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Abstract: An effective anomaly-based intelligent IDS (AN-Intel-IDS) must detect both known and
unknown attacks. Hence, there is a need to train AN-Intel-IDS using dynamically generated, real-time
data in an adversarial setting. Unfortunately, the public datasets available to train AN-Intel-IDS are
ineluctably static, unrealistic, and prone to obsolescence. Further, the need to protect private data and
conceal sensitive data features has limited data sharing, thus encouraging the use of synthetic data for
training predictive and intrusion detection models. However, synthetic data can be unrealistic and
potentially bias. On the other hand, real-time data are realistic and current; however, it is inherently
imbalanced due to the uneven distribution of anomalous and non-anomalous examples. In general,
non-anomalous or normal examples are more frequent than anomalous or attack examples, thus
leading to skewed distribution. While imbalanced data are commonly predominant in intrusion
detection applications, it can lead to inaccurate predictions and degraded performance. Furthermore,
the lack of real-time data produces potentially biased models that are less effective in predicting
unknown attacks. Therefore, training AN-Intel-IDS using imbalanced and adversarial learning is
instrumental to their efficacy and high performance. This paper investigates imbalanced learning and
adversarial learning for training AN-Intel-IDS using a qualitative study. It surveys and synthesizes
generative-based data augmentation techniques for addressing the uneven data distribution and
generative-based adversarial techniques for generating synthetic yet realistic data in an adversarial
setting using rapid review, structured reporting, and subgroup analysis.

Keywords: imbalanced learning; adversarial learning; generative models; generative adversarial
networks; oversampling; intrusion detection systems; machine learning; deep learning

1. Introduction

In a binary classification problem, such as anomaly-based detection, where the dataset
contains two sets of examples (normal and anomalous), it is common to encounter class
imbalance. Class imbalance generally occurs when the normal set contains significantly
more examples or samples than the anomalous set, thus dividing the dataset into minority
and majority class samples. While both classes exist in binary classification datasets, the mi-
nority class is the one that is often of interest to many binary classification problems [1].
For example, training an AN-Intel-IDS model often involves imbalanced data where the
normal samples are typically more frequent than the anomalous. Even when considering
realistic conditions, the normal class contains numerous samples compared to the abnor-
mal or anomalous class, which is often poorly sampled or not well-defined [2]. Inevitably,
the training dataset influences the machine learning models’ predictability and performance.
Hence, an imbalanced dataset can lead to classification issues, such as over classification.
For example, data imbalance or uneven class distribution can cause an AN-Intel-IDS model
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to over classify the normal class due to its high probability in the dataset compared to
the anomalous one. Thus, data imbalance directly impacts the trained model’s prediction
accuracy and overall performance. Further, the class imbalance has an adverse impact
on many machine learning (ML) algorithms [3]. It can lead to biased predictive models,
misclassification, and performance degradation. For instance, an anomaly-based detection
model is usually biased towards the majority class (i.e., the normal or non-malicious class).
In addition to data imbalance, training ML models using insufficient data can also lead
to misclassification and performance degradation issues. In general, the expensiveness
of data collection and gathering often creates a situation where data for training learning
models becomes insufficiently large to train these models effectively. Invariably, insufficient
data and imbalanced data adversely affect ML and deep learning (DL) models, where the
models’ performance typically degrades when learning from severely imbalanced data,
insufficient data, or both [3–9]. Therefore, training effective AN-Intel-IDS models require
considerable data [3]. However, sufficient data for training learning models may not be
readily available due to data sparsity, data limitation, data privacy, and data sensitivity.
Invariably, data privacy, concealment, and sensitivity limit data sharing and accessibility,
leading to the use of synthetic data to train the predictive models instead of actual or
ground truth data.

Using synthetic data to train, test, or evaluate AN-Intel-IDS models is problematic
when the training of predictive models typically involves imbalanced data. In addition,
synthetic data can be unrealistic and potentially bias. On the other hand, ground-truth
datasets are highly desirable when training AN-Intel-IDS models. However, the ground
truth data usually has a skewed distribution, thus, leading to biased predictive models.
Another critical issue to consider when training AN-Intel-IDS models is the ability of the
learning model to detect both known and unknown attacks, which indicates the need
to train learning models in an adversarial setting by generating novel adversarial exam-
ples containing unforeseen attacks. Hence, adversarial learning is as equally crucial as
imbalanced learning. Nonetheless, adversarial learning still suffers from data imbalance.
In general, anomaly-based detection models use a one-class approach, typically the nor-
mal class, to detect intrusions even when the abnormal class is of interest. Further, even
when using adversarial learning approaches, such as unsupervised generative adversarial
networks (GAN), the underlying assumption is that the training data are anomaly-free [4].
As a result, anomaly-based models suffer from false positives due to the model’s bias
towards the normal examples.

Traditional approaches to solving the data imbalance problem had primarily focused
on data augmentation, data generation, and data imputation. Data augmentation aims at
increasing the data by creating additional training samples either by transforming the data
in the data space or creating additional examples in the feature space [5]. Data generation
aims to increase the data by creating new synthetic data to preserve the privacy and
confidentiality of the actual data. Data imputation, which targets missing data, increases
data samples by replacing missing values using substitution methods, such as regression
and matching methods, to name a few [6,7]. While data augmentation, data generation,
and data imputation are the intuitive approaches to consider, generating sufficient data or
obtaining a balanced class distribution from ground truth data using traditional ML or DL is
invariably tortuous. Hence, a better approach is to use non-traditional ML and DL methods
to address data imbalance for normal learning and adversarial learning. For example, non-
traditional ML and DL methods for data augmentation, data generation, or both include but
not limited to IoT Sequential GAN, Wasserstein GAN plus Gradient Penalty (WGAN-GP),
and GAN plus Synthetic Minority Oversampling Techniques (GAN-SMOTE) [10–12].

This paper surveys the most recent data augmentation and generation methods, we
refer to as data-driven learning (DDL) methods, for imbalanced and adversarial learning
using rapid review, structured reporting, and subgroup analysis. It focuses on methods
that employ non-traditional approaches to data augmentation and generation, such as
generative models, and whose domain of application is one or more of the following
domains: Internet of Things (IoT), cyber-physical systems (CPS), smart homes, intrusion
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detection systems, traditional communication networks, and cybersecurity. In general,
this paper aims to present a rapid review of data augmentation and generation methods
proposed, particularly in the last three to four years using a qualitative approach. Its
main goal is to enable researchers, who are interested in using data-driven learning to
address data scarcity and data restriction present to build AN-Intel IDS, to get a general
idea of the latest proposed methods using non-traditional ML and DL approaches, as well
as a general understanding of the challenges and knowledge of open issues. Hence,
the main contribution of this paper is a classification scheme based on the method class
of learning, type of the generative model, the specific domain of application, publication
year, and subgroup analysis. Subgroup analysis uses the type of approach to subgroup the
methods, to show the evaluation results based on the following: data quality, prediction
accuracy using f-score, and performance compared to other methods. In addition, it
highlights the advantages and disadvantages of DDL methods. The remainder of this
paper’s organization is as follows: In Section 2, we provide background preliminaries.
Then, we review the related work in Section 3 and describe our research design and
methodology in Section 4. Next, in Sections 5–7, we describe and summarize the DDL
methods for imbalanced and adversarial learning, respectively. Then, we present the results
of our findings in Section 8. Finally, we highlight challenges, discuss open research issues
in Section 9 and conclude in Section 10.

2. Background Preliminaries

Data resampling techniques help solve the problem of imbalanced data. Whereas data
augmentation techniques help solve data imbalance, data scarcity and enable adversarial
training. In this section, we describe resampling and augmentation techniques that focus
on preliminaries limited to the surveyed methods. Additionally, we focus on techniques
that were widely mentioned and used in the reviewed literature.

2.1. Data Resampling Techniques

Resampling techniques, which are often applicable before learning, adjust the minority
class distribution to solve the data imbalance problem. Examples of data resampling tech-
niques include random oversampling, random undersampling, and SMOTE. Oversampling
and undersampling techniques focus on balancing the distribution of the majority and
minority classes in the dataset. Oversampling increases the weight of the minority class,
whereas undersampling reduces the weight of the majority class [8]. While oversampling
and undersampling reduce data imbalance using the same dataset, SMOTE, an intelligent
data resampling technique, reduces the degree of imbalance by synthetically creating a
new minority class [13]. The authors in [8] define SMOTE as an oversampling technique,
whereas the authors in [13] define SMOTE as a combination of data oversampling and data
undersampling techniques. Each one of the three resampling techniques suffers from a spe-
cific issue. Oversampling increases the data size and can lead to learner model overfitting.
Undersampling reduces the data size; however, it leads to information loss. SMOTE suffers
from overfitting and overlapping. However, overfitting is less significant in SMOTE than
overlapping, which results from interpolating between relatively adjacent instances of the
minority class.

2.2. Data Augmentation Techniques

Data augmentation techniques can solve data imbalance without suffering from over-
lapping or resulting in model overfitting. For example, techniques such as GAN address
oversampling and overfitting issues by specifying the resampling rate ahead of time and
using noise to increase the minority class examples. Given this prior knowledge, GANS can
replicate the data [8,10]. Apart from GAN, this paper considers other data augmentation
techniques such as autoencoders (AE) and Wesserian GAN (WGAN). In doing so, we focus
on key preliminaries limited to the surveyed methods.

GAN, which belongs to the class of generative models, is a priori knowledge method
that uses neural networks to generate data from noise. Its main goal is to learn the data
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distribution and then mimic the distribution to either create a similar distribution or a
variant of it [14]. Historically, the use of GANs focused on generating adversarial examples
(normal examples with added perturbations) to deceive an image classifier. However,
its use extends beyond adversarial learning and the image recognition domain. GANs
can generate benign data, adversarial data, or both, and their application can span other
domains such as networking and cybersecurity. A basic GAN consists of a generator and
discriminator; both are neural networks locked in a min-max game. The generator tries
to maximize the loss function, and the discriminator minimizes it. In this min-max game,
the generator goal is to generate plausible data indistinguishable from authentic data. The
discriminator goal is to classify the generated data as plausible or implausible [15].

A variation of a GAN, known as Wasserstein GAN (WGAN), can model discrete
distributions over a continuous feature space [11]. WGAN trains the discriminator to
discriminate between plausible and implausible examples using an estimation rather than a
classification, i.e., outputting a number, which is significantly large when data are authentic
and small otherwise. Similar to GANs, Autoencoders adds a small perturbation to the input.
They are generative models that consist of two neural networks known as an encoder and a
decoder [16]. The encoder learns how to add noise to efficiently encode the data, while the
decoder learns how to decode the encoded data by distinguishing between added noise
and original data. If the encoded data are different from the decoded data, the autoencoder
adjusts its weight. Autoencoders have performance comparable to GANs and have their
use in anomaly detection.

In general, GANs can address data imbalance by generating more data without
exhibiting overlapping or overfitting. Unlike the resampling and SMOTE techniques,
a GAN can solve the data imbalance by specifying the sampling rate and replicating
existing data rather than generating new data with a feature space closer to the existing
one without specifying the sampling rate.

3. Related Work

The thesis in [17], which focused on network security for IoT, provided an overview
of generative deep learning models for generating network traffic. The author broadly
categorized the surveyed models into network flow-level and network packet-level. Further,
they classified the models based on the type of the generated network traffic, the employed
algorithm, and used features of the generated traffic. In addition, the author highlighted the
limitations of these models based on IoT traffic generation and the level of generated traffic
and proposed a hybrid model that generated a combination of flow-level and packet-level
network traffic.

The authors in [18] focused on GAN-based anomaly detection (AnoGAN) methods
by highlighting their pros and cons. The authors suggested that the GAN-based methods
for anomaly detection’s approach built on the adversarial feature learning approach for
detecting anomaly used by the bidirectional GAN, known as BiGAN. Further, they empiri-
cally validated the main GAN-based models for anomaly detection by re-implementing all
models and evaluating their performance using the commonly known datasets for training
and testing the models.

The study in [19] focused on adversarial examples for deceiving deep learning models
for image recognition and surveyed AEs generation methods and their defense techniques.
The authors suggested that one notable aspect of AEs was that the same set of AEs could
attack different models with different architecture and training data. Further, they explained
the cause of AEs, described their characteristics, and discussed their evaluation metrics.
Additionally, the authors listed AEs’ adversarial abilities and goals and introduced AEs’
construction methods, highlighting their advantages and disadvantages. The authors
compared their attributes, success rate, and transfer rate based on different attack methods.
Moreover, they described the primary goals of defending against AEs, detailed current
defense techniques and their limitations, and summarized several challenges.

Focusing on the creation of synthetic data through deep generative models, the au-
thors in [3] provided a comprehensive survey of GAN-based approaches for generating
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or transforming synthetic network data for network applications such as IoT and mobile
networks and presented an overall taxonomy of generative models where they broadly
divided them into explicit density and implicit density models. Further, they provided a
detailed overview of GAN variations and architectures and their applications in computer
and communication networks. They proposed an evaluation framework for comparing the
performance of different GAN-based approaches using publicly known network datasets.
Most notably, they provided a taxonomic categorization of generative approaches based on
their application, problem solved, and model used over the various classes of mobile net-
work, network analysis, IoT, physical layer, and cybersecurity, In addition, they introduced
parameters for evaluating GANs such as loss, optimizer, learning rate, latent dimension,
batch size, and epochs.

The paper in [20] reviewed GANs and discussed their strength compared to other
generative models and how they operate. The authors noted problems related to the
training, testing, and evaluation of GANs and further classified the GANs based on the
used approach into two categories: GANs to protect cybersecurity systems from attacks
and GANs used to attack cybersecurity systems. In addition, they highlighted four GAN
properties and discussed variant GAN architectures and GANs limitations in cybersecu-
rity applications.

The study in [21] focused on the field of imbalanced learning development by dis-
cussing data imbalance open issues and challenges related to various forms of learning and
new methods for managing data imbalance for recent applications. The author analyzed
different aspects of imbalanced learning such as classification, clustering, and regression
and highlighted challenges in several critical areas, including imbalanced classification and
semi-supervised and unsupervised handling of imbalanced datasets.

The authors in [13] focused on high-class imbalance, where the majority to minority
class ratio is 100:1 and 10,000:1, in big data. Further, they discussed data-level and algorithm-
level techniques and reviewed methods addressing the class imbalance in regular and big
data. The authors noted that data sampling methods with random over-sampling methods
showed overall better results concerning the class imbalance. However, algorithm-level
methods performance reported in the literature showed inconsistent and conflicting results
and evaluation methods with limited scope. As a result, the authors suggested the need for
comprehensive, comparative studies.

This study focuses on data scarcity, unequal data distribution, lack of adversarial
examples and survey generative approaches, data generation, data augmentation, imputa-
tion methods for training, testing, and validating intelligent network intrusion detection
systems using non-adversarial and adversarial settings. While it expands on the scope
of DDL methods, it is not exhaustive and does not comparatively analyze and evaluate
the performance of the surveyed methods. However, it provides a subgroup analysis,
where the type of the approach indicates the method’s subgroup membership, to enable
comparing studies based on their evaluation results, such as standard measures to assess
the augmented or generated data’s quality, and the trained models’ prediction accuracy
and performance compared to other methods, algorithms, or approaches.

4. Research Design and Methodology

This section describes the design method and research methodology we used conduct-
ing the survey, extracting the existing research work on DDL methods for imbalanced and
adversarial learning, synthesizing information, and reporting findings.

For our methodological approach, we used a rapid review method to survey the litera-
ture on non-traditional or generative-based data augmentation and generation methods
for imbalanced and adversarial learning. Precluding meta-analysis, we used structured
reporting and subgroup analysis to synthesize DDL methods published in the last three to
four years. Hence, the study is qualitative in nature. By undertaking the review and analy-
sis approach mentioned earlier, our main objective is to enable researchers to get a general
idea of the state of the DDL methods and their application in certain domains without
increasing the needed time to synthesize and analyze the gathered information and report
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on findings. Furthermore, to offset the shortcoming of rapid review, we use an alternative
synthesis method. While meta-analysis is highly desirable for comparing studies and
driving new findings, acceptable synthesis methods, such as structured reporting with tab-
ulation and visual displays and subgroup analysis, are better alternatives to the precluded
meta-analysis when there is a concern about missing studies and statistical heterogeneity
or simply heterogeneity of studies, i.e., variability among studies [22]. Additionally, our
search strategy increased search specificity at the expense of search comprehensibility.
We are limiting the search scope to include a relatively small set of publications while
excluding others, which may result in excluding other relevant studies and selection bias.
However, using a systematic review later to verify the critical outcomes of this survey can
help address these issues [23].

To gather relevant and specific studies, we searched three repositories, including
Howard University Libraries (accessed on 5 December 2021) (https://founders.howard.
edu/using-the-libraries/), IEEEXplore (accessed on 5 December 2021) (https://ieeexplore.
ieee.org/Xplore/home.jsp), and Google Scholar (accessed on 31 December 2021) (https:
//scholar.google.com/). We used the following search strings: data augmentation for
imbalanced learning, data generation for adversarial learning, data augmentation using
generative models, and data generation using generative models. In addition, we used
the publication date and domain of application as our selection criteria to increase the
specificity of the search. In particular, we filtered the results by publication date to consider
only publications from 2021–2018. In addition, we sorted the publications by relevance
using the IoT, CPS, IDS, network, and security domains of applications while excluding
other domains. Finally, we conducted our analysis using structured reporting, which we
augmented with tabulation and visual display methods and subgroup analysis to compare
methods based on their evaluation results using the type of the approach, for example, data
augmentation, data generation, or both. In summary, we conducted the following for data
analysis and information synthesis:

1. First, we broadly classified the surveyed DDL methods based on the class of learning
into imbalanced, adversarial, and non-adversarial (normal) learning.

2. Second, we considered methods employing more than one class of learning and
those using more than one level of traffic (i.e., flow-level and packet-level), which we
classified as hybrid data-generation methods.

3. Third, we considered the type of approach (e.g., data generation, data augmentation,
and data imputation), application domain, and publication year.

4. Fourth, we used the type of approach to create subgroups (e.g., data augmentation
and data generation), for further analysis and comparison

5. Finally, we compared the methods for each subgroup based on data quality, prediction
accuracy, and performance.

In addition to imbalanced learning, non-adversarial or normal learning, and adversar-
ial learning, we further considered other forms of learning to classify the DDL methods into
conditional adversarial learning, transfer learning, statistical learning, exploiting learning,
and deceptive learning. Finally, we defined the learning forms mentioned above in Table 1
and detailed our findings using the classification scheme in Table 2 and subgroup analysis
based on the type of approach to reporting on the results of the evaluations in Table 3.
Finally, we summarized the advantages and disadvantages of these methods in Table 4.

https://founders.howard.edu/using-the-libraries/ 
https://founders.howard.edu/using-the-libraries/ 
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
https://scholar.google.com/
https://scholar.google.com/
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Table 1. Learning Classes Descriptions.

Learning Class Description

Adversarial Learning Train the model how to distinguish implausible data from plausible data to protect the system from
inadvertently deceptive or misleading behavior

Conditional Adversarial
Learning

Similar to adversarial learning, except that the learning happens in a conditional setting to create a
general model where the generator and discriminator are conditioned on any auxiliary information

such as class label, i.e., the model learns the loss and conditions the output of the system on its
input [24,25]

Deceptive Learning Train the model to modify adversarial examples to make them undetectable or evasive

Exploiting Learning
Train the model to exploit the generated data by one method to generate data using a different

method, for example, generate synthetic data using the Monte Carlo method and then augment the
synthesized data using an adversarial learning method

Imbalanced Learning The model learns in the presence of skewed data distribution

Non-adversarial Learning Train the model to generate benign examples indistinguishable from original benign examples to
create new data, extend existing data, or compensate missing data

Statistical Learning Train the model using statistics and functional analysis to make a prediction (Generative models are a
type of statistical models)

Transfer Learning Train the model to transfer its knowledge from a domain with adequate training data to other
different but similar domain with inadequate or no training data

Table 2. Classification of Data-driven Learning Methods.

Method Class ** Type * Domain Paper Year

GAN-RF IL DAU Network-based Intrusion Detection [8] 2021

GAN-2CNN IL DAU & DG Network-based Intrusion Detection [26] 2021

IDSGAN AL DG Network-based Intrusion Detection [27] 2021

Bidirectional GAN AL & NAL DG IoT-based Intrusion Detection [17] 2021

G-IDS IL DAU & DG Cyber-physical Systems [28] 2020

GAN-SMOTE IL DAU & DG Host-based Intrusion Detection [12] 2020

AC-GAN IL DG Smart Home-based Intrusion
Detection [9] 2020

GAN-AE NAL DG, DAG, & PP IoT-based, Anomaly-based Detection [29] 2020

IoT Sequential GAN NAL DAU Predictive Maintenance/ IoT-based
Household Energy [10] 2020

GAN-based DA AL & TL DG & DAD Adversarial Domain Adaptation [30] 2020

PAC-GAN NAL DG & DIM Traditional Communication
Networks [14] 2019

WGAN-GP NL DG Traditional Communication
Networks [11] 2019

SynGAN AL DG Network-based Intrusion Detection [31] 2019

AdvGAN CAL DG Defensive Security Adversarial
Training [32] 2019

NID Framework IL, AL, SL, & EL DAU & DG Network-based Intrusion Detection [33] 2019

Deceptive GAN DL DG Offensive Security Adversarial
Training [34] 2018

* DAD: data adaptation, DAG: data aggregation, DAU: data augmentation, DG: data generation, DIM: data
imputation, PP: privacy preservation; ** AL: adversarial learning, CAL: conditional adversarial learning, and DL:
deceptive learning, IL: imbalanced learning; ** NAL: non-adversarial learning, NL: normal learning, SL: statistical
learning, TL: transfer learning.
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Table 3. Subgroup Analysis Based on the Evaluation Results of Data-driven Learning Methods.

Method Type * Data Quality Predictability Performance Paper Year

GAN-RF AUG No std measures f-score > 95% Superior/Good [8] 2021

IoT Sequential
GAN AUG Output layer score f-score ≈ 60% Variable [10] 2020

IDSGAN DG No std measures DR ≈ 0 and EIR > 99% Good/Robust [27] 2021

Bidirectional
GAN DG Duration distribution TPR 82%/FPR 0.02% Promising [17] 2021

AC-GAN DG No indication f-score = 97% Good [9] 2020

WGAN-GP DG Euclidean distances (ED)
and quality tests (QT)

ED between 0.02–0.14
and QT = 100%

Good except
N-WGAN-GP [11] 2019

SynGAN DG Quality benchmark and
RMSE

RMSE = 0.10
and AUC = 75% Good [31] 2019

AdvGAN DG Attack success rate (ASR) Accuracy 92.76% and
ASR > 90%

Promising
(Runtime < 0.01 s) [32] 2019

Deceptive GAN DG IPS Unblocking actions
63.42% Promising [34] 2018

GAN-2CNN AUG & DG f1-score ≈ 98% and 75% f1-score > 92% Outperforming [26] 2021

G-IDS AUG & DG DR threshold f1-score at least up to
91% Good [28] 2020

GAN-SMOTE AUG & DG No std measures AUC > 0.97 Slightly reliable [12] 2020

NID
Framework AUG & DG No std measures f1-score > 92% Outperforming [33] 2019

GAN-based DA DG & DAD No std measures f-score > 88% and 83% Outperforming [30] 2020

GAN-AE DG, DAG, & PP No std measures f1-score = 96% Outperforming [29] 2020

PAC-GAN DG & DIM Success rate (SR) and
byte error SR 99% and 88% Promising [14] 2019

* DAD: data adaptation, DAG: data aggregation, DAU: data augmentation, DG: data generation, DIM: data
imputation, PP: privacy preservation.

Table 4. Advantages and Disadvantages of Data-driven Learning Methods

Method Advantages Disadvantages

GAN-RF No overfitting and overlapping No metrics to assess the data quality

IoT Sequential GAN 1D sequential data generation Computation overhead and performance variation

IDSGAN Adversarial training for IDS Focus on blackbox attacks only

Bidirectional GAN Compliant bidirectional flow generation

Small IoT traffic dataset, two features only to
characterize network data, and no modeling of

multimodal duration distributions or consideration of
packet-level traffic

AC-GAN Conversion of network data to images Complex and computationally expensive due to data
preprocessing prior to data generation

WGAN-GP

Learn internal dependencies between
attributes without modeling additional
knowledge, the ability to transform the

heterogeneous flow

Suitable for generating single flow-based and new
evaluation methods to assess the data quality network

traffic only—In addition, the numeric transformation of
IP addresses approach does not yield high quality data

SYNGAN Emulation of real-world network attack
mutations Focused on generating only one type of attack (DDoS)
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Table 4. Cont.

Method Advantages Disadvantages

AdvGAN

Generates perturbations for any input after
training the feed-forward network without

accessing the model, thus accelerating
adversarial training

Complex framework using dynamic distillation to train
the model for the blackbox attacks

Deceptive GAN
Self-adapting malware, self-adapting IPS,

short training time without a need for a large
amount of data

Works in flow-level without considering the
packet-level, in addition to high

communication overhead

GAN-2CNN

2D imagery representation of unseen 1D
network attacks, simulating of unknown

attack, and limited overfitting, overlapping,
and noise

Complex methodology and implementation, different
performance based on a variety of attacks in the dataset,

and no detailed information on the structure and
characteristics of attacks

G-IDS

Data from different sources collected and
stored continuously and in parallel in a

database and stabilization modeling during
model training

Time complexity and computation overhead due to data
processing and verification

GAN-SMOTE Generation of system call traces for attacks
on OS Dataset limited to Linux OS call traces

NID Framework

Incorporation of adversarial learning with
statistical and exploiting learning-based data

augmentation and modeling feature
distribution of network data

Computational complexity and high training time

GAN-based DA

Domain adaptation and knowledge transfer
from sufficient data domain to small data
domain and classification accuracy with

minimal data

Requirements to use source and target datasets has
privacy implications

GAN-AE
Data aggregation, privacy preservation,
global learning of the data distribution,

and minimum communication overhead

Scalability and inability of the local model to learn the
diverse benign patterns from other networks

PAC-GAN
Realistic GAN-based flow at the IP packet
level and IP packets to image-based matrix

conversion

Communication overhead, transmission success
accuracy, and low performance for mixed

traffic generation

5. DDL Methods for Imbalanced Learning

The study in [8] suggested that most approaches that employ methods other than
GAN suffered from data loss or overfitting and proposed the use of GAN to solve the data
imbalance instead of resampling and SMOTE techniques to avoid overfitting caused by
resampling and class overlapping or noise caused by SMOTE. The GAN generated virtual
data similar to the minority class of the imbalanced data. The authors used the balanced
data generated by the GAN, which solved the problem of overfitting and overlapping by
specifying the desired resampling rate, to train an anomaly-based detection model based
on the random forest (RF) method by increasing the weight of the minority attack class in
the intrusion detection evaluation dataset (CICIDS). The GAN-based data augmentation
method using resampling boosted the rare classes of the CICIDS 2017 dataset, which
constituted less than 0.1% of the dataset, by generating 10,000 data of Bot, infiltration,
and heartbleed. The batch size or the number of data learned at a time is 10 for Bot, 1 for the
remaining two classes due to tiny data size (less than 30), and 20 for the epoch. The study
compared the performance of the GAN-RF model, Single-RF model, and SMOTE-RF model
using accuracy, precision, recall, and f-score. The GAN with Random Forest algorithm
(GAN-RF) model used GAN for data resampling and RF for classification, standalone
Random Forest algorithm (Single-RF) used RF for classification only, and SMOTE with
Random Forest algorithm (SMOTE-RF) used SMOTE for data resampling and RF for
classification. The GAN-RF performed better than the Single-RF and SMOTE-RF. Using
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the average score, GAN-RF had an accuracy of 99.83% and f-score of 95.04% compared
to 99.19% accuracy and 87.79% f-score for the Single-RF model and 99.51% accuracy and
88.16% f-score for SMOTE-RF.

In addition to augmenting data by producing more examples to balance the minority
class examples in the dataset, the GAN can simulate new unforeseen attacks. For example,
the authors in [26] used GAN to augment network traffic represented using imagery to train
a Convolutional Neural Network (CNN)-based intrusion detection model, and to simulate
unforeseen attacks, we refer to this method as GAN 2D imagery CNN or GAN-2CNN for
simplicity. However, the two-dimensional image of network flow, produced using two-
dimensional mapping techniques, suffered from the unequal representation of normal and
abnormal examples. The GAN addressed the imbalanced imagery issue by generating new
images of unforeseen attacks, and the CNN classified the 2-D imagery, leading to better pre-
dictive accuracy for the GAN-2CNN model. The GAN-based imagery data augmentation
method trained the auxiliary classifier GAN (AC-GAN), where it used the generator of the
AC-GAN to create new synthetic attacks’ images and balance the training dataset. A variant
of GAN, AC-GAN, takes a class label and noise as input and generates images [35]. The em-
ployed AC-GAN’s generator created fake images from a 100-dimensional input random
noise vector of a uniform distribution and a two-dimensional one-hot label. The study
analyzed the performance of the GAN-based imagery data augmentation using CICIDS17
and AAGM17 datasets with imbalanced traffic data and the full implementation of the
model (referred to by the authors as MAGNETO, a supervised deep learning methodology
for learning a robust intrusions model that deals with data imbalance). In addition, it
measured the effectiveness of the data augmentation method compared to the SMOTE
and adaptive synthetic (ADASYN), proposed by [36] data augmentation methods, and the
effectiveness of training the 2D CNN using GAN-augmented data of varying balance sizes.
Using a Variant of MAGNETO, i.e., MAGNETO with SMOTE (SMOTE-MAGNETO) and
MAGNETO with ADASYN (ADASYN-MAGNETO), the MAGNETO with GAN (GAN-
MAGNETO) outperformed the other variants on both datasets in terms of f-score and
precision. However, GAN-MAGNETO exhibited a drop in recall, though negligible, using
CICIDS17 compared to its performance using the AAGM17 dataset.

Imbalanced data can hinder the proper training of an AN-Intel-IDS and thus its per-
formance. Publicly available datasets, such as the KDD-99 and CIDDS-001, are mostly im-
balanced and often contain more ’normal’ examples than anomalous examples. The GAN-
based IDS (G-IDS) in [28] for securing cyber-physical systems (CPS) addressed the issue of
imbalanced data by generating more data to train the IDS, which is a multi-layer artificial
neural network. It used the NSL KDD-99 to generate synthetic data that augmented the orig-
inal data, thus, increasing the distribution of attack examples in the dataset. The proposed
G-IDS framework consisted of four modules: database, IDS, controller, and synthesizer.

In addition to the generated synthetic data by the synthesizer module generator,
the database module contained real-world intrusion detection data. The controller module
decided whether to accept or reject pending data, i.e., synthetic data was data that had
not been accepted or rejected by the controller. The GAN, which is part of the synthesizer
module, generated the synthetic data. The synthesizer labeled the generated data as
pending, due to the uncertainty of the GAN, before sending it to the database module.
The authors used the controller module to evaluate the IDS module twice. First, they trained
the IDS module on a hybrid dataset only, i.e., the combined original and synthetic data
already accepted by the controller. Then, they trained the IDS module using a combination
of the hybrid and pending datasets. The controller accepted or rejected the pending data
based on the IDS performance. By measuring the detection rate for each data class (normal
or attack) and comparing it to a pre-established performance threshold, the controller
identified the weakly detected classes and sent the data examples to the synthesizer module
to generate more examples. The process repeated until a satisfactory IDS performance
was obtainable. Figure 1 shows the G-IDS framework, where PH and Pp denoted IDS
performance using hybrid and pending data, respectively. Comparing the performance
of the G-IDS to a standalone IDS (S-IDS) or an IDS without a GAN using precision, recall,
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and F1 score as metrics, G-IDS performed better than S-IDS in terms of detection accuracy
and stability on both the original and boosted datasets. The f-score of S-IDS was 70% to
78% using a 20% and 40% data increase, respectively, compared to G-IDS, which was 90%
to 96% for a 20% and 40% data increase, respectively. However, G-IDS f-score dropped
significantly to 60% for a 60% data decrease due to the G-IDS taking random noise as input.
In terms of prediction accuracy, S-IDS performance suffered due to insufficient data. G-IDS
generally had better performance and prediction accuracy; however, it is centralized and
computationally expensive.

Figure 1. G-IDS Framework Block diagram (Recreated with permission from ref. [28]. Copyright
2022 Mohammad Ashiqur Rahman).

Unbalanced distribution of normal and attack examples in a dataset can lead to
detection inaccuracies. Further, the detection accuracy of an IDS may vary based on the
degree of class imbalance. The method in [12] addressed the issue of imbalanced learning
using GAN-augmented data to train a supervised and unsupervised host-based intrusion
detection system (HIDS), i.e., Support Vector Machines (SVM) and CNN, respectively.
In addition to data augmentation using GAN, the author considered data oversampling
using SMOTE to evaluate the performance of the GAN-based approach. The SMOTE-based
approach over-sampled minority classes from unbalanced data, whereas the GAN-based
approach generated the data (similar to the training dataset) itself. The dataset contained
system-call trace data represented as a series of integer numbers mappable to system calls
made on a Linux OS. Both approaches augmented the abnormal examples by creating new
data that was invariably synthetic. The author applied both approaches to the pre-processed
ADFA-LD dataset and then used SVM and CNN to classify process operation based on
system call trace data into normal or malicious behavior. The GAN-based approach to
data augmentation was slightly reliable compared to the SMOTE-based approach. In
addition, models trained using augmented data had better classification accuracy than
models trained using original data. In both cases, models that used GAN-based augmented
data performed better. As the number of minority class examples increased by 30%, 50%,
70% and 100%, the classification accuracy and classification performance increased as well.
In general, when using data augmentation, CNN performed better than SVM for largedata
sizes, whereas SVM showed a better performance for moderate data sizes.

The number of attack examples in the smart home environment, is often smaller
than the normal examples, thus creating data imbalance. Therefore, detecting intrusions
in a smart home environment requires designing intelligent anomaly-based IDS capable
of handling disproportions in the datasets. The authors in [9] proposed an embedded
intrusion detection scheme on the smart homes edge nodes that exploited GAN to reduce
the impact of disproportionate datasets, where normal examples are more frequent than
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attack examples, on the performance of the classifier. The authors used AC-GAN to generate
synthetic data to balance the proportion of normal and attack examples in the UNSW-NB15
training dataset. The authors converted the network data into images prior to feeding
the pre-processed data to the AC-GAN generator. In addition to a noise, the AC-GAN
generator took the class label as input to generate synthesized data for the minority attack
class. The authors then combined the synthesized data with the original data to train
the classifier. The evaluation results showed that the proposed scheme, which included
GAN-based data augmentation, improved the classifier precision for the minor attack class;
the precision and recall of the anomaly detection was about 96% and 98%. However, when
comparing the precision given the different categories of attacks, the precision of some of
the attacks belonging to the majority class declined due to the low quality of the generated
synthetic data.

6. DDL Methods for Adversarial Learning
6.1. GAN-Generated Regular Network Traffic

Training an anomaly-based intrusion detection system to detect intrusions in IoT
environments is challenging due to the lack of sufficiently-large benign IoT data and the
inability to collect IoT data from IoT devices directly due to high scalability and privacy
restrictions. In addition, device disparity and activity scarcity make it harder to acquire
reliable benign IoT data. The authors in [29] addressed these issues by proposing a data
aggregation and privacy preservation hierarchical approach in which a GAN and an AE
cooperated to reconstruct IoT benign data for training a global anomaly-detection IDS and
set of local anomaly-detection IDS implemented at the local gateways. The hierarchical
method used local GANs implemented at the local IoT networks to generate benign data
and a global GAN to reproduce the aggregated benign data, which is double the size of
the real data in the local IoT networks. Each local IoT network consisting of a set of local
IoT devices and their generated data are aggregated at the global level using a centralized
controller. The data generation occurred at the local GANs. First, the generator, which
consisted of sequential layers, took a Gaussian Noise with random dimension size as
input and generated a series of random outputs. Next, the discriminator combined the
generated sample with the benign local data. Then, the generator and discriminator, which
had symmetrical structures, were trained simultaneously. Finally, the data from the local
generators were aggregated at the centralized AE to reproduce new benign data to train
the global AE model that was double the size of the local networks’ training data. Figure 2
shows the training map of the proposed hierarchical approach. The authors evaluated
the proposed model GAN plus Autoencoder (GAN-AE) using the UNSW BoT-IoT dataset
and two cases; the global model with all data and the local model with local data only.
The GAN-AE model, global model, and local model outperformed four popular binary
clustering approaches: one-class support vector machine (OSVM), isolation forest (IO), local
outlier factor (LOF), and K-Means clustering. In particular, the GAN-AE, global model,
and local model accuracy, precision, and recall were higher than 90%, with the global
model outperforming the local model. However, the local model overfitting towards the
local data was a drawback to the proposed approach, resulting in poor prediction accuracy
of anomalies.

The study in [10] provided a tool to solve small data challenges in machine learning,
where it is difficult and time-consuming to collect a representative amount of ground
truth data. The authors used GAN to augment sequential IoT data, i.e., time-based sensor
readings for predictive maintenance, and generate synthetic household energy consumption
data. The generated data was subjectively similar to the original data. Before applying the
data to the GAN, the authors first converted the one-dimensional sequential data into two-
dimensional data by exploiting periodic behavior. This was necessary to exploit locality
using the GAN and apply CNN methods. In doing so, they aimed at investigating if GAN
with two-dimensional convolutions can generate one-dimensional sequential data to enable
the use of sophisticated CNN methods such as sharing, pooling, and striding. However,
the authors used a WGAN, adopted from the Keras WGAN implementation, instead of
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a deep convolutional GAN (DCGAN) due to vanishing gradients during the training of
the DCGAN and the replacement of the discriminator’s transfer function with a gradient
penalty. The authors trained two of the WGANs; each WGAN was able to generate an
energy consumption heatmap similar to the real data. To evaluate the quality of the GAN-
generated data, they designed an evaluation workflow where they trained the generator
with a subset of all data and used the generator output to train the classifier. The classifier
training and evaluation involved using fake and real data, respectively. The data set
contains two classes; a minority and majority class comprised of energy consumption data
with and without swimming pool data. Further, the authors combined the WGAN with a
convolutional neural network (CNN) and labeled data. The quantitative evaluation using
labels revealed that it is possible to generate sequential data from small ground truth data
or noise with fixed output size based on data with unique representation. In addition,
the evaluation revealed an almost perfect classification for the majority class, where f-score
was 0.95–1. However, the minority class f-score was 0.31 indicating poor classification.

Figure 2. The Hierarchical Approach Training Map (Recreated with permission from ref. [29]. Copy-
right 2022 IEEE).

Historically, GANs are rooted in image recognition applications where they generate
synthetic but realistic images from a given set of images as input. To generate realistic
network traffic from GANs, the author in [14] proposed a convolutional neural network
GAN traffic generator, named PAC-GAN, to generate packet-level network traffic that
adheres to network standards and protocols. The proposed network traffic generator
used an encoding scheme to convert and map network traffic data into images using
image-based matrix representations. The PAC-GAN generated realistic variants of different
types of network traffic, such as ICMP pings, DNS queries, and HTTP get requests to
transmit through real networks by learning and manipulating the byte values of data
packets. The encoding scheme encoded the GAN-generated network traffic and the training
network traffic using the n × n matrix. Figure 3 shows each packet byte value mapped to
an individual pixel in the matrix. The author measured the generator’s performance using
success rate and byte error as metrics, where the success rate is the number of a successfully
sent packet to the total number of packets generated by the PAC-GAN and the byte error is
the number of the incorrectly generated packet byte values averaged over all generated
packets. A successfully sent packet is a dispatched packet over the internet that generated
a valid response. The proposed generator achieved up to 99% success rate for individual
traffic types and 88% for different traffic mixes.
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Figure 3. Mapping packet byte values into pixels (Recreated with permission from ref. [14]. Copyright
2022 IEEE).

Unlike the PAC-GAN method, the three synthetic flow-based network traffic genera-
tors based on the improved WGAN-GP proposed in [11] indirectly generated new flow-
based network traffic based on the CIDDS-001 dataset by learning from the characteristics
of previously collected network traffic to mimic the traffic flow. Further, they transformed
the categorical attributes of the network traffic, such as protocol, IP addresses, and ports,
into continuous attributes for processing by the GAN using three different pre-processing
strategies: numeric transformation, binary transformation, and embedding transformation.
First, the numeric transformation strategy transformed the IP address and the ports into
numerical values. Second, the binary transformation strategy transformed the IP addresses,
ports, bytes, and packets categorical values into binary attributes. Finally, the embedded
transformation strategy transformed the categorical values of IP addresses, ports, bytes,
and packets into vectors or embeddings in an m-dimensional continuous feature space.
Three methods based on WGAN-GP, numeric WGAN-GP (N-WGAN-GP), binary WGAN-
GP (B-WGAN-GP), and embedding WGAN-GP (E-WGAN-GP) implemented the numeric,
binary, and embedding transformation, respectively. Given the processed flow, the WGAN-
GP with the two time-scale update rule generated new flow-based network traffic whose
quality was evaluated by the authors using a domain knowledge checks method. Further,
the authors derived several properties to assess whether the generated data are realistic.
The evaluation results indicated the ability of the E-WGAN-GP and B-WGAN-GP methods
to generate realistic traffic. On the contrary, the N-WGAN-GP did not generate convincing,
realistic data. A limitation of the WGAN-GP methods was that they generated single flows
instead of sequences of flows.

6.2. GAN-Generated Network Intrusion Traffic

In general, there is a need to evaluate the robustness of intrusion detection systems
such as the AN-Intel-IDS and improve their detection. One way to achieve this is by
designing malicious traffic that can evade detection in real-world attack scenarios. To that
effect, adversarial learning using GANs, such as the framework of GANs in [27], called
IDSGAN, performed adversarial black-box attacks to deceive the IDS and to evade detection
by generating new malicious traffic based on the original attack traffic. For example,
the IDSGAN generated adversarial attacks based on the NSL-KDD by modifying the
nonfunctional features in the original attack traffic that enabled it to deceive and bypass
the IDS and launch an actual attack. The IDSGAN consisted of a generator, discriminator,
and black-box IDS. Similar to [11], the authors used Wasserstein GAN to create the IDSGAN
where the discriminator learned from a black-box IDS that mimicked a real IDS to ensure
convergence and instability of the GAN. In addition, the generatorproduced a restricted
form of adversarial malicious traffic by modifying limited features to ensure the validity
of the generated adversarial traffic when launching a network attack in reality. shows the
training of the IDSGAN framework. The authors evaluated the capacity and generality
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of IDSGAN against seven black-box IDS models they formed using different machine
learning algorithms and trained using training sets based on the NSL-KDD dataset before
the models generated adversarial attacks. Further, they used detection rate (DR) (number
of correctly detected attacks divided by the number of all attacks) and evasion increase
rate or EIR (one minus the adversarial detection rate divided by the original detection
rate) as metrics. Further, they set the goal of the IDSGAN optimization such that a low
detection rate and higher evasion increase rate were desirable. The evaluated IDSGAN
had a good capacity generating adversarial malicious network traffic resulting in a very
low detection rate for the black-box IDS. For non-modified adversarial malicious data,
the IDSGAN maintained its evasion capacity.

Focusing on labeled data scarcity or sparsity and cost of data collection and labeling,
the authors in [30] proposed the use of adversarial domain adaptation that leveraged
GANs to transfer the knowledge gained from a domain with an adequate and existing
training dataset to related but different domains with limited or no new training dataset,
for example, transferring knowledge from the traditional network domain to the IoT
domain. Figure 4 shows the architecture of the GAN-based domain adaptation (DA) or
GAN-DA framework.

Figure 4. GAN-based Domain Adaptation (Recreated with permission from ref. [30]. Copyright 2022
Ankush Singla).

Apart from creating a domain invariant mapping between the two datasets, the pro-
posed approach was feature-independent, i.e., it was applicable irrespective of the similarity
or differences of the feature spaces of the source and target datasets. In addition, it was
universal. Thus, it enabled the re-purposing of deep learning models in the target en-
vironment to operate in another environment that used similar data but different data
representation using small labeled data from the target environment. Further, it reduced
the large amount of labeled data required to train deep learning classifiers. The authors
evaluated the proposed approach using publicly available network intrusion detection
(NID) datasets and two scenarios where the source and target datasets had the same
feature space (homogeneous DA where data was collected from devices using the same
communication protocol). The source and target datasets had a different feature space
(heterogeneous DA where data was collected from different types of devices using different
protocols), respectively. Further, they used the same dataset, which they split into two
parts to account for the source and target datasets, for the homogeneous scenario and two
different datasets; one for the target and the other for the source, for the heterogeneous
scenario. The proposed approach outperformed the base case, where the authors used the
target dataset to train the deep learning model. The fine-tuning approach for a small dataset



Electronics 2022, 11, 213 16 of 22

was better in terms of deep learning classification accuracy. The authors used the accuracy
and f-score metrics when the source and target dataset had similar features and the f-score
only when the features were different. As the number of samples increased, the GAN-DA
approach performed better than the base and fined-tuned approaches. However, one issue
with the proposed approach was the requirement to use the source and the target datasets,
which is challenging to maintain when the source and target data collectors are different.

Similar to the IDSGAN framework, the synthetic GAN (SynGAN) framework in [31]
used WGAN-GP to address the complexity and high quality of the generated synthetic net-
work flow. However, unlike IDSGAN, which focused on generating synthetic normal flow,
SynGAN applied the WGAN-GP to generate synthetic network attacks using NSL-KDD
and CICIDS2017 public datasets. The authors used the two public datasets to measure the
quality of the generated synthetic packets using a similarity index, i.e., the similarity be-
tween the synthesized and real network packets and the DDoS family of attacks to evaluate
the SynGAN framework. The SynGAN framework consisted of three modules: the genera-
tor, the discriminator, and the evaluator. The authors used the Gradient Boosting as the
evaluator. While the GAN discriminator differentiated between actual and artificial attacks,
the evaluator differentiated between actual and artificial packets using a quality measure
based on the root mean square error. The preliminary evaluation showed that the SynGAN
framework could generate high-quality adversarial attacks with a root mean square error
of 0.10, indicating that the proposed framework was incapable of distinguishing between
actual and synthesized attacks.

The authors in [32] focused on efficiently generating adversarial examples with high
perceptual quality using a GAN that accelerated adversarial training as defenses. They pro-
posed adversarial GAN (AdvGAN), a conditional adversarial network similar in paradigm
to GAN, that once trained instantly generated perturbations for any instances without the
need to access the model. The generator of the AdvGAN was a feed-forward network
that generated perturbations to create adversarial examples, whereas the discriminator
ensured that the generated examples were realistic. Figure 5 shows the AdvGAN overall
architecture. The authors evaluated the AdvGAN using both semi-whitebox and blackbox
attack settings. There was no need to access the original target model after training the
generator in the semi-whitebox attack settings. However, the authors trained a distilled
model in blackbox attack settings and optimized the generator. Given different target
models and state-of-the-art defenses, the AdvGAN had a higher success rate than other
attacks using the MNIST and CIFAR-10 datasets for both attack settings. For example,
using the MNIST dataset, the accuracy of the AdvGAN was 92.76% and 88.93% for the
blackbox and semi-whitebox settings, respectively. Further, the generated attack instances
were closer to the actual attack instances, and the generation process was efficient.

Rather than emulating malicious traffic to evade detection, a GAN can emulate normal
traffic to bypass detection. In addition to generating adversarial malicious traffic to evade
detection, a GAN can generate network traffic to mimic traffic of a legitimate application
to evade detection, thus enabling the malware to adapt to the behavior of the IDS. To that
extent, the authors in [34] used GANs, where the generators and discriminators were
recurrent neural networks (RNN) to modify the network behavior of a real malware to
mimic the behavior of Facebook chat network traffic. Their primary purpose was to create
malware that can avoid detection by ML-based intrusion prevention systems (IPS) that
exploit behavioral characteristics to detect malware. The authors used a threat model
to demonstrate their approach that consisted of three components: detector, malware,
and server. They deployed the GAN and malware in their laboratory local network, IPS
in the router, and the server in the cloud. For each flow, the GAN modified the timing,
duration, and request size. The adapted malware was tested if it was being blocked,
and the GAN loss was fed back to the GAN. The malware and the blocking of the malware
were real.



Electronics 2022, 11, 213 17 of 22

Figure 5. AdvGAN Architecture (Recreated with permission from [32]. Original is copyrighted with
the International Joint Conferences on Artificial Intelligence (IJCAI), 2018. All rights reserved).

Using 217 network flows from normal traffic and training the GAN 400 times, the au-
thors reported a drop in the blocking percentage to zero using enough numbers of epochs
and a relatively small dataset, signaling a successful malicious action and the ability of
the GAN to modify the malware traffic to avoid detection. The GAN was able to un-
block 63.42% of the actions and allow 36.58% of the traffic to go undetected. However,
the proposed method operated at the flow level rather than the packet level, and the im-
provement in the GAN performance was mainly attributed to additional training rather
than data augmentation.

7. Hybrid DDL Methods

IoT traffic flow is bidirectional; therefore, methods for generating IoT synthetic data for
training IoT intelligent IDS must consider bidirectional flow generation and the relationship
between packet-level and flow-level features. The flow is composed of individual packets;
thus, the packets’ sizes are closely related to the flow duration. To this purpose, the author
in [17] leveraged GAN to generate bidirectional flow that mimicked the bidirectional
flow generated by actual IoT devices to train and test intelligent IoT IDS that used a set
of sparse autoencoders; unsupervised neural networks. Unlike most of the surveyed
synthetic data generation methods, which generated either packet-level features or flow-
level features, the proposed generator created packet-level features while implicitly learning
to comply with the flow-level characteristics to generate synthetic data that looks realistic.
The flow-level features included packets’ ordering, the total number of packets, and the
total duration of the flow (total number of bytes). In contrast, features related to the
packet-level included the packets’ sizes. In general, packet-level features are describable
using different fields of the network layer and the transport layer headers. The generated
synthetic bidirectional flow consisted of a sequence of packets and their duration value.
The trained generators using Autoencoder/WGAN with weight clipping(WGAN-C) model
generated the sequence of packets. The trained mixture density networks (MDN), which
took the generated packets sequence as input, determined their duration. The author
used the WGAN to overcome the issues of GAN generating a sequence of categorical data,
i.e., a sequence of packet sizes. The WGAN first converted the sequence of categorical
data into a latent vector in a continuous space using the autoencoder and then trained
the WGAN on the generated latent space to decode latent vectors into realistic sequences.
Further, the author assessed the quality of the synthetic bidirectional flow by comparing
the distribution of the duration of the synthetic bidirectional flow with that of the actual
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bidirectional flow and the sequence of packets sizes by using a Google Home Mini Show.
The generated data are of quality if their duration is close to the duration of the real
bidirectional flow. In both cases, the generated flow had a duration close to the real flow
indicating the generated synthetic bidirectional flow was of high quality.

While the G-IDS framework in [28] focused on solving the imbalanced or missing
data using adversarial learning, the network intrusion detection (NID) framework in [33]
focused on solving the small and imbalanced dataset challenges using statistical learning
and adversarial learning. The NID framework tackled both data scarcity and data imbalance
by incorporating adversarial learning with statistical learning and exploiting learning using
a data augmentation module (DA) consisting of a probabilistic generative model (PGM) and
GAN. While the probabilistic model estimated the data feature distribution and generated
synthesized intrusions using Monte Carlo methods, the deep generative neural network
(DGNN) created high-quality intrusions by augmenting the synthesized data with actual
data to provide high-quality training data. In addition, the PGM model initialized the
DGNN, thus enabling it to converge on limited intrusion data. Figure 6 shows the structure
of the DA module. The DA module enabled the NID framework to detect intrusions in
small datasets. The authors used a GAN, which augmented the limited intrusion data,
to adversarially train the DGNN and then evaluated the DA-enhanced NID using the
KDD Cup 99 dataset against existing learning-based IDS, which included support vector
machine (SVM), classical logistic regression (LR), and advanced DNN. The proposed NID
framework outperformed the existing IDS, given accuracy, precision, recall, and f-score
as metrics.

Figure 6. DA Module Structure (Recreated with permission from ref. [33]. Copyright 2022 He Zhang).

8. Analysis and Discussion

In this section, we summarize our analysis and provide a classification of the surveyed
methods and techniques. Our initial focus was to categorize the surveyed DDL methods and
techniques into data augmentation and data generation based on the class of problem they
are attempting to solve and into adversarial and non-adversarial learning based on their
learning approach (see Table 2 for data-driven learning classification scheme). However,
some techniques or methods tackle more than one problem, e.g., data augmentation and
data generation, and employ two or more learning approaches, e.g., adversarial learning
and non-adversarial learning. Table 2 lists several examples of these methods, such as
the GAN-2CNN, G-IDS, GAN-SMOTE, GAN-based DA, PAV-GAN, and NID Framework,
which address two classes of data problems, and the GAN-AE method, which considers
solving three classes of data problems. The NID framework address two data problems
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and employ four different learning approaches: imbalanced learning, adversarial learning,
statistical learning, and exploiting learning. Table 1 lists and describes these learning
approaches and others mentioned in this study. In addition to data generation and data
augmentation problems, some methods consider preserving data privacy, such as GAN-AE,
and data adaptation, such as the GAN-based DA. Most of the methods have applications
in network-based intrusion detection and fewer in IoT-based intrusion detection. Other
methods have applications in cyber-physical systems security, defensive security, offensive
security, and predictive maintenance of smart systems. While most of the methods focus
on generating uni-directional flow-level or packet-level network traffic, the bidirectional
GAN can generate bidirectional flow. Table 3 provides a subgroup analysis based on
the evaluation results of the DDL methods and Table 4 summarizes the advantages and
disadvantages of these methods.

Most of the studies presented in this paper focused on evaluating the data augmen-
tation and generation methods using models trained on data augmented or generated
by these methods compared to other state-of-the-art data augmentation and generation
methods, ML and DL algorithms, or both. Further, most studies noted that the generated
data, which resembled real data, is of good quality. However, few studies like the study
in [11] assessed the quality and realism of the generated data using derived properties.
Inevitably, there is a need to create standard metrics or develop a standard methodology
to evaluate the quality of augmented and generated data. Furthermore, most studies
evaluated the DDL methods using standard machine learning metrics, such as accuracy,
precision, recall, and f-score.

On the other hand, few studies reported on the ROC metric, and others used specific
metrics such as capacity, generality, detection rate, evasion increase rate, and percentage of
unblocking actions. While these standard and specific metrics are essential to assess the
performance of the proposed methods or approaches, there is a need to assess the sensitivity
(true-positive rate) and specificity (false-positive rate) to indicate whether there was a
significant improvement in the detection rate. In general, accuracy, precision, and recall
metrics are not always a good indication of the models’ performance.

Further, except for the study in [34], most of the studies assumed that the improvement
in the performance of the proposed method was due to data augmentation or generation
as opposed to the amount of training and model parameters. Data generation and aug-
mentation methods invariably increase the computational cost. Nonetheless, some studies
did not consider evaluating the proposed methods based on their execution time and
computational overhead. Finally, most studies used static training, where models trained
using publicly available data. Since public data are often static and prone to obsolesce, it is
essential to consider dynamic learning and train models that consider the dynamic aspect
of the data to augment or generate new data for imbalanced and adversarial learning.

9. Challenges and Open Research Issues

Generative models such as GANs are predominant in the field of image recognition.
As such, they are more suited for discrete data generation. However, to extend their
use beyond image recognition to other fields such as networking, GANs must have the
capability to deal with categorical data such as IP addresses in addition to continuous
data. Therefore, transforming network flow that contains categorical data into continuous
value must occur before adversarial learning or imbalanced learning using generative
models occurs. The authors in [11] proposed the use of three different prepossessing
approaches for generating network flow. Others, such as the authors in [14], proposed a
network encoding scheme to map network traffic from categorical format to image-based
matrix representation.

Despite these transformation and mapping efforts, generating significant and realistic
network traffic using cost-effective means remains challenging. When generating network
traffic, it is essential to consider the traffic level. While some approaches generate network
traffic at the flow level, others generate network traffic at the packet level. A better approach
is to generate flow-based and packet-based traffic. To that extent, very few approaches,



Electronics 2022, 11, 213 20 of 22

such as the Bidirectional GAN in [17], generated packet-level traffic and ensured that
the generated traffic complies with the flow-level characteristics. Therefore, developing
generative models that can exploit the relationship between flow-level and packet-level is
an open research issue. Likewise, generating a sequence of flows instead of a single flow
and generating bidirectional traffic for training IoT-based IDS is equally essential.

Evaluating GANs and assessing their data realism is challenging. However, the ma-
jority of GANs evaluation methods, both quantitative and qualitative, apply to image
data [3]. Hence, developing methods for evaluating the performance of GANs and their
variants for network data or non-imagery data are open for research. Another open issue
to consider is defining metrics to evaluate GANs and their variants and assessing the
authenticity and realism of the generated data. Current metrics exist at the individual GAN
level, which makes it difficult to compare and assess different GANs [17]. Hence, there is a
need to define standard metrics to assess the realism of the generated data. Furthermore,
when considering generative models in networking, assessing data realism at a granular
level, i.e., packet-level and flow-level, and assessing the generated data quality using
comprehensive metrics are open questions. The generalization of generative models is
an open research question. The initial intuition is to develop GANs that can adapt and
transfer their knowledge from one domain of application to another similar yet different
domain, e.g., from network-based intrusion detection to IoT-based intrusion detection.
Moreover, developing generative models that consider bidirectional traffic generation is
equally important.

10. Conclusions and Future Work

This paper presented an overview of various data augmentation and data generation
methods for imbalanced and adversarial learning. The reason for augmenting data include
but are not limited to small ground truth data, lack of attack data, preventive maintenance
data, sensitive data, and data privacy. On the other hand, data generation is essential
for adversarial learning, transfer learning, and deceptive learning. Further, the paper
focused on the most recent research work published in the last three to four years and
analyzed the findings using qualitative analysis. It used rapid review, structured reporting,
and subgroup analysis, which narrowed the pool of selected publications to those which
covered non-traditional ML/DL data augmentation and generation methods for training
anomaly-based intelligent intrusion detection systems for detecting intrusions in traditional
network and emerging fields of IoT, cybersecurity, and smart homes. Hence, it is limited
in scope. This paper provided classification and a comparison of the reviewed methods
and their implementing models and discussed their advantages and disadvantages to
report findings. In addition, it introduced open issues and research challenges with a
specific focus on categorical data mapping and transformation, evaluating and assessing
generative models, generating packet-level and flow-level traffic, and bidirectional traffic.
Most studies used standard machine learning metrics or domain-specific metrics to assess
the augmented or generated data quality; there is a lack of standard data quality metrics
and methodologies to assess the quality of the data. In addition, some studies were missing
analysis on time and computational complexity, and communication overhead. In the
future, we are planning to verify the outcome of this study using a systematic review
and meta-analysis. Additionally, we plan to increase the scope of the systematic review
to include network traffic transformation and mapping methods, and GANs variants for
generating adversarial non-imagery examples.
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