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Abstract: Wind power is a sustainable green energy source. Power forecasting via deep learning
is essential due to diverse wind behavior and uncertainty in geological and climatic conditions.
However, the volatile, nonlinear and intermittent behavior of wind makes it difficult to design
reliable forecasting models. This paper introduces a new approach using variational auto-encoding
and hybrid transfer learning to forecast wind power for large-scale regional windfarms. Transfer
learning is applied to windfarm data collections to boost model training. However, multiregional
windfarms consist of different wind and weather conditions, which makes it difficult to apply
transfer learning. Therefore, we propose a hybrid transfer learning method consisting of two feature
spaces; the first was obtained from an already trained model, while the second, small feature set was
obtained from a current windfarm for retraining. Finally, the hybrid transferred neural networks were
fine-tuned for different windfarms to achieve precise power forecasting. A comparison with other
state-of-the-art approaches revealed that the proposed method outperforms previous techniques,
achieving a lower mean absolute error (MAE), i.e., between 0.010 to 0.044, and a lowest root mean
square error (RMSE), i.e., between 0.085 to 0.159. The normalized MAE and RMSE was 0.020, and the
accuracy losses were less than 5%. The overall performance showed that the proposed hybrid model
offers maximum wind power forecasting accuracy with minimal error.

Keywords: wind power forecasting; variational auto-encoder; transfer learning; hybrid method; deep
neural network; windfarm

1. Introduction

Renewable energy is one of the fastest-growing energy sectors, accounting for 29%
of global power output in 2020; however, global energy consumption will increase by
56% between 2010 to 2040 [1]. The increase in electricity generation has been attributed to
significant economic progress in recent years, which has also contributed to the negative
impact on the climate, especially in developing countries [2]. Therefore, many people
are opposed to energy derived from fossil fuels because it causes pollution, ozone layer
depletion, and climate change [3]. For the majority of greenhouse gas emission reductions,
renewable energy can fulfil two-thirds of global energy demand by 2050 and maintain global
average surface temperatures below 2 degrees Celsius [4]. Wind power has developed
progressively in comparison to other renewables, because it is highly efficient, economical,
and environmentally sustainable [5]. Furthermore, wind energy plays a prominent role in
the renewable energy sector for the generation of electricity, and wind power forecasting is
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a useful strategy for improving wind turbine accuracy [6]. As a result, wind energy has
experienced a boom in recent years compared to alternative energy sources [7].

China is the leading country in the wind energy sector, producing more than a third of
the world’s total output, with a total installed capacity of 221 gigawatts (GW). The largest
onshore wind farm in the world, with a capacity of 7965 megawatts (MW), is located in
Gansu province. The United Kingdom’s overall renewable energy production was 119 TWh
in 2019, up by 8.5% from the previous year; a huge share of this growth was associated with
wind energy, which comprised about 64 TWh (53.7%). With this increased efficiency, the
United Kingdom has surpassed China, United States, Germany, India, and Spain to become
the world’s sixth-largest renewable energy generator. In particular, notwithstanding the
lowest average wind speeds since 2012, in 2019, offshore wind generated 31.9 TWh, up
by approximately 20% from the previous year, contributing to an increase in installed
capacity in some regions such as Beatrice, and the steady deployment of Hornsea One [8].
Brazil ranks fourth in the world for wind energy production, which contributes around
8% of the country’s total output of 162.5 GW. In Canada, 566 MW of additional renewable
capacity was installed in 2018, with a total capacity of 12.8 GW for renewable energy. A
total of 6596 wind turbines installed on 299 wind farms are used to generate this power.
The Rivière-du-Moulin wind farm in Quebec is the country’s largest wind farm, with a
maximum capacity of 300 MW. The ten leading wind energy producers in Italy produced
more than 10 GW in 2018, and onshore wind energy was the only source of wind energy in
the country. All of Energy Resource Group (ERG)’s onshore wind energy infrastructure is
located south of Rome, with Apulia (248.5 MW) and Campania being the strongest markets
(246.9 MW) [9,10].

Wind energy is currently the most widely used power production resource in Europe
and many other countries. Since 50% of the wind energy has been added to the world’s
total energy production in the last five years, it is important to investigate performance-
dependent variables to boost efficiency [11,12]. Changes in the climate have the potential
to affect the atmospheric dynamics and alter wind directions, representing a possible threat
to wind energy generation [10,13]. As a result, it is important to evaluate the impact of
meteorological changes affecting wind speed, as well as other elements that may affect wind
energy production, as these components comprise significant risks for shareholders [14,15].

In the last decade, extensive work has been done on long-term wind predictions in
the context of a changing climate. The majority of these studies have been conducted in
advanced nations, such as China and the United States [16]. Wind energy has recently
captured the attention of a range of emerging countries [17]. According to certain studies,
average wind speeds and energy density fluctuate on an annual basis [18]. Additionally,
the inconsistent nature of wind energy has resulted in complex integration processes and
dependability factors, leading to the development of advanced technologies and expensive
alternatives [19]. Furthermore, the availability of wind energy is influenced by weather
conditions and locality [20]. Artificial Intelligence (AI) has been used in many domains to
solve forecasting and security problems [21,22]. Transfer learning is an extension of the
AI technique that applies previous information obtained during the training of a neural
network to data to solve complex tasks without additional training. Alternatively, transfer
learning is an exchange of trained resources from one model to another deep learning
model to optimize prediction accuracy and reduce computation cost. As stated earlier,
our proposed forecasting model is partly focused on transfer learning, having significant
advantages over traditional forecasting models. The contributions of the proposed study
are given below:

- A feature extraction approach is proposed based on MLP auto-encoding to extract
useful and high-dimensional features from different large-scale windfarms.

- The deep learning-based forecasting model is designed and fine-tuned for all wind-
farms to perform wind power forecasts by separating data into training and testing sets.
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- The transfer learning is applied to three windfarms to reduce the computational cost
of retraining. The already trained features are transferred from one model to another
to optimize forecasting accuracy.

- An empirical evaluation of previous forecasting approaches demonstrated that the
proposed transfer learning-based wind power forecasting technique is quite effective,
producing better accuracy with minimal retraining.

The rest of this paper is organized as follows: Section 2 examines the most recent
research on wind power forecasting utilizing various methodologies. Section 3 introduces
the research framework for wind power forecasting. Section 4 presents the findings and
provides an explanation of the proposed methods. Lastly, Section 5 summarizes this study
and outlines potential future work.

2. Literature Review

Wind power is a major renewable energy resource in many parts of the world. Wind
forecasting techniques have been widely studied to maximize power output, financial
scheduling, dispatching, and unit commitment planning. Wind power forecasting can be
categorized according to time frames or adopted strategy [23]. Sharma et al. [24] presented
a comparison of the artificial neural networks (ANNs) and hybrid techniques used for
forecasting wind speed and power, as well as variations in temperature, gravity, wind speed,
and direction. Jung et al. [25] devised traditional wind speed and wind power forecasting
approaches based on variable factors to enhance forecasting accuracy. Chang et al. [26]
summarized different challenges faced by power grid stations due to inconsistencies and
fluctuations in wind speed at different time intervals. Precise wind speed and forecasting
models can assist power grid stations to overcome risks associated with irregular wind
power supply.

Physical models extensively utilize the physical characteristics of wind turbines to
simulate wind power generation. Mathematical modelling simulations may require a site
specification such as hardness, obstructions and meteorological data including temperature,
pressure, and other factors. In order to estimate actual generated power, the projected
wind speed is compared to the associated wind turbine power curve which is provided
by the turbine builder. Such techniques do not require the evaluation of previous data.
Nonetheless, such models rely on physical data [25]. Focken et al. [27] stated that spatial
smoothing effects can reduce the overall regional power output variability compared to
single-site power forecasting. In such scenarios, precise forecasting of each turbine is not
required, and linear upscaling from a limited number of turbines is achievable. To estimate
wind power, Felice et al. [28] utilized a conventional model using hourly temperatures
from a meteorological dataset covering a period of 14 months from Italy. The outcomes of
their comparative study revealed that NWP models can enhance prediction performance,
particularly in hot areas.

Statistical approaches are mainly focused on nonlinear and linear associations among
different NWP data variables such as wind direction, speed and temperature, along with
generated power as historical data. The model is then used to forecast wind power for
several hours using NWP predictions and meteorological readings; such approaches are
simple to implement and low-cost [29]. Chang et al. [30] used a statistical model for short-
term power forecasting. Those authors suggested that the prediction accuracy decreases as
the estimation duration increases. Zhao et al. [7] proposed a method for ultrashort term
power forecasting based on timeseries wind data using extreme learning machine (ELM)
over a 1–6 h horizon. A detailed analysis of the generated errors was performed. The study
outcomes revealed that a bidirectional model can improve forecasting accuracy.

In recent years, ANN models have been widely studied to identify nonlinear con-
nections between input data and actual wind power forecasting [31]. An ANN model
usually consists of input, output and hidden layers, all of which are trained and tested
using historical data/features [32]. Some hybrid techniques integrate several wind power
forecasting methods such as ANN and fuzzy logic models to boost overall accuracy and
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preserve the benefits of each approach [33]. Zhang et al. [6] utilized the LSTM algorithm
to estimate power and uncertainty based on three power turbines in a wind farm. The
findings revealed that LSTM can increase forecasting accuracy significantly, whereas the
Gaussian mixture model outperformed other methods in wind power forecasting. Lin
et al. [34] used a deep learning strategy to forecast wind power on a Supervisory Control
and Data Acquisition (SCADA) dataset to maintain maximum forecasting accuracy with
lower computational cost. Wang et al. [35] further proposed a deep learning neural network
for a high-frequency SCADA database for predicting wind power from offshore wind farms.
The deep learning model was fine-tuned by removing outlier values without any density
measures. Therefore, it is high likely that the proposed model may be poorly suited for
numerous offshore wind turbines. Devi AS et al. [36] used a hybrid forecasting LSTM-EFG
model optimized using the cuckoo search optimization method for wind power forecasting
to enhance accuracy. Niu et al. [37] used an Attention-based GRU (AGRU) neural network
and a sequence-to-sequence deep learning strategy to anticipate wind power and boost
train model processing time.

Hybrid approaches have become more popular as a means of overcoming forecasting
limitations. For instance, Jiang et al. [38] proposed a combined approach consisting of
submodel selection, a multiobjective optimization algorithm, distribution fitting and a
forecasting evaluation. The forecasting achieved absolute percentage errors of between
2.92% to 4.83% on two sites. Neshat et al. [39] designed an evolutionary forecasting model
for short-term forecasting based on a generalized normal distribution optimization (GNDO)
algorithm and a deep neural network. An empirical study using the Lillgrund offshore
windfarm showed that their model improved RMSE by between 4.13% and 31.03%. In a
further study, Neshat et al. [40] used a hybrid neuro-evolutionary approach on SCADA
data based on greedy nelder-mead and a random local search algorithm. Their model
outperformed other neural networks in terms of MSE, MAE and RMSE. Li et al. [41] used
a multistep-ahead approach via ensemble patch transformation (EPT) and a temporal
convolutional network (TCN) to forecast wind power. An empirical evaluation on three
Chinese windfarms showed the high effectiveness of the proposed decomposition model
in terms of accuracy and stability. Emeksiz and Tan [42] also used multistep forecasting via
ensemble mode adaptive noise and local mode decomposition. The MAPE values of the
hybrid model were reduced by between 41.16% and 78.80%.

The training of ANN models is usually carried out at the beginning in wind power fore-
casting, and is a time-intensive task. Another drawback of the previously used regression-
based forecasting methods is that one predictor propagates forecasting accuracy while the
other enhances the error rate. Many studies have chosen transfer learning to overcome the
time problem, which can facilitate the training of large-scale wind power forecasting. In par-
ticular, we integrate variational auto-encoders and transfer for effective feature extraction
and reduced computational time for wind power forecasting.

3. Research Framework for Wind Power Forecasting

The real-time behavior of wind currents is turbulent and diverse, making wind-based
power forecasting a challenging and difficult task. To analyze the impact of wind currents
on power generation, raw wind power data was selected based from three windfarms
located in different regions. The raw wind data was further analyzed to achieve reliable
wind power forecasting. To analyze the variations in wind speed data, a set of five deep
autoencoders were used to capture hidden and diverse information in low dimensional
space. Deep autoencoders can enhance the forecasting accuracy and prediction time of
deep learning models. The proposed forecasting model with deep autoencoders can
efficiently realize encoded wind power data for reliable forecasting. In this research
framework, autoencoders were used to implement dimensionality reduction on variational
wind parameters to achieve optimal forecasting accuracy.

The pretrained models were further utilized for transfer learning on all three wind-
farms. Lastly, the forecasting accuracy for the regional wind farms was measured based on



Electronics 2022, 11, 206 5 of 20

forecasting error indicators such as MAE, RMSE, etc. The overall structure of the proposed
wind power forecasting model is shown in Figure 1.
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Figure 1. Overall Structure and Work Flow of the Proposed Research Framework to Forecast
Wind Power.

3.1. MLP Deep Auto-Encoder for Dimensionality Reduction

The MLP Deep auto-encoder architecture is intended to create a representation of the
input data that is as similar to the original as possible. However, the actual use of MLP
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deep auto-encoders is to determine a processed prototype of the input data with the least
amount of data loss, which is known as dimension reduction. The encoder and decoder are
key features of the MLP auto-encoder. In order to recreate the input as exactly as possible,
the encoder compresses the data while the decoder generates an uncompressed version.
Therefore, MLP Deep Auto-encoders typically outperform other auto-encoders due to their
capacity to reassemble inputs and create identical enactments on similar datasets, resulting
in distinctive parameter configurations.

Additionally, two auto-encoders and the Softmax activation function are used in the
MLP deep auto-encoder. The auto-encoders learn high-dimensional data from the input
vectors while also reducing the number of attributes. In contrast, rapidly decreasing the
variety of features in one auto-encoder might result in critical features being missed and
accuracy being negatively impacted. A typical MLP auto-encoder classifier discriminates
against the hidden layer on multiple levels, including nonlinear stimulation, to differentiate
nonlinear differentiated data [43]. Firstly, the encoding strategy can use the encoding
function to encode the assigned input, as shown in Equation (1).

h = f (W1
−
x + b) (1)

where the weight matrix is denoted by W1, and the bias vector by b. Secondly, the decoding
method can decode the encoded function and recreate the actual input, as indicated in
Equation (2).

∧
x = g(W2h + c) (2)

where W2 is the weight matrix, c is the bias vector, and g(.) is the sigmoid function. MLP
Auto-encoders are also used to identify optimal parameters throughout the training phase
by minimizing the squared reconstruction error, as represented in Equation (3).

L(x,
∼
x) =

n

∑
i=1
‖ xi−

∧
xi ‖2 (3)

The main characteristics of the presented MLP auto-encoding method are as follows:

- MLP Auto-encoders can only compress data in an effective manner if that data is
similar to the data they were trained on.

- MLP Auto-encoders do not require explicit labels to train, and instead, create their
own labels from the training data; therefore, they are classified as unsupervised
learning approaches.

- They outperform principal component analysis techniques in terms of dimensionality
reduction by presenting data as nonlinear representations, and are well suited for the
extraction of features.

Effective power forecasting is a challenging task, because wind currents are unreliable
and uncertain. Wind turbulence generates a huge amount of training data, which has a
tremendous influence on the accuracy of wind power forecasting. In our model, firstly,
hidden features and significant data trends were extracted in a low-dimensional region in all
three windfarm datasets using a collection of five MLP deep auto-encoders. A computation
diagram of the presented MLP-based Deep Auto-Encoding system is presented in Figure 2.
In the proposed auto-encoder scheme, the dimension reduction method was selected for
windfarm datasets to enhance the effectiveness of wind power forecasting, especially for
transfer learning.
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3.2. Windfarm (NREL) Dataset

Windfarm datasets are preprocessed based on the U.S. NREL repository from different
regions. The collected datasets provide wind and energy measurements from different
wind turbines from three different regions under certain intervals. The first regional dataset
comprised a 20–160 m surface area along with time-series measurements with durations
of 1 h, 7 h and 12 h. The second dataset was for Hawaii, with an average surface area of
2 km. The dataset contained wind and power measurements collected in the month of
January. The third dataset consisted of an offshore region, containing different wind speed
and generated power parameters. The wind speed (m/s) dataset consisted of time-series
measurements spanning 17 years with various meteorological specifications collected by
Modern-Era Retrospective Analysis (MERRA-1).

Figure 3 demonstrates the division of the datasets for all three windfarms. Three
windfarm datasets were assessed to measure the effectiveness of the proposed forecasting
model. Data were separated according to a certain distribution for the testing and training
of each windfarm dataset. Our proposed framework comprises three phases.
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In the first phase, the training of Windfarm 1 (WF1) was performed using data from the
second and third windfarms. In the second phase, the training of Windfarm 2 (WF2) was
performed using data from the first and third windfarms. In the third phase, the training of
Windfarm 3 (WF3) was performed using data from windfarms 1 and 2. Throughout the
first phase, 90% of the data (WF2 + WF3) was reserved for transfer learning, where 90% of
WF1 data was used for testing purposes. The remaining 10% of WF2 + WF3 and WF1 data
were used for validation purposes. During the second phase, 90% of data (WF1 + WF3)
was reserved for transfer learning, while 90% of WF2 data was used for testing purposes.
The remaining 10% of WF1 + WF3 and WF2 was used for validation purposes. During the
third phase, 90% of data (WF1 + WF2) was reserved for transfer learning, while 90% of
WF3 data was used for testing purposes. The remaining 10% of WF1 + WF2 and WF3 was
used for validation purposes. Lastly, all data (WF1, WF2, WF3) from the three windfarms
were used to train the model regarding selected parameters during the validation phase.

3.3. Deep Learning via Transfer Learning with TensorFlow Framework

To apply our transfer learning scheme, the pretrained model was utilized for the
deep neural network in order. TensorFlow is a widely used and accessible repository
for AI that works in a variety of diverse and complex environments. It has been used in



Electronics 2022, 11, 206 9 of 20

high-performance computing, big data training, and state-sharing operations to mutate
workflow graphs involving calculations across each neural network. TensorFlow can
also acquire data nodes from a cluster spanning many processors, such as the Multicore
CPU, the GPU, and a broad range of computing devices. TensorFlow allows application
developers to develop various forms of reasoning applications for the design of effective
deep learning models. Deep learning models usually work in three phases: the initial phase
is related to data analysis; the next phase is related to architecture design; and the last phase
is related to model training and evaluation. TensorFlow performs operations in the form of
multidimensional arrays, also known as tensors. Tensors are different types of data forms
used to generalize vectors and data metrices. They further define the distinct attributes of
physical systems, and are computed simultaneously using the feature queues provided by
the TensorFlow framework [44,45]. TensorFlow has been used to build complicated neural
networks for forecasting models with the Keras Application Programming Interface (API)
in the training of models for deep learning. Keras is an easy-to-use API for basic tooling,
prototyping, as well as for modular extensions [46]. The preprocessed data are provided as
input to the TensorFlow framework before model training and validation of test data via
wind power forecasting, as shown in Figure 4. Input data are first trained from another
model, and transfer learning is applied to train using the data prior to the actual wind
power forecasting.
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In a TensorFlow framework, the fine-tuned parameters are enforced based on various
built-in configurations such as activation function, drop-out layer, loss feature, optimization,
learning ratio (percentage), etc. Fine-tuned configurations can also increase the prediction
accuracy for wind energy. The selected input variables of the windfarm datasets were
“Capacity”, “Used Area”, “Grid ID”, and “Wind Speed”, and the output variable was
“Wind Power”. For each windfarm dataset, the optimal fine-tuned configurations are given
in Tables 1–3, respectively. The number of neurons for hidden layers varied between 50
to 250, and the size of the epochs varied between 200 to 400. The collected datasets were
pretrained after preprocessing with deep autoencoding and saved as trained models. The
pretrained model was further analyzed and integrated in the proposed deep learning
framework via a transfer learning scheme. Finally, wind power was predicted for all three
windfarm regions. In the case of the input layer, the Rectified Linear Unit (ReLU) activation
function was implemented. In deep neural networks, the ReLU activation function is
widely used by researchers due to its high efficiency. The ReLU activation function is
numerically represented in Equation (4).

f (x) = x+ = max(0, x) (4)

where x represents the input data for the neural network, which is also a ramp function.
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Table 1. The optimal fine-tuned configuration selected for Windfarm 1.

Layer
ID No. of Neurons Maximum

Epoch
L2 Weight

Regularization Dropout Ratio

1 200 400 0.00002 0.2
2 175 350 0.00001 0.1
3 150 300 0.00001 0.1
4 100 250 0.00001 0.1
5 70 200 0.00001 0.1

Table 2. The optimal fine-tuned configuration selected for Windfarm 2.

Layer No. of Neurons Maximum
Epoch

L2 Weight
Regularization Dropout Ratio

1 250 400 0.00003 0.2
2 200 400 0.00001 0.2
3 175 350 0.00001 0.1
4 150 300 0.00001 0.1
5 100 250 0.00001 0.1
6 90 200 0.00002 0.1
7 60 200 0.00002 0.1

Table 3. The optimal fine-tuned configuration selected for Windfarm 3.

Layer No. of Neurons Maximum
Epoch

L2 Weight
Regularization Dropout Ratio

1 250 400 0.00003 0.2
2 200 350 0.00001 0.2
3 175 300 0.00001 0.1
4 150 300 0.00001 0.1
5 100 250 0.00001 0.1
6 90 200 0.00002 0.1
7 60 200 0.00002 0.1
8 50 200 0.00002 0.1

In the proposed deep learning model, the Softmax method was used as an activation
function to evaluate forecasting errors. The Softmax algorithm generalizes the multidimen-
sional logistic equation and effectively works with regression analysis. Additionally, it
function stabilizes the performance distribution probability with the expected outputs [47].
Our neural network used the Softmax function to normalize the outputs based on the
transformation of weights into the sum of probabilities. The Softmax function interpreted
the probability of the expected output using Equation (5).

σ(
→
z )i =

ezi

∑K
j=1 ezj

(5)

where σ signifies the Softmax function,
→
z is the input vector, and ezi is an exponent for the

given vector. In deep learning, the entropy function is often used to evaluate forecasting
losses such as accuracy and validation loss. An optimizer function may be used to minimize
error and optimize the accuracy of deep learning models. We selected the Adam optimizer
to configure the proposed forecasting model; this optimizer operates by modifying weights
for active learning in deep learning architectures [48]. A regularization strategy decaying
mean is often applied to neural network weights for the generalization and optimization of
training models using, for example, Equations (6) and (7) [49].

mt = β1mt−1 + (1− β1)gt (6)
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vt = β2vt−1 + (1− β2)gt
2 (7)

where mt and vt are used as approximate measures, also known and the first and second
moments of weight decay for each gradient. Parameters β1 and β2 measure how quickly
the averages decay over the gradient squared gt

2. As optimizer algorithms use moving
averages which tend to be biased, an extra step is required for bias correction. The Adam
optimizer measures bias-corrected moments utilizing Equations (8) and (9), where m̂t is the
bias-corrected first moment and v̂t is the bias-corrected second moment.

∧
mt =

mt

1− βt
1

(8)

∧
vt =

vt

1− βt
2

(9)

The cross-entropy function utilizes wind power forecasting losses and errors. We
selected sparse categorical cross-entropy as a loss function, which transformed targeted out-
put into categorical formats [50]. When the actual labels for forecasting were numbers such
as generated wind power, the sparse categorical cross-entropy function was shown to be
more effective. The loss function model was mathematically measured using Equation (10).

J(w) = − 1
N

N

∑
i=1

[yi log(ŷi) + (1− yi) log(1−ŷi)] (10)

where neural networks weights are represented by w, the actual labels of validation data
are represented by yi and the predicted labels are represented by ŷi.

4. Results and Discussion

The Keras interface provides an easy way to transform different layers and functions
in the TensorFlow platform for the design of forecasting models [51]. The user-defined
functionality can perform complex forecasting tasks in short periods of time. The proposed
forecasting model was compiled for each windfarm. The actual and predicted wind power
outcomes for each dataset are shown in Figures 5–7, respectively. Figure 5 shows the
proximity between the original and forecasted outcomes and their R-squared correlation
for Windfarm 1, Figure 6 shows the actual and forecasted outcomes linked to Windfarm
2, and Figure 7 shows the forecasted outcomes related to Windfarm 3. In each figure, the
blue curve indicates the predicted power outcomes, while the red curve shows the original
power outcomes generated by the windfarms at different intervals. All figures show that
the predicted and actual wind power is closely related, with only minor variations. The
forecasting assessment therefore revealed that the proposed forecasting model is very
effective for forecasting wind energy, while transfer learning is more suitable for improving
forecasting outcomes with less training on large and complex regional windfarms.

The forecasting accuracy was further analyzed based on forecasting errors such as
MAE and RMSE. The lower error suggests that the proposed model can effectively forecasts
wind energy, while higher error rates suggest that the model is ineffective in its current
form. Figure 8 shows the percentile distribution of MAE and RMSE errors for all three
windfarms. The lowest MAE range for windfarms was between 0.01 and 0.10, while the
lowest RMSE range was between 0.08 and 0.20. The MAE and RMSE assessments indicated
that the methods proposed in this study are quite effective for regional windfarms. A lower
error percentile indicates a higher degree of confidence and higher accuracy.
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Figure 5. Forecasted and Actual Power (kW) outcomes for Windfarm 1 via the 
Proposed Methodology. 
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Proposed Methodology. 
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The proposed forecasting model utilized optimal fine-tuned parameters such as activa-
tion, optimization, and loss functions [52] to calculate MAE and RMSE errors. The obtained
MAE and RMSE values for Windfarm 1 ranged between 0.02 and 0.0858, for Windfarm 2
between 0.0111 and 0.0899, and for Windfarm 3 between 0.0443 and 0.1594. Equations (11)
and (12) were used to calculate the MAE and RMSE errors, especially for the forecasting of
timeseries data [53,54].

MAE =

n
∑

i=1
|yi − xi|

n
(11)

where y is the forecasted variable, x is the original variable, and n is the number of
observations in each windfarm. The cumulative variations between the forecasted and
original variables were measured in terms of RMSE using the following equation:

RMSE =

√√√√√ T
∑

t=1
(x1,t − x2,t)

2

T
(12)

Whenever the expected value was x1,t, x2,t is the observed value and T represented the
cumulative number of observations. The forecasted MAE and RMSE errors of the proposed
models were further compared with the state-of-the-art models listed in Table 4. The overall
accuracy of the proposed model was better than those of the other models, i.e., between
0.0111 and 0.1594. Windfarm 2 achieved the lowest MAE and RMSE errors in our model. In
the case of Windfarm 3, the MAE and RMSE were also less than 5% and 16%, respectively.
However, the LSTM model achieved the lowest MAE and RMSE on the Windfarm 1 dataset.
One possible reason for this is that LSTM models tend to perform better for short-term
forecasting. However, the overall performance of the proposed method was far better than
those of other state-of-the-art models. Apart from that, the Random Forest showed good
accuracy with an MAE value of 0.0165 and an RMSE value of 0.1038 for Windfarm 2. Other
forecasting models such as RNN, J48 and ensemble selection showed MAE and RMSE
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values between 0.486 and 0.1761, showing the effectiveness of variational autoencoding in
terms of power forecasting.

Table 4. Comparison of related forecasting models with the proposed model in terms of MAE and
RMSE forecasting errors for windfarms.

Dataset Errors RF J48 RT SVM ES BPNN RNN LSTM PM

WF 1
MAE 0.0389 0.0415 0.0237 0.2257 0.0366 0.0317 0.0250 0.0182 0.0200
RMSE 0.1245 0.1868 0.1353 0.2817 0.1256 0.1218 0.1073 0.0851 0.0858

WF 2
MAE 0.0165 0.0285 0.0173 0.2246 0.0353 0.0316 0.0180 0.0173 0.0111
RMSE 0.1038 0.1653 0.1166 0.2734 0.1344 0.1160 0.1102 0.0902 0.0899

WF 3
MAE 0.1020 0.0486 0.0512 0.2336 0.0540 0.0785 0.0914 0.0425 0.0443
RMSE 0.1772 0.2018 0.1889 0.2891 0.1761 0.1954 0.1671 0.0161 0.1594

Note: WF = Windfarm, RF = Random Forest, RT = Regression Tree, ES = Ensemble Selection, PM = Proposed
Method.

The MAE and RMSE values were further normalized to compare forecasting errors
under different scales such as NMAE and NRMSE. The NRMSE metric can be used to
validate the reliability of forecasting models. The normalized NMAE and NRMSE values
for the proposed and other models are shown in Table 5. The normalized MAE and RMSE
values also showed the reliability of our forecasting model, achieving NMAE and NRMSE
values between (0.0030, 0.0127), (0.0012, 0.0115), (0.0046, 0.0201) for the Windfarms 1, 2,
and 3, respectively.

Table 5. Comparison of related forecasting models with the proposed model in terms of Normalized
MAE and RMSE forecasting errors.

Dataset Errors RF J48 RT SVM ES BPNN RNN LSTM PM

WF 1
MAE 0.0070 0.0058 0.0041 0.0354 0.0061 0.0053 0.0035 0.0028 0.0030
RMSE 0.0221 0.0316 0.0215 0.0443 0.021 0.0185 0.0142 0.0116 0.0127

WF 2
MAE 0.0019 0.0032 0.0021 0.0317 0.0045 0.0035 0.0017 0.0014 0.0012
RMSE 0.0153 0.0235 0.018 0.0372 0.0189 0.0146 0.0135 0.0117 0.0115

WF 3
MAE 0.0124 0.0064 0.0066 0.0316 0.0316 0.0102 0.0074 0.0052 0.0046
RMSE 0.0233 0.0259 0.0240 0.0371 0.0234 0.0247 0.0312 0.0231 0.0201

Note: WF = Windfarm, RF = Random Forest, RT = Regression Tree, ES = Ensemble Selection, PM = Proposed
Method.

Deep learning models often under- or over- fit, depending on the data and fine-tuned
parameters. Thus, retraining errors were visualized via epochs to measure the stability and
feasibility of the deep learning model for wind power data and the fine-tuned parameters.
In this study, the proposed deep learning model was executed against 200 epochs on three
windfarm datasets to validate its stability and measure retraining losses. Figure 9 shows
the retraining loss produced by proposed model, where the x-axis represents loss against
the next epoch cycle and the y-axis represents the accuracy loss for each windfarm.
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As shown in Figure 9, the training error was close to 60% in the first epoch cycle.
However, with every subsequent cycle, the training error continued to decrease and the
accuracy of the model improved, which shows the stability of the proposed strategies for
wind power data without any under- or over- fitting of the deep learning model. The
retraining loss was lowest between 25 to 50 epochs and remained stable for the remainder
of the epochs. For instance, the retraining loss was less than 5% after 50 epochs, and
remained between 1% to 2% on subsequent epochs. In conclusion, Figure 10 illustrates that
our neural network model is suitable for forecasting wind power using a given dataset,
that a minimum of 50 epochs is required to consistently achieve accuracy, and that a
minimum error of between 1% to 5% is generated by the forecasting model. The training
loss was measured by fitting training and validation data as a linear curve. The slight
variation in the linear curve indicated the suitability of variational auto-encoders and hybrid
transfer learning for wind power forecasting. Table 6 provides a runtime comparison of the
proposed and other methods using all three datasets. Windfarms 1 and 3 shortened the
model training runtime by more than 75× while preserving high accuracy. Windfarm 2
yielded the least runtime reduction, which was nonetheless more than 63×, proving the
feasibility and effectiveness of the proposed solutions. All experiments were performed on
a system with a 6 Core i7-8750H 2.20 GHz processor, 16 GB RAM and GTX1060 6G Nvidia
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GPU. Python 3.8 64-Bit version and Visual Studio 2017 SDK were used to implement the
wind power forecasting methods.
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Table 6. Runtime Comparison before and after using Auto-Encoder + Hybrid Transferred Learning.

Dataset Errors RF

Wind Farm 1 35.18 s 8.12 s (76.91×)
Wind Farm 2 19.02 s 6.85 s (63.98×)
Wind Farm 3 11 m 10 s 2 m 41 s (75.97×)

Auto-Encoder + Hybrid Transferred Learning Average (72.29×)

In the final experiment, wind characteristics such as speed and power were linearly
fitted on the x- and y-axes via r-squared correlation. The association between speed and
power explained the suitability of the forecasting model for the selected wind power data.
High association indicated a high degree of dependency of different variables on each
other. Figure 10 shows the linear association of wind power and speed variables for all
three windfarms. The data points are plotted in blue dots and the linear regression line
was determined using the fit equation. Data points which are close to each other indicate a
high degree of association between two variables. The r-squared correlation for the three
windfarms was 86.68%, 76.05% and 89.14%, respectively, indicating the suitability of wind
characteristics for power forecasting. As shown in Figure 10, the data points of Windfarm 3
were more proportionate to the linear regression line compared to those of the other two
datasets. As a consequence, the r-squared correlation of Windfarm 3 was higher than those
of Windfarms 1 and 2.

5. Conclusions

A novel strategy to forecast wind power with the aid of variational auto-encoders and
transfer learning was designed for massive and multiregional windfarms. The proposed
forecasting model was applied to three windfarm datasets from different regions. Although
the power densities of the three sites varied, the principle of transfer learning was shown
to effectively and swiftly predict wind power. Therefore, the raw information from the
selected regions was screened, and variables with high associations with power production
were selected. Variational auto-encoders were used for backpropagation neural network
training in order to distinguish data that were not linearly separable. Transfer learning
showed that one windfarm could be fine-tuned to forecast wind power for other regions
with similar characteristics. As a result, the computational cost of retraining data was
reduced by 90×. The minimum MAE and RMSE ratios estimated using the proposed
model were 0.0111 and 0.0858, while the maxima were 0.0443 and 0.1594, respectively. The
lower computational cost and reduced error ratios suggest that the proposed method can
efficiently forecast wind power, regardless of multiregional physical attributes.

In future, we intend to use the proposed methods for short-term power forecasting.
Since short-term meteorological data typically consist of minute and hourly energy output,
there is a high possibility that transfer learning may influence predictive outcomes. To
overcome this, optimization and data dimensionality reduction methods will be adopted.

Author Contributions: Conceptualization, M.K.; Formal analysis, M.R.N.; Funding acquisition, W.K.;
Investigation, I.A.; Project administration, H.V.; Resources, M.R.N.; Software, M.R.N.; Supervision,
E.A.A.-A.; Validation, E.A.A.-A. and H.V.; Visualization, I.A.; Writing—original draft, M.K.; Writing—
review and editing, W.K. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement: The regional windfarm datasets used in this study are stored and
publicly available at NREL Data & Tools Catalog (https://www.nrel.gov/grid/data-tools.html
(accessed on 14 August 2021)) and U.S. Wind Turbine Database (https://doi.org/10.5066/F7TX3DN0
(accessed on 21 August 2021)) via API accession.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at
King Saud University for funding this work through research group no. RG-1439-028.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.nrel.gov/grid/data-tools.html
https://doi.org/10.5066/F7TX3DN0


Electronics 2022, 11, 206 18 of 20

Abbreviations

MLP Multilayer Perceptron
ANN Artificial Neural Network
NWP Numerical Weather Prediction
ELM Extreme Learning Machine
SCADA Supervisory Control and Data Acquisition
MERRA Modern-Era Retrospective Analysis
NREL National Renewable Energy Laboratory
WF Wind Farm
MAE Mean Absolute Error
RMSE Root Mean Squared Error

References
1. EIA. EIA Projects World Energy Consumption Will Increase 56% by 2040; US Energy Information Administration: Washington, DC,

USA, 2013.
2. Fahad, S.; Wang, J. Farmers’ risk perception, vulnerability, and adaptation to climate change in rural Pakistan. Land Use Policy

2018, 79, 301–309. [CrossRef]
3. Bilal, B.; Ndongo, M.; Adjallah, K.H.; Sava, A.; Kébé, C.M.; Ndiaye, P.A.; Sambou, V. Wind turbine power output prediction

model design based on artificial neural networks and climatic spatiotemporal data. In Proceedings of the IEEE International
Conference on Industrial Technology (ICIT), Lion, France, 20–22 February 2018; pp. 1085–1092. [CrossRef]

4. Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy
transformation. Energy Strategy Rev. 2019, 24, 38–50. [CrossRef]

5. Lin, Z.; Liu, X.J.E. Assessment of wind turbine aero-hydro-servo-elastic modelling on the effects of mooring line tension via deep
learning. Energies 2020, 13, 2264. [CrossRef]

6. Zhang, J.; Yan, J.; Infield, D.; Liu, Y.; Lien, F.-S. Short-term forecasting and uncertainty analysis of wind turbine power based on
long short-term memory network and Gaussian mixture model. Appl. Energy 2019, 241, 229–244. [CrossRef]

7. Zhao, Y.; Ye, L.; Li, Z.; Song, X.; Lang, Y.; Su, J. A novel bidirectional mechanism based on time series model for wind power
forecasting. Appl. Energy 2016, 177, 793–803. [CrossRef]

8. Hanifi, S.; Liu, X.; Lin, Z.; Lotfian, S. A critical review of wind power forecasting methods—Past, present and future. Energies
2020, 13, 3764. [CrossRef]

9. Nazir, M.S.; Wu, Q.; Li, M.; Zhang, L. Symmetrical short circuit parameter differences of double fed induction generator and
synchronous generator based wind turbine. Indones. J. Electr. Eng. Comput. Sci. 2017, 6, 268–277. [CrossRef]

10. Shahzad Nazir, M.; Wu, Q.; Li, M. Symmetrical short-circuit parameters comparison of DFIG–WT. Int. J Electr. Comput. Eng. Syst.
2017, 8, 77–83. [CrossRef]

11. Söder, L.; Tómasson, E.; Estanqueiro, A.; Flynn, D.; Hodge, B.-M.; Kiviluoma, J.; Korpås, M.; Neau, E.; Couto, A.; Pudjianto, D.;
et al. Review of wind generation within adequacy calculations and capacity markets for different power systems. Renew. Sustain.
Energy Rev. 2020, 119, 109540. [CrossRef]

12. Xia, J.; Ma, X.; Wu, W.; Huang, B.; Li, W. Application of a new information priority accumulated grey model with time power to
predict short-term wind turbine capacity. J. Clean. Prod. 2020, 244, 118573. [CrossRef]

13. Fragaki, A.; Markvart, T.; Laskos, G. All UK electricity supplied by wind and photovoltaics—The 30–30 rule. Energy 2019, 169,
228–237. [CrossRef]

14. Santos, M.; González, M. Factors that influence the performance of wind farms. Renew. Energy 2019, 135, 643–651. [CrossRef]
15. Rotela Junior, P.; Fischetti, E.; Araújo, V.G.; Peruchi, R.S.; Aquila, G.; Rocha, L.C.S.; Lacerda, L.S. Wind power economic feasibility

under uncertainty and the application of ANN in sensitivity analysis. Energies 2019, 12, 2281. [CrossRef]
16. Mahmoud, K.; Abdel-Nasser, M.; Mustafa, E.; Ali, Z.M. Improved salp—Swarm optimizer and accurate forecasting model for

dynamic economic dispatch in sustainable power systems. Sustainability 2020, 12, 576. [CrossRef]
17. Maeda, M.; Watts, D. The unnoticed impact of long-term cost information on wind farms’ economic value in the USA.—A real

option analysis. Appl. Energy 2019, 241, 540–547. [CrossRef]
18. DeCastro, M.; Salvador, S.; Gómez-Gesteira, M.; Costoya, X.; Carvalho, D.; Sanz-Larruga, F.J.; Gimeno, L. Europe, China and the

United States: Three different approaches to the development of offshore wind energy. Renew. Sustain. Energy Rev. 2019, 109,
55–70. [CrossRef]

19. Bosch, J.; Staffell, I.; Hawkes, A.D. Temporally explicit and spatially resolved global offshore wind energy potentials. Energy 2018,
163, 766–781. [CrossRef]

20. Eisenberg, D.; Laustsen, S.; Stege, J. Wind turbine blade coating leading edge rain erosion model: Development and validation.
Wind Energy 2018, 21, 942–951. [CrossRef]

21. Ullah, F.; Naeem, H.; Jabbar, S.; Khalid, S.; Latif, M.A.; Al-Turjman, F.; Mostarda, L. Cyber security threats detection in internet of
things using deep learning approach. IEEE Access 2019, 7, 124379–124389. [CrossRef]

http://doi.org/10.1016/j.landusepol.2018.08.018
http://doi.org/10.1109/ICIT.2018.8352329
http://doi.org/10.1016/j.esr.2019.01.006
http://doi.org/10.3390/en13092264
http://doi.org/10.1016/j.apenergy.2019.03.044
http://doi.org/10.1016/j.apenergy.2016.03.096
http://doi.org/10.3390/en13153764
http://doi.org/10.11591/ijeecs.v6.i2.pp268-277
http://doi.org/10.32985/ijeces.8.2.5
http://doi.org/10.1016/j.rser.2019.109540
http://doi.org/10.1016/j.jclepro.2019.118573
http://doi.org/10.1016/j.energy.2018.11.151
http://doi.org/10.1016/j.renene.2018.12.033
http://doi.org/10.3390/en12122281
http://doi.org/10.3390/su12020576
http://doi.org/10.1016/j.apenergy.2018.11.065
http://doi.org/10.1016/j.rser.2019.04.025
http://doi.org/10.1016/j.energy.2018.08.153
http://doi.org/10.1002/we.2200
http://doi.org/10.1109/ACCESS.2019.2937347


Electronics 2022, 11, 206 19 of 20

22. Naeem, H.; Ullah, F.; Naeem, M.R.; Khalid, S.; Vasan, D.; Jabbar, S.; Saeed, S. Malware detection in industrial internet of things
based on hybrid image visualization and deep learning model. Ad Hoc Netw. 2020, 105, 102154. [CrossRef]

23. Wang, X.; Guo, P.; Huang, X. A review of wind power forecasting models. Energy Procedia 2011, 12, 770–778. [CrossRef]
24. Sharma, R.; Singh, D. A review of wind power and wind speed forecasting. Rahul Sharma J. Eng. Res. Appl. 2018, 8, 1–9.
25. Jung, J.; Broadwater, R.P. Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev.

2014, 31, 762–777. [CrossRef]
26. Chang, W.-Y. A literature review of wind forecasting methods. J. Power Energy Eng. 2014, 2, 161–168. [CrossRef]
27. Focken, U.; Lange, M.; Waldl, H.-P. Previento—A wind power prediction system with an innovative upscaling algorithm. In

Proceedings of the European Wind Energy Conference, Copenhagen, Denmark, 2–6 July 2001.
28. De Felice, M.; Alessandri, A.; Ruti, P.M. Electricity demand forecasting over Italy: Potential benefits using numerical weather

prediction models. Electr. Power Syst. Res. 2013, 104, 71–79. [CrossRef]
29. Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation.

Renew. Energy 2012, 37, 1–8. [CrossRef]
30. Chang, G.W.; Lu, H.J.; Chang, Y.R.; Lee, Y.D. An improved neural network-based approach for short-term wind speed and power

forecast. Renew. Energy 2017, 105, 301–311. [CrossRef]
31. Wu, Y.-R.; Zhao, H.-S. Optimization maintenance of wind turbines using Markov decision processes. In Proceedings of the

International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; pp. 1–6. [CrossRef]
32. Heydari, A.; Majidi Nezhad, M.; Neshat, M.; Garcia, D.A.; Keynia, F.; De Santoli, L.; Bertling Tjernberg, L. A combined fuzzy

GMDH neural network and grey wolf optimization application for wind turbine power production forecasting considering
SCADA data. Energies 2021, 14, 3459. [CrossRef]

33. Hong, Y.-Y.; Rioflorido, C.L.P.P. A hybrid deep learning-based neural network for 24-h ahead wind power forecasting. Appl.
Energy 2019, 250, 530–539. [CrossRef]

34. Lin, Z.; Liu, X.J.E. Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning
neural network. Energy 2020, 201, 117693. [CrossRef]

35. Wang, Y.; Zou, R.; Liu, F.; Zhang, L.; Liu, Q. A review of wind speed and wind power forecasting with deep neural networks.
Appl. Energy 2021, 304, 117766. [CrossRef]

36. Devi, A.S.; Maragatham, G.; Boopathi, K.; Rangaraj, A.G. Hourly day-ahead wind power forecasting with the EEMD-CSO-LSTM-
EFG deep learning technique. Soft Comput. 2020, 24, 12391–12411. [CrossRef]

37. Niu, Z.; Yu, Z.; Tang, W.; Wu, Q.; Reformat, M. Wind power forecasting using attention-based gated recurrent unit network.
Energy 2020, 196, 117081. [CrossRef]

38. Jiang, P.; Liu, Z.; Niu, X.; Zhang, L. A combined forecasting system based on statistical method, artificial neural networks, and
deep learning methods for short-term wind speed forecasting. Energy 2021, 217, 119361. [CrossRef]

39. Neshat, M.; Nezhad, M.M.; Abbasnejad, E.; Mirjalili, S.; Tjernberg, L.B.; Garcia, D.A.; Alexander, B.; Wagner, M. A deep learning-
based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm. Energy
Convers. Manag. 2021, 236, 114002. [CrossRef]

40. Neshat, M.; Nezhad, M.M.; Abbasnejad, E.; Mirjalili, S.; Groppi, D.; Heydari, A.; Tjernberg, L.B.; Garcia, D.A.; Alexander, B.; Shi,
Q. Wind turbine power output prediction using a new hybrid neuro-evolutionary method. Energy 2021, 229, 120617. [CrossRef]

41. Li, D.; Jiang, F.; Chen, M.; Qian, T. Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and
temporal convolutional networks. Energy 2022, 238, 121981. [CrossRef]

42. Emeksiz, C.; Tan, M. Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition approach.
Energy 2022, 238, 121764. [CrossRef]

43. Kaluri, R.; Rajput, D.S.; Xin, Q.; Lakshmanna, K.; Bhattacharya, S.; Gadekallu, T.R.; Maddikunta, P.K.R. Roughsets-based approach
for predicting battery life in IoT. Tech Sci. Press 2021, 27, 453–469. [CrossRef]

44. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. Tensorflow: A
System for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283, ISBN 978-1-931971-33-1.

45. Baylor, D.; Breck, E.; Cheng, H.-T.; Fiedel, N.; Foo, C.Y.; Haque, Z.; Haykal, S.; Ispir, M.; Jain, V.; Koc, L. Tfx: A tensorflow-based
production-scale machine learning platform. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Halifax, NS, Canada, 13–18 August 2017; pp. 1387–1395. [CrossRef]

46. Gulli, A.; Pal, S. Deep Learning with Keras. Packt Publishing Ltd.: Birmingham, UK, 2017; ISBN 9780262035613.
47. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press Cambridge: Cambridge, UK, 2016; Volume 1.
48. Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the IEEE/ACM 26th International Symposium

on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2. [CrossRef]
49. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
50. Jadon, S. A survey of loss functions for semantic segmentation. arXiv 2020, arXiv:2006.14822.
51. Alhagry, S.; Fahmy, A.A.; El-Khoribi, R.A. Emotion recognition based on EEG using LSTM recurrent neural network. Emotion

2017, 8, 355–358. [CrossRef]
52. Zhang, R.; Gong, W.; Grzeda, V.; Yaworski, A.; Greenspan, M. An adaptive learning rate method for improving adaptability of

background models. IEEE Signal Proces. Lett. 2013, 20, 1266–1269. [CrossRef]

http://doi.org/10.1016/j.adhoc.2020.102154
http://doi.org/10.1016/j.egypro.2011.10.103
http://doi.org/10.1016/j.rser.2013.12.054
http://doi.org/10.4236/jpee.2014.24023
http://doi.org/10.1016/j.epsr.2013.06.004
http://doi.org/10.1016/j.renene.2011.05.033
http://doi.org/10.1016/j.renene.2016.12.071
http://doi.org/10.1109/POWERCON.2010.5666092
http://doi.org/10.3390/en14123459
http://doi.org/10.1016/j.apenergy.2019.05.044
http://doi.org/10.1016/j.energy.2020.117693
http://doi.org/10.1016/j.apenergy.2021.117766
http://doi.org/10.1007/s00500-020-04680-7
http://doi.org/10.1016/j.energy.2020.117081
http://doi.org/10.1016/j.energy.2020.119361
http://doi.org/10.1016/j.enconman.2021.114002
http://doi.org/10.1016/j.energy.2021.120617
http://doi.org/10.1016/j.energy.2021.121981
http://doi.org/10.1016/j.energy.2021.121764
http://doi.org/10.32604/iasc.2021.014369
http://doi.org/10.1145/3097983.3098021
http://doi.org/10.1109/IWQoS.2018.8624183
http://doi.org/10.14569/IJACSA.2017.081046
http://doi.org/10.1109/LSP.2013.2288579


Electronics 2022, 11, 206 20 of 20

53. Willmott, C.J.; Matsuura, K.J.C.R. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in
assessing average model performance. Clim. Res. 2005, 30, 79–82. [CrossRef]

54. Chai, T.; Draxler, R.R.J.G. Root mean square error (RMSE) or mean absolute error (MAE)? Geosci. Model Dev. Discuss. 2014, 7,
1525–1534. [CrossRef]

http://doi.org/10.3354/cr030079
http://doi.org/10.5194/gmd-7-1247-2014

	Introduction 
	Literature Review 
	Research Framework for Wind Power Forecasting 
	MLP Deep Auto-Encoder for Dimensionality Reduction 
	Windfarm (NREL) Dataset 
	Deep Learning via Transfer Learning with TensorFlow Framework 

	Results and Discussion 
	Conclusions 
	References

