Compared with other algorithms, ARPDs of DMA are improved by at least
88%. Moreover, ARPD values of ILS, IG, IMBO, and DTLO algorithms fluctuate more and
show an increasing trend with the increase in β. Comparatively, ARPD values of DMA
fluctuate the least, which indicates that the robustness of DMA under different scenarios is
better than the compared algorithms.

In summary, DMA has a good performance for local reordering. Its innovation and
advantages can be summarized as follows: (1) WPNEH initialization method provides a
better initial population and high-quality search starting point for DMA; (2) the mutation
and crossover operators based on DE provides an excellent neighborhood search capability;
(3) BRRLS provides stronger local exploitation; (4) the SA-based reception criterion can
help DMA jump out of the local optimum effectively. Among them, (2), (3) and (4) balance
the exploration and exploitation of DMA.

Table 5. Comparison results of different algorithms by β = 2.

Initial Instance ARPD

n × m × f LS IG IMBO DTLO DMA

50 × 5 × 2 2.89 1.66 1.82 1.45 0.83
50 × 5 × 3 2.06 0.41 0.52 0.28 0.25
50 × 5 × 4 0.00 0.00 0.00 0.00 0.00
50 × 10 × 2 3.04 1.77 1.84 1.50 0.98
50 × 10 × 3 2.11 0.32 0.63 0.26 0.13
50 × 10 × 4 0.22 0.00 0.00 0.00 0.00
50 × 20 × 2 3.28 1.74 1.90 1.56 0.95
50 × 20 × 3 2.04 0.36 0.61 0.33 0.21
50 × 20 × 4 1.65 0.55 0.53 0.00 0.00
100 × 5 × 2 3.55 2.76 2.87 2.51 0.68
100 × 5 × 3 3.79 1.84 1.97 1.59 0.19
100 × 5 × 4 2.74 1.71 1.69 1.28 0.84

100 × 10 × 2 3.92 2.66 2.75 2.44 0.55
100 × 10 × 3 3.72 1.93 1.93 1.64 0.31
100 × 10 × 4 2.63 1.58 1.82 1.35 0.67
100 × 20 × 2 4.73 2.85 2.92 2.67 0.41
100 × 20 × 3 3.96 1.85 2.05 1.78 0.18
100 × 20 × 4 3.04 1.66 1.92 1.20 0.23
200 × 5 × 2 6.12 4.03 4.73 4.09 0.12
200 × 5 × 3 6.58 3.04 3.67 2.82 0.05
200 × 5 × 4 4.16 2.84 3.04 2.55 0.08

200 × 10 × 2 6.49 4.39 4.54 4.15 0.00
200 × 10 × 3 6.71 3.05 3.44 2.96 0.00
200 × 10 × 4 4.39 2.65 3.45 2.91 0.13
200 × 20 × 2 6.88 4.45 4.96 4.32 0.00
200 × 20 × 3 6.33 3.58 3.70 2.71 0.00
200 × 20 × 4 4.47 2.43 3.49 2.63 0.00

Ave. 3.75 2.07 2.33 1.88 0.29

Electronics 2022, 11, 249 22 of 25

Table 6. Comparison results of different algorithms by β = 3.

Initial Instance ARPD

n × m × f LS IG IMBO DTLO DMA

50 × 5 × 2 1.80 0.58 0.73 0.39 0.20
50 × 5 × 3 2.01 0.34 0.64 0.28 0.15
50 × 5 × 4 0.00 0.00 0.00 0.00 0.00
50 × 10 × 2 2.93 1.70 1.88 1.47 0.11
50 × 10 × 3 2.17 0.45 0.70 0.30 0.24
50 × 10 × 4 1.31 0.00 0.00 0.00 0.00
50 × 20 × 2 3.28 2.01 2.03 1.92 0.06
50 × 20 × 3 1.94 0.63 0.78 0.44 0.17
50 × 20 × 4 1.59 0.24 0.43 0.00 0.00
100 × 5 × 2 4.37 3.04 3.15 2.83 0.05
100 × 5 × 3 3.65 2.19 2.24 2.02 0.19
100 × 5 × 4 2.93 2.11 2.18 1.85 0.00

100 × 10 × 2 4.62 2.96 3.29 2.89 0.52
100 × 10 × 3 3.98 2.73 2.81 2.50 0.28
100 × 10 × 4 3.15 2.06 2.86 1.72 0.00
100 × 20 × 2 5.89 3.12 3.56 2.84 0.13
100 × 20 × 3 4.71 3.17 3.37 3.01 0.06
100 × 20 × 4 3.44 2.88 2.94 1.56 0.00
200 × 5 × 2 6.61 4.09 4.91 3.47 0.00
200 × 5 × 3 6.23 4.61 5.23 2.98 0.00
200 × 5 × 4 6.16 3.77 4.53 1.93 0.00

200 × 10 × 2 6.79 4.61 4.86 3.54 0.00
200 × 10 × 3 6.47 4.87 5.65 3.94 0.00
200 × 10 × 4 6.57 4.19 4.29 2.20 0.00
200 × 20 × 2 6.84 5.12 5.27 4.07 0.00
200 × 20 × 3 6.97 5.43 5.19 4.83 0.00
200 × 20 × 4 6.21 3.98 4.84 2.58 0.00

Ave. 4.16 2.63 2.94 2.04 0.08
Electronics 2022, 11, x FOR PEER REVIEW 25 of 28

Figure 9. Mean plot with 95% confidence interval of the compared algorithms on different scenarios.

It can be observed that the ARPD of DMA falls below that of other algorithms, and
none of the confidence intervals overlap. It indicates again that the optimization perfor-
mance of DMA is significantly better than its comparators. Moreover, it can be seen from
Figure 9 that the performance of each algorithm gradually becomes better as f increases.
This is mainly because the reordering algorithm does not focus on the assignment of jobs
to plants in the initial schedule, rather on the reordering within the distributed factories.
An increase in f leads to a decrease in assigned jobs and a corresponding decrease in their
computational complexity and, therefore, an increase in the optimization-seeking effi-
ciency of an algorithm.

Moreover, we compared and analyzed the performances under different numbers of
breakdowns (β) based on the statistical results. Figure 10 shows the performance curves
of the comparative algorithms. It can be seen that ARPD values increase as β gradually
increases, representing that all the algorithms are affected by the frequency of break-
downs. Compared with other algorithms, ARPDs of DMA are improved by at least 88%.
Moreover, ARPD values of ILS, IG, IMBO, and DTLO algorithms fluctuate more and show
an increasing trend with the increase in β . Comparatively, ARPD values of DMA fluc-
tuate the least, which indicates that the robustness of DMA under different scenarios is
better than the compared algorithms.

Figure 10. Performance comparison with different breakdown numbers.

In summary, DMA has a good performance for local reordering. Its innovation and
advantages can be summarized as follows: (1) WPNEH initialization method provides a
better initial population and high-quality search starting point for DMA; (2) the mutation
and crossover operators based on DE provides an excellent neighborhood search capabil-
ity; (3) BRRLS provides stronger local exploitation; (4) the SA-based reception criterion

Figure 9. Mean plot with 95% confidence interval of the compared algorithms on different scenarios.

Electronics 2022, 11, x FOR PEER REVIEW 25 of 28

Figure 9. Mean plot with 95% confidence interval of the compared algorithms on different scenarios.

It can be observed that the ARPD of DMA falls below that of other algorithms, and
none of the confidence intervals overlap. It indicates again that the optimization perfor-
mance of DMA is significantly better than its comparators. Moreover, it can be seen from
Figure 9 that the performance of each algorithm gradually becomes better as f increases.
This is mainly because the reordering algorithm does not focus on the assignment of jobs
to plants in the initial schedule, rather on the reordering within the distributed factories.
An increase in f leads to a decrease in assigned jobs and a corresponding decrease in their
computational complexity and, therefore, an increase in the optimization-seeking effi-
ciency of an algorithm.

Moreover, we compared and analyzed the performances under different numbers of
breakdowns (β) based on the statistical results. Figure 10 shows the performance curves
of the comparative algorithms. It can be seen that ARPD values increase as β gradually
increases, representing that all the algorithms are affected by the frequency of break-
downs. Compared with other algorithms, ARPDs of DMA are improved by at least 88%.
Moreover, ARPD values of ILS, IG, IMBO, and DTLO algorithms fluctuate more and show
an increasing trend with the increase in β . Comparatively, ARPD values of DMA fluc-
tuate the least, which indicates that the robustness of DMA under different scenarios is
better than the compared algorithms.

Figure 10. Performance comparison with different breakdown numbers.

In summary, DMA has a good performance for local reordering. Its innovation and
advantages can be summarized as follows: (1) WPNEH initialization method provides a
better initial population and high-quality search starting point for DMA; (2) the mutation
and crossover operators based on DE provides an excellent neighborhood search capabil-
ity; (3) BRRLS provides stronger local exploitation; (4) the SA-based reception criterion

Figure 10. Performance comparison with different breakdown numbers.

Electronics 2022, 11, 249 23 of 25

6. Conclusions

Building rescheduling optimization models and designing effective optimization
methods according to the characteristics of distributed manufacturing are of significance to
promote the research of the dynamic scheduling theory of distributed manufacturing. This
study investigated the rescheduling strategy and algorithm for DDBFSP, in which machine
breakdown events are considered as the disruption in the manufacturing site. Firstly, the
mathematical model of DDBFSP including the event simulation mechanism is constructed.
We consider makespan and stability as the objectives. The goal of this study is to optimize
the bi-objective when the stochastic breakdown occurs in any distributed factories. We
apply the “event-driven” policy in response to the disruption. A two-stage “predictive-
reactive” rescheduling strategy is proposed. In the first stage, a static environment (DBFSP)
without machine breakdown is considered, and the global initial schedules are generated; in
the second stage, after machine breakdown occurs, the initial schedule is locally optimized
by a hybrid repair policy based on “right-shift repair + local reorder”, and the DMA
reordering algorithm based on DE is proposed for local reorder operation. For DMA, a
WPNEH initialization method is designed to generate a high-quality population. In the
neighborhood search phase, DE is embedded to improve the neighborhood structure and
expand the target space by using mutation and crossover operators; in the local search
phase, the BRRLS framework is proposed to perturb the high-quality solutions. To maintain
the diversity, BRRLS has combined with the SA mechanism to receive the worse solutions
with a certain probability. To obtain the best performance of DMA, the DOE method is
used to calibrate three key parameters. The effectiveness of the proposed optimization
strategy for DMA is verified through comparative experiments. Finally, DMA is compared
with other algorithms on different test instances. The statistical analysis using ANOVA has
verified the superiority of DMA.

Although the proposed rescheduling strategy has shown effectiveness, there still exist
shortcomings. In this study, we only considered the breakdown event as the disruption.
Real-life manufacturing suffers from far more than one disruption. The other common
disruptions such as job cancellations and their interaction mechanism should be deeply
investigated. Therefore, future works will concentrate on the construction of a more refined
model that can manage more disruptions simultaneously.

This study attempts to explore the dynamic scheduling problem from the perspective
of operational research optimization. With the development of the Industrial 4.0 network
and big data, other artificially intelligent technologies play increasingly important roles in
smart manufacturing. Combining data-driven technology with intelligent algorithms could
adopt their respective advantages, and create more advanced optimization frameworks.
For example, intelligent optimization can provide a large amount of historical scheduling
data, which can be aggregated with other industrial information as a sample source for data-
driven and machine learning. Therefore, the scheduling decision-making function can be
deployed hierarchically and decoupled according to different scenarios and environments,
thus making rational use of computing resources and improving the flexibility and stability
of the system.

Author Contributions: Conceptualization, Z.L.; methodology, X.Z.; software, Y.H.; validation, Z.L.,
X.Z. and M.R.; formal analysis, G.K.; investigation, R.S.; resources, G.K.; data curation, X.Z.; writing—
original draft preparation, X.Z. and Y.H.; writing—review and editing, Z.L.; visualization, M.R.;
supervision, G.K.; project administration, R.S.; funding acquisition, Z.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is funded by the Natural Science Foundation of Xuzhou, China (KC21070),
National Natural Science Foundation of China (61803192), and the Narodowego Centrum Nauki,
Poland (No. 2020/37/K/ST8/02748 & No. 2017/25/B/ST8/00962).

Data Availability Statement: All data can be requested from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 249 24 of 25

References
1. Helu, M.; Sobel, W.; Nelaturi, S.; Waddell, R.; Hibbard, S. Industry Review of Distributed Production in Discrete Manufacturing.

J. Manuf. Sci. Eng. 2020, 142, 110802. [CrossRef]
2. Cheng, Y.; Bi, L.; Tao, F.; Ji, P. Hypernetwork-based manufacturing service scheduling for distributed and collaborative manufac-

turing operations towards smart manufacturing. J. Intell. Manuf. 2020, 31, 1707–1720. [CrossRef]
3. Valilai, O.F.; Houshmand, M. A collaborative and integrated platform to support distributed manufacturing system using a

service-oriented approach based on cloud computing paradigm. Robot. Comput.-Integr. Manuf. 2013, 29, 110–127. [CrossRef]
4. Chen, S.; Pan, Q.K.; Gao, L. Production scheduling for blocking flowshop in distributed environment using effective heuristics

and iterated greedy algorithm. Robot. Comput.-Integr. Manuf. 2021, 71, 102155. [CrossRef]
5. Ribas, I.; Companys, R.; Tort-Martorell, X. Efficient heuristics for the parallel blocking flow shop scheduling problem.

Expert Syst. Appl. 2017, 74, 41–54. [CrossRef]
6. Ribas, I.; Companys, R.; Tort-Martorell, X. An iterated greedy algorithm for solving the total tardiness parallel blocking flow shop

scheduling problem. Expert Syst. Appl. 2019, 121, 347–361. [CrossRef]
7. Zhang, G.; Xing, K.; Cao, F. Discrete differential evolution algorithm for distributed blocking flowshop scheduling with makespan

criterion. Eng. Appl. Artif. Intell. 2018, 76, 96–107. [CrossRef]
8. Zhang, X.; Liu, X.; Tang, S.; Królczyk, G.; Li, Z. Solving Scheduling Problem in a Distributed Manufacturing System Using a

Discrete Fruit Fly Optimization Algorithm. Energies 2019, 12, 3260. [CrossRef]
9. Shao, Z.; Pi, D.; Shao, W. Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in

distributed environment. Expert Syst. Appl. 2020, 145, 113147. [CrossRef]
10. Li, W.; Li, J.; Gao, K.; Han, Y.; Niu, B.; Liu, Z.; Sun, Q. Solving robotic distributed flowshop problem using an improved iterated

greedy algorithm. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419879819. [CrossRef]
11. Zhao, F.; Zhao, L.; Wang, L.; Song, H. An ensemble discrete differential evolution for the distributed blocking flowshop scheduling

with minimizing makespan criterion. Expert Syst. Appl. 2020, 160, 113678. [CrossRef]
12. Miyata, H.H.; Nagano, M.S. The blocking flow shop scheduling problem: A comprehensive and conceptual review.

Expert Syst. Appl. 2019, 137, 130–156. [CrossRef]
13. Chen, Q.; Deng, L.-F.; Wang, H.-M. Optimization of multi-task job-shop scheduling based on uncertainty theory algorithm. Int. J.

Simul. Model. 2018, 17, 543–552. [CrossRef]
14. Liu, W.; Jin, Y.; Price, M. New meta-heuristic for dynamic scheduling in permutation flowshop with new order arrival. Int. J. Adv.

Manuf. Technol. 2018, 98, 1817–1830. [CrossRef]
15. Chen, J.; Wang, M.; Kong, X.-T.; Huang, G.-Q.; Dai, Q.; Shi, G. Manufacturing synchronization in a hybrid flowshop with dynamic

order arrivals. J. Intell. Manuf. 2019, 30, 2659–2668. [CrossRef]
16. Zhang, B.; Pan, Q.-K.; Gao, L.; Zhang, X.-L.; Peng, K.K. A multi-objective migrating birds optimization algorithm for the hybrid

flowshop rescheduling problem. Soft Comput. 2019, 23, 8101–8129. [CrossRef]
17. Moghaddam, S.-K.; Saitou, K. Predictive-Reactive Rescheduling for New Order Arrivals with Optimal Dynamic Pegging. In

Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering, Hong Kong, China, 20–21
August 2020; pp. 710–715.

18. Han, Y.; Gong, D.; Jin, Y.; Pan, Q. Evolutionary Multiobjective Blocking Lot-Streaming Flow Shop Scheduling With Machine
Breakdowns. IEEE Trans. Syst. Man Cybern. 2019, 49, 184–197. [CrossRef] [PubMed]

19. Nica, E.; Stan, C.-I.; Lut,an (Petre), A.-G.; Oas, a (Geambazi), R.-S, . Internet of Things-based Real-Time Production Logistics, Sus-
tainable Industrial Value Creation, and Artificial Intelligence-driven Big Data Analytics in Cyber-Physical Smart Manufacturing
Systems. Econ. Manag. Financ. Mark. 2021, 16, 52–62.

20. Popescu, G.-H.; Petreanu, S.; Alexandru, B.; Corpodean, H. Internet of Things-based Real-Time Production Logistics, Cyber-
Physical Process Monitoring Systems, and Industrial Artificial Intelligence in Sustainable Smart Manufacturing. J. Self-Gov.
Manag. Econ. 2021, 9, 52–62.

21. Cohen, S.; Macek, J. Cyber-Physical Process Monitoring Systems, Real-Time Big Data Analytics, and Industrial Artificial
Intelligence in Sustainable Smart Manufacturing. Econ. Manag. Financ. Mark. 2021, 16, 55–67.

22. Vieira, G.-E.; Herrmann, J.-W.; Lin, E. Rescheduling manufacturing systems: A framework of strategies, policies, and methods.
J. Sched. 2003, 6, 39–62. [CrossRef]

23. Framinan, J.-M.; Fernandez-Viagas, V.; Perez-Gonzalez, P. Using real-time information to reschedule jobs in a flowshop with
variable processing times. Comput. Ind. Eng. 2019, 129, 113–125. [CrossRef]

24. Katragjini, K.; Vallada, E.; Ruiz, R. Flow shop rescheduling under different types of disruption. Int. J. Prod. Res. 2013, 51, 780–797.
[CrossRef]

25. Iris, Ç.; Lam, J.-S.-L. Recoverable robustness in weekly berth and quay crane planning. Transp. Res. Part B Methodol. 2019, 122,
365–389. [CrossRef]

26. Ma, Z.; Yang, Z.; Liu, S.; Song, W. Optimized rescheduling of multiple production lines for flowshop production of reinforced
precast concrete components. Autom. Constr. 2018, 95, 86–97. [CrossRef]

27. Li, J.; Pan, Q.; Mao, K. A hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in
steelmaking systems. IEEE Trans. Autom. Sci. Eng. 2016, 13, 932–949. [CrossRef]

http://doi.org/10.1115/1.4046988
http://doi.org/10.1007/s10845-018-1417-8
http://doi.org/10.1016/j.rcim.2012.07.009
http://doi.org/10.1016/j.rcim.2021.102155
http://doi.org/10.1016/j.eswa.2017.01.006
http://doi.org/10.1016/j.eswa.2018.12.039
http://doi.org/10.1016/j.engappai.2018.09.005
http://doi.org/10.3390/en12173260
http://doi.org/10.1016/j.eswa.2019.113147
http://doi.org/10.1177/1729881419879819
http://doi.org/10.1016/j.eswa.2020.113678
http://doi.org/10.1016/j.eswa.2019.06.069
http://doi.org/10.2507/IJSIMM17(3)CO14
http://doi.org/10.1007/s00170-018-2171-y
http://doi.org/10.1007/s10845-017-1295-5
http://doi.org/10.1007/s00500-018-3447-8
http://doi.org/10.1109/TCYB.2017.2771213
http://www.ncbi.nlm.nih.gov/pubmed/29990118
http://doi.org/10.1023/A:1022235519958
http://doi.org/10.1016/j.cie.2019.01.036
http://doi.org/10.1080/00207543.2012.666856
http://doi.org/10.1016/j.trb.2019.02.013
http://doi.org/10.1016/j.autcon.2018.08.002
http://doi.org/10.1109/TASE.2015.2425404

Electronics 2022, 11, 249 25 of 25

28. Li, J.; Pan, Q.; Mao, K. A discrete teaching-learning-based optimization algorithm for realistic flowshop rescheduling problems.
Eng. Appl. Artif. Intell. 2015, 37, 279–292. [CrossRef]

29. Valledor, P.; Gomez, A.; Priore, P.; Puente, J. Solving multi-objective rescheduling problems in dynamic permutation flow shop
environments with disruptions. Int. J. Prod. Res. 2018, 56, 6363–6377. [CrossRef]

30. Wade, K.; Vochozka, M. Artificial Intelligence Data-driven Internet of Things Systems, Sustainable Industry 4.0 Wireless Networks,
and Digitized Mass Production in Cyber-Physical Smart Manufacturing. J. Self-Gov. Manag. Econ. 2021, 9, 48–60.

31. Hamilton, S. Real-Time Big Data Analytics, Sustainable Industry 4.0 Wireless Networks, and Internet of Things-based Decision
Support Systems in Cyber-Physical Smart Manufacturing. Econ. Manag. Financ. Mark. 2021, 16, 84–94.

32. Riley, C.; Vrbka, J.; Rowland, Z. Internet of Things-enabled Sustainability, Big Data-driven Decision-Making Processes, and
Digitized Mass Production in Industry 4.0-based Manufacturing Systems. J. Self-Gov. Manag. Econ. 2021, 9, 42–52.

33. Pelau, C.; Dabija, D.-C.; Ene, I. What Makes an AI Device Human-Like? The Role of Interaction Quality, Empathy and
Perceived Psychological Anthropomorphic Characteristics in the Acceptance of Artificial Intelligence in the Service Industry.
Comput. Hum. Behav. 2021, 122, 106855. [CrossRef]

34. Richard, D. The Selfish Gene; Oxford University Press: New York, NY, USA, 1976.
35. Wang, J.; Zhou, Y.; Wang, Y.; Zhang, J.; Chen, C.; Zheng, Z. Multiobjective vehicle routing problems with simultaneous delivery

and pickup and time windows: Formulation, instances, and algorithms. IEEE Trans. Cybern. 2015, 46, 582–594. [CrossRef]
[PubMed]

36. Decerle, J.; Grunder, O.; El Hassani, A.-H.; Barakat, O. A memetic algorithm for multi-objective optimization of the home health
care problem. Swarm Evol. Comput. 2019, 44, 712–727. [CrossRef]

37. Yancey, S.-K.; Tsvetkov, P.-V.; Jarrell, J.-J. A greedy memetic algorithm for a multiobjective dynamic bin packing problem for
storing cooling objects. J. Heuristics 2019, 25, 1–45.

38. Zhou, Y.; Fan, M.; Ma, F.; Xu, X.; Yin, M. A decomposition-based memetic algorithm using helper objectives for shortwave radio
broadcast resource allocation problem in china. Appl. Soft Comput. 2020, 91, 106251. [CrossRef]

39. Jiang, E.; Wang, L.; Lu, J. Modified multi-objective evolutionary algorithm based on decomposition for low-carbon scheduling of
distributed permutation flow-shop. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence, Honolulu,
HI, USA, 27 November–1 December 2017; pp. 1–7.

40. Abedi, M.; Chiong, R.; Noman, N.; Zhang, R. A multi-population, multi-objective memetic algorithm for energy-efficient job-shop
scheduling with deteriorating machines. Expert Syst. Appl. 2020, 157, 113348. [CrossRef]

41. Kurdi, M. An improved island model memetic algorithm with a new cooperation phase for multi-objective job shop scheduling
problem. Comput. Ind. Eng. 2017, 111, 183–201. [CrossRef]

42. Minguillon, F.E.; Stricker, N. Robust predictive–reactive scheduling and its effect on machine disturbance mitigation. CIRP Ann.
2020, 69, 401–404. [CrossRef]

43. Deng, J.; Wang, L.; Wu, C.; Wang, J.; Zheng, X. A competitive memetic algorithm for carbon-efficient scheduling of distributed
flow-shop. In International Conference on Intelligent Computing Lanzhou, China, 2–5 August 2016; Springer: Cham, Switzerland, 2016;
pp. 476–488.

44. Liu, X.; Zhan, Z.; Lin, Y.; Chen, W.; Gong, Y.; Gu, T.; Yuan, H.; Zhang, J. Historical and heuristic-based adaptive differential
evolution. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 2623–2635. [CrossRef]

45. Boejko, W.; Grabowski, J.; Wodecki, M. Block approach-tabu search algorithm for single machine total weighted tardiness problem.
Comput. Ind. Eng. 2006, 50, 1–14. [CrossRef]

46. Osman, I.; Potts, C. Simulated annealing for permutation flow-shop scheduling. Omega 1989, 17, 551–557. [CrossRef]
47. Duan, J.; Sun, W.; Li, J.; Xu, Y. A Flowshop rescheduling algorithm based on migrating birds optimization. Control. Eng. China

2017, 24, 1656–1661. (In Chinese)

http://doi.org/10.1016/j.engappai.2014.09.015
http://doi.org/10.1080/00207543.2018.1468095
http://doi.org/10.1016/j.chb.2021.106855
http://doi.org/10.1109/TCYB.2015.2409837
http://www.ncbi.nlm.nih.gov/pubmed/25794408
http://doi.org/10.1016/j.swevo.2018.08.014
http://doi.org/10.1016/j.asoc.2020.106251
http://doi.org/10.1016/j.eswa.2020.113348
http://doi.org/10.1016/j.cie.2017.07.021
http://doi.org/10.1016/j.cirp.2020.03.019
http://doi.org/10.1109/TSMC.2018.2855155
http://doi.org/10.1016/j.cie.2005.12.001
http://doi.org/10.1016/0305-0483(89)90059-5

	Introduction
	Method
	Statement of DBFSP in Static Environment
	Statement of DDBFSP
	Optimization Objectives of DDBFSP
	Statement of Job Status after Breakdown Event

	Rescheduling Framework for DDBFSP
	Rescheduling Strategy
	Rescheduling Method
	Rescheduling Procedure

	Reordering Algorithm-DMA
	Introduction of Standard MA
	Population Initialization
	DE Operation
	Mutation
	Crossover

	Job Block-Based Random Reference Local Search
	Update Strategy of the Population
	Flowchart of DMA

	Experimental Comparison and Analysis
	Experimental Settings
	Parameter Calibration
	Effectiveness of the Proposed Algorithmic Component
	Comparison with Other Intelligent Algorithms

	Conclusions
	References

